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Abstract—Recent substantial progress in the domain of indoor
positioning systems and a growing number of indoor location-
based applications are creating the need for systematic, efficient,
and precise experimental methods able to assess the localization
and perhaps also navigation performance of a given device. With
hundreds of Khepera III robots in academic use today, this
platform has an important potential for single- and multi-robot
localization and navigation research. In this work, we develop
a necessary set of models for mobile robot navigation with
the Khepera III platform, and quantify the robot’s localization
performance based on extensive experimental studies. Finally,
we validate our experimental approach to localization research
by considering the evaluation of an ultra-wideband (UWB) po-
sitioning system. We successfully show how the robotic platform
can provide precise performance analyses, ultimately proposing a
powerful approach towards advancements in indoor positioning
technology.

I. INTRODUCTION

The last ten years have been marked by substantial progress

in the area of indoor positioning systems [16]. In contrast

to outdoor navigation, where crude positioning of sub-meter

accuracy often satisfies user needs, indoor applications may

require accuracies as low as a centimeter. Furthermore, outdoor

positioning and navigation has been well explored and stan-

dardized, whereas indoor navigation remains a recent research

area which is still in the process of generating numerous new

systems and algorithms [8, 20].

A growing number of real-life applications that depend on

automatic object location detection and navigation capabilities

create the need for efficient and accurate testing methods.

Also, as the miniaturization of application devices poses

challenges to the integration of new technologies, additional

testbeds must be considered. In our efforts to help improve

indoor navigation capabilities, we propose a mobile robot as a

fundamental tool enabling systematic testing under controlled

conditions. The first goal of this paper is to rigorously evaluate

the mobile robot’s on-board navigation capabilities, and thus

create a baseline for further navigation research using the

selected platform (a Khepera III robot). Secondly, using an

absolute positioning system based on UWB technology, the

paper provides a proof-of-concept case-study which brings to

evidence the potential of our proposed approach.

This paper is organized as follows. In Section II we explain

our experimental setup and specify our ground-truth measure-

ment system. Section III is dedicated to the development and

validation of our navigation models specific to the Khepera III

robot. Finally, in Section IV we describe a navigation scenario

augmented with beacon-based, absolute UWB positioning data

and discuss the resulting performances.

A. Mobile Robots for Navigation Research

Since the beginning of navigation research with autonomous

mobile robots in the mid 80’s, a multitude of robotic platforms

have been developed to satisfy the needs of this increasingly

important domain. Whereas early studies were often performed

on robots with simplistic sensing capabilities (for example,

limited to the combination of sonar sensors and wheel en-

coders, as in [2, 14], or to the combination of an optical

range finder and odometry as in [7]), the platforms used today

are often equipped with powerful sensing units, such as laser

range finders and cameras [5, 23]. Moreover, adhoc as well as

commercially available platforms are often tailored specifically

for the tasks they are meant to solve. When operating in large

spaces, i.e. spaces which span several rooms or even entire

building floors, robots typically need augmented autonomy and

combined sensing and computational capabilities. In [21, 24],

the robot Minerva is used as a tour guide in a museum during

opening hours. Apart from using sonars and wheel encoders,

it uses 2 laser range finders which provide a 360◦ field of

view, and an upwards pointing camera which is used for

localization based on the structured ceiling. Similarly, in [21],

the RWI B21 robot covers museum grounds, and uses an array

of 24 sonar sensors and a laser range finder. Although the

above mentioned robots have shown to successfully perform

sophisticated real-life tasks, their large size (roughly 1m in

height, 0.5m in diameter) makes it hard to integrate them into

systematic evaluation systems underlying precise ground truth

comparisons. More recently, studies have also been performed

on smaller platforms. The limited robot size (below 0.2m in

height, 0.15m in diameter) is leveraged to conduct systematic

evaluation of specific navigation techniques. In [6] as well as

in [1], Khepera III and Khepera II robots are used respectively,

for the evaluation of novel calibration techniques.
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tion have been pointed out in several publications, where the

strategy of multi-robot collaboration is able to compensate for

deficiencies in the data owned by a singular robot [11, 18].

Subsequent works have focused on the reduction of computa-

tional [19] as well as communication [26] requirements. Thus,

future research in collaborative navigation techniques using

miniature, multi-robot systems has become tractable.

B. A Flexible, Multi-purpose Mobile Robotic Platform

In order to integrate single- and multi-robot systems into

systematic and precise evaluation frameworks, it is practical

to reduce the individual robot size to its minimum possible,

without stripping it from vital resources such as autonomy,

computation, and sensing. Also, a number of further design

choices can be considered to maximize the utility of a robotic

platform: (i) off-the-shelf components and software/hardware

standards, (ii) modularity enabling extensions for different

modalities, (iii) non-stop energetic autonomy, and (iv) wireless

techniques for programming, data logging, and controlling.

The Khepera III fulfills all the above requirements. Indeed,

it leverages the embedded system/PDA/cell phone market, uses

wireless software and hardware standards, and runs Linux

as its OS (i), for which it is aligned with its device size.

The platform is modular (ii), possesses a modern battery

technology (hot swap exchangeable) (iii), and includes both

WiFi and bluetooth technology (iv).

II. EXPERIMENTAL SETUP

In this work, we present a minimal but necessary set of

analyses and models for mobile robot navigation with the

Khepera III platform. Our studies are evaluated using a precise

ground truth measurement system for real-time tracking. The

findings are finally validated in a simple navigation scenario.

All experiments were conducted in a lab room with a hard

plastic floor in a 3x3m robotic arena. The arena is delimited

by 30cm high light gray borders with smooth surfaces. We

used a fleet of 3 Khepera III robots, which we will denote as

R1, R2, R3.

Fig. 1. The Khepera III robot. Here, the upper body is unmounted, and a
module is stacked onto the extension bus providing two colored LEDs.

A. The Khepera III Mobile Robot

The Khepera III is a differential drive robot of 12cm diame-

ter, produced by K-Team corporation1 with development assis-

tance from the Distributed Intelligent Systems and Algorithms

Laboratory (DISAL). It is a descendant of the first generation

Khepera robot which is smaller in size (5.5cm diameter) and

since its first release in 1995 has been in use worldwide—

to date, around 2000 Khepera I and Khepera II robots have

been sold to over 600 universities. In its latest incarnation, the

Khepera III offers a much higher computing power than its

predecessors. A KoreBot extension board provides a standard

embedded Linux operating system (Ångstrøm distribution) on

an Intel XSCALE PXA-255 processor running at 400 MHz.

Basic sensing is formed by a ring of 9 infrared sensors

(TCRT5000 Vishay Telefunken) and an additional pair facing

downwards (for table top navigation and line following), and

5 ultrasound sensors (400ST/R100 Midas Components Ltd.)

placed on the front semicircle. For a precise positioning of

the sensors, the reader should refer to Figure 2. The in-

frared sensors have both active and passive functioning modes

(for reflected emitted light and ambient light measurements,

respectively), and an approximate range of 2cm-25cm. The

ultrasound sensors have an approximate range of 20cm-400cm

and record a maximum of 3 echoes and their corresponding

timestamps. Further, the robot has a stackable expansion bus

that enables the addition of custom robot modules. Finally, in

order to facilitate communication, an IEEE 802.11 wireless

card can be installed in the built-in CompactFlash slot. Since

its market release in September 2006, 550 Khepera III robots

have been sold to over 150 universities worldwide.

B. Real-time Ground Truth Measurements

There are several possible ways to gather ground truth

information about a robot’s position, or even its trajectory.

Due to their practicality (cheap and easy to use), cameras

are often used for such purposes. For the work in this paper,

1http://www.k-team.com/
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Fig. 2. The figure shows schematics of the Khepera III robot in true
proportion. We mark the exact positions of all sensors relative to the robot
center, a) for the 9 infrared body sensors (excluding the floor sensors) and b)
for the 5 ultrasound sensors. The units are in meters.



Dot detection KIII detection

Mean pos. error [cm]
0.71 ± 0.31 1.2 ± 0.58

µ± σ

Max. pos. error [cm] 1.45 2.74

Mean orient. error [rad]
– 0.068 ± 0.055

µ± σ

Max. orient. error [rad] – 0.253

TABLE I
ACCURACY OF OVERHEAD TRACKING SYSTEM

we installed an overhead camera system in combination with

the open source tracking software SwisTrack previously de-

veloped at the Distributed Intelligent Systems and Algorithms

Laboratory 2. This software package is especially useful due

to its modular architecture including numerous algorithmic

components [17]. As well as using the available camera

calibration components, we have exploited real-time tracking

modules enabling us to perform precise analyses of time-

dependent robot behavior.

In our setup, we use a GigE color camera (Basler-SCA1000-

30GC) which has a standard resolution of 1032x778 pixels,

and is mounted 2.5m above the robotic arena. The resulting

picture resolution is 5.5 pixels per cm2. Detected ground po-

sitions are calibrated using the calibration algorithm proposed

by Tsai et al. [27], a method which requires information on

the position of at least 5 non-collinear points on the image. We

performed the calibration procedure on 64 points by installing

a uniform grid with dots of 3cm diameter at its intersections.

Further, we performed a second calibration for robot detection

which additionally integrates a model of the setup, taking into

account the robot height (11cm). In order to increase precision

of the robot pose estimate, we install one red and one green

LED onto the robot top. The image captured by SwisTrack

is processed in a pipeline which includes the detection of

a red-green blob pair and calculates the corresponding robot

orientation. Using this described framework, we perform real-

time tracking at a frequency of 10Hz. Lastly, in order to

synchronize the real-time robot data with the real-time ground

truth measurements we build a UDP communication channel.

A simple script timestamps the data from the robot as well

as from SwisTrack at the incoming ports. This architecture

proved highly reliable (we considered the 3ms communication

delay as negligible).

We evaluate our ground truth measurements system by

calculating the mean positioning error on detected grid dots

as well as detected KIII robots. We measure the positions of

64 dots, and of 28 placements of the KIII robot, uniformly

distributed in the arena. We also measure the error of the

orientation of the robot by rotating it 4 times by 90◦ per

position. While the error on the dot detection is absolute, the

error on KIII detection is subject to minor misalignments due

to manual placement of the robot on the grid. Table I reports

the achieved accuracy.

2http://en.wikibooks.org/wiki/SwisTrack

III. NAVIGATION WITH ON-BOARD SENSORS

Navigation systems typically need two components to es-

timate the current target position: a sensor model and a

motion model. In the following section, we first discuss the

effect of various calibration techniques on the accuracy of the

Khepera III’s motion model. Secondly, we elaborate sensor

models for both the infrared and ultrasound sensors. Finally, in

Section III-C, we validate our models by performing a simple

navigation scenario.

A. Odometry

The Khepera III robot possesses high resolution wheel en-

coders (2764 ticks per revolution, roughly 7 ticks per degree).

Yet in order to take full advantage of the high precision,

odometry parameters must be calibrated.

1) Motion Model: We adopt the same formalism as de-

scribed in [1], where robot velocity ν and angular velocity ω

are related to the angular velocities of the robot wheels ωR, ωL

as in
(

ν

ω

)

= C

(

ωR

ωL

)

. (1)

with matrix C equal to
(

rR
2

rL
2

rR
b

−rL
b

)

(2)

where rR and rL are the right and left wheel radii respectively,

and b the robot wheelbase. The Khepera III factory specifica-

tions are rR = rL = 0.0021m and b = 0.08841m. Using these

nominal values we have

C =

(

0.0105 0.0105
0.23753 −0.23753

)

. (3)

In order to correctly predict robot displacement, these param-

eters (rR, rL and b) are tuned for an individual robot in a

specific setting.

2) Calibration: Since the beginning of research on odome-

try calibration in the late 80’s, a number of calibration methods

have been proposed [1, 4, 13, 21, 29]. We have here chosen

to test the appropriateness of 3 particular (offline) methods

a Borenstein et al. [4]

b Kelly et al. [13]

c Antonelli et al. [1]

using three sets of trajectories, as shown in Figure 3:

set1 10 trajectories on shape B (CW/CCW)

set2 12 trajectories on shapes A and C (CW/CCW)

set3 3 trajectories on shape D

where CW and CCW stand for clockwise and counter-

clockwise. Each of the methods a,b and c is based on a

different concept and separate hypotheses. In their work,

Borenstein et al. propose a straightforward calibration method

which treats systematic errors (as opposed to non-systematic).

Their parameter correction method is based on a geometric

derivation, and assumes that the average of the actual wheel

diameters is equal to the nominal one. In order to apply the

method, only the beginning- and end-positions of the robot
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Fig. 3. Trajectories used to calibrate and evaluate the motion model.
Trajectories A, B, and C were performed in both CW and CCW directions.

Borenstein Kelly Antonelli

R1

(

0.0105 0.0105

0.2345 −0.2359

)(

0.0155 0.0106

0.2357 −0.2369

)(

0.0142 0.0074

0.2345 −0.2354

)

R2

(

0.0105 0.0105
0.2366 −0.2365

)(

0.0106 0.0106
0.2385 −0.2385

)(

0.0105 0.0112
0.2347 −0.2344

)

R3

(

0.0105 0.0105

0.2348 −0.2353

)(

0.0106 0.0106

0.2389 −0.2393

)(

0.0118 0.0097

0.2336 −0.2341

)

TABLE II
ODOMETRY COEFFICIENTS DERIVED FROM CALIBRATION METHODS

have to be recorded. We performed this calibration on set1,

for each robot.

Kelly et al. pose odometry as a nonlinear dynamical system.

Optimal odometry parameters are found by solving a nonlinear

optimization problem which minimizes the error between

actual and nominal trajectories. Thus, we have to gather and

synchronize robot wheel speed data with tracking information

in real-time (as explained in Section II-B). We performed this

calibration on set2, for each robot.

Antonelli et al. propose a least-squares method to estimate

the matrix C directly. In order to apply this method, robot

wheel speed data as well as the robot end-positions is neces-

sary. We performed this calibration on set2, for each robot.

Finally, we obtain the calibrated parameters shown in Table

II.

3) Experimental Results: In order to evaluate the perfor-

mance of the tested methods, we compute the following metric

which gives us the normalized error at time T

εod(T ) =
2

T

T
∫

0

ε(t)

dR(t) + dL(t)
dt (4)

Mean error Max error
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Fig. 4. Normalized (over distance) error ratio obtained for 3 different
odometry calibration methods, as well as for non-calibrated robots. The
errorbars show a 95% confidence interval.

where ε(t) is the euclidean distance between the actual and

estimated robot positions, and dL(t), dR(t), are the distances

traveled by the left and right wheels at time t. We perform

this evaluation on both set2 and set3, for each robot. The

performance of the calibrated motion models is reported in

Figure 4. The results of running the Wilcoxon rank-sum test

(with threshold 0.05) on the mean error performance data

show that while there is a statistically significant improvement

in performance when using the calibration methods, there is

no significant difference in performance between the three

methods themselves. In terms of maximum error, there is no

statistically significant difference in the results obtained with

calibration from the ones obtained without calibration.

B. Sensor Models

Due to their fast response time and low cost, infrared sensors

are often employed on mobile robots. Yet, because of their

non-linear behavior and dependence on the reflectance of

surrounding objects, they are rather used for proximity sensing

(in collision avoidance) than for range sensing (in localization

and mapping) [3]. Ultrasound sensors are a popular choice

among range sensors, despite the many shortcomings that they

have, such as low resolution, poor directionality and corruption

by reflections and specularities [15]. Still, when compared to

other rangefinders such as lasers or stereo vision, they are

orders of magnitude cheaper and consume little power, and

thus offer interesting characteristics for miniaturized systems.

Moreover, ultrasound and infrared sensors can be combined to

compensate for each others weaknesses and provide improved

accuracies [9].

In this section, we investigate the utility of the Khepera

III’s sensors as rangefinders. We develop range models and

elaborate the general sensor characteristics.

1) The Gaussian Assumption: The assumption that sensors

behave according to a Gaussian distribution is the baseline

for several localization methods [25]. Thus, before developing

localization methods for a specific platform, it is useful to

analyze the distribution of raw sensor values for a fixed, known

position. To test the behavior of the infrared sensors, we per-



Skewness Kurtosis Kolmogorov-Smirnov

Infrared 0.218 2.371 0.0588

Ultrasound 0.256 2.693 0.0441

Normal 0 3 0

TABLE III
NORMALITY OF INFRARED AND ULTRASOUND SENSOR DATA.

formed 3000 measures for each of the distances 20cm, 10cm,

6cm 4cm and 3cm. For the ultrasound sensors, 200 measures

were taken for 7 distances equally spaced out within 40cm and

280cm. For each sensor, a Skewness-Kurtosis test as well as

a Kolmogorov-Smirnov test were performed. Table III reports

the obtained statistics, as well as the reference values of a

Normal distribution. Although the sensors exhibit distributions

which slightly deviate from a Normal distribution (rejected at a

0.05 significance level), we observe that the value distributions

are strongly related to their Gaussian approximations. We will

from hereon assume that the Gaussian noise assumption holds.

2) Range Model: The methodology we use to develop the

range models for the infrared and ultrasound sensors is general

and applicable to any experimental setup, even if the actual

results obtained here are specific to our setting. In order to

obtain a range model, where for each raw sensor value we

have a distance (range) value, we gather a large amount of

data. For the infrared sensors, we record a total of 5400 sensor

measurements per distance in RIR ={0,2,..,26cm}, and for the

ultrasound sensors, we record a total of 1500 measurements

per distance in RUS ={20,40,..,400cm}.

We denote by d the distance values, and by v the raw sensor

values. For all de ∈ RIR, RUS , we estimate the mean µe and

variance σe. Then, for D points within the ranges RIR, RUS

we interpolate µi and σi with i ∈ [0..D]. Now we can sample

a set of S ×D points to create an ensemble Ω defined as

Ω =
⋃

i∈[0..D]

{(vj , di)|vj ∼ N (µi, σi), j ∈ [0..S]} (5)

where we make the assumption that sensor values vj are

Gaussian distributed. In order to calculate the means and

variances along the sensor value axis v, we define a sliding

window with width w. Thus, the number of points contained

in a window is

N =
∑

(vj ,di)∈Ω

u

(

vi − v

w

)

(6)

where u(x) is the rectangular function. The mean distance

µ(v) is equal to the average value of the points contained in

this window, and

µ(v) =
∑

(vj ,di)∈Ω

di · u
(

vi−v
w

)

N
. (7)

The corresponding standard deviation is

σ(v) =

√

√

√

√

1

N

∑

(vj ,di)∈Ω

(di − µ(v))2 · u

(

vi − v

w

)

. (8)

Figure 5 shows the range models for both infrared and

ultrasound sensors, resulting from the measurements made in

our experimental setup. We note that in the case of the infrared

sensor, raw values below a certain threshold correspond to

pure sensor noise when no object is in the sensor range. This

lower threshold can be easily defined by performing an initial

calibration for each individual sensor.

3) Ultrasound Beam Opening Angle: Unlike the infrared

sensors, ultrasound sensors have poor directionality and signal

echoes are the result of reflection off various objects within

the sensor beam. In order to properly model and predict

these return echoes, it is useful to have an accurate estimate

of the ultrasound sensor’s opening angle. Here, we present

an experiment devised to capture the opening-angle charac-

teristics of the Khepera III’s ultrasound sensors. The robot

was placed with the sensor in question facing a wall, with

no other possible targets within its range. Then, the robot

was slowly rotated on the spot with 1◦ increments over the

interval 5◦ − 90◦, while range measurements were taken for

each increment. The basic idea is that the measurements will

return the perpendicular distance to the wall as long as the

sensor’s angle relative to the wall is not larger than half the

beam angle. Past this maximum angle, no echoes are able to

return the the receiver. We performed this experiment for the

distances {0.5, 1.0, .., 4.0}m, as the amplitude of the signals

decrease with increasing distances to the wall, thus affecting

the maximum opening angles. The results of this experiment

are shown in Figure 6. The amplitude of the signal is plotted in

function of the distance and angle to the wall. Also, the curve

describing the relation of half the opening-angle to distance is
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Fig. 6. This graph describes the sound pressure level of ultrasound sensor
signal echoes, in function of the distance and angle to an object. Also, the
relation of the maximal ultrasound beam opening angle to the distance from
an object is described by the curve on the XY plane.
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Fig. 5. Estimated range models and the raw sensor measurements on which they are based for (a) infrared sensors, with a window-size of w = 40 and (b)
ultrasound sensors, with a window-size of w = 0.04. The errorbars show the standard deviation.

plotted on the XY plane; the maximal angles range from 70◦

to 150◦.

4) Maximum Update Rate: The performance of a localiza-

tion method depends on the rate at which new observations

of the environment are made. In other words, the faster a

mobile robot moves, the more often it will need to update

its observations in order to preserve the same localization

accuracy. Assuming that the time a CPU spends processing the

localization algorithm is negligible, this performance becomes

inherently dependent on the maximal sensor update rates. The

Khepera III tech-report [12] cites an update time of 33ms for

the infrared sensors. We perform a simple experiment which

validates these numbers, and thus the maximum frequency at

which all 11 infrared sensors read new values is 30.3 Hz.

As no documentation was found regarding the update rate of

the ultrasound sensors, we performed a series of experiments

to report these values. We found that the ultrasound sensors

can be used in two different schemes: concurrent or sequential

readings. Although sequential readings are bound to be slower

than concurrent ones, crosstalk among the sensors is limited,

which can be beneficial for localization [15]. Table IV reports

the maximal frequencies found for the ultrasound sensors.

The frequency is defined by the time it takes in between two

updates (in the case of multiple sensors, an update occurs when

all sensors have refreshed their values). Highest frequencies

are obtained when using a single sensor, whereas lowest when

using several sensors sequentially. The obtained frequencies

could potentially be improved if we were to decrease the

sensor timeout time (thus also decreasing the range), but this

flexibility is not offered by the current firmware.

C. Validation: A Basic Navigation Scenario

Finally, we design a simple navigation scenario which

employs our models described in Section III-B. In our setup,

we require the robot to drive a 20m long path along a 1m

large square, at an average speed of 5cm/s. The robot localizes

itself while moving along an outer wall, where in a first sub-

scenario, it does this by utilizing its infrared sensors, and in

µ± σ

Single sensor [Hz] 4.23±0.08

5 sensors, concurr. [Hz] 3.8±0.19

5 sensors, sequential. [Hz] 0.74±0

TABLE IV
MAX. ULTRASOUND SENSOR UPDATE FREQUENCIES

a second sub-scenario, it utilizes its ultrasound sensors. The

wall is placed in such a way that its visibility with respect

to the sensors is preserved throughout the run. For the runs

performed with the ultrasound sensors, we tried three different

schemes: 5 sensors concurrently, 3 sensors concurrently, 5

sensors sequentially. The infrared sensors were used in a single

scheme where all 9 body sensors are activated concurrently.

The sensor update frequencies correspond to the ones reported

in Section III-B4. We perform two runs per robot (CW and

CCW directions), for each sensor configuration. Throughout

the experiment, we employ real-time tracking as explained in

Section II-B. Odometry measurements are taken at a frequency
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Fig. 7. A qualitative overview of localization performance. Localization was
performed (i) with an extended Kalman filter (using 9 concurrently activated
infrared sensors), and (ii) with dead-reckoning (odometry).
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of 10Hz .

In order to localize, we implement an extended Kalman filter

referring to a feature-based map. We complete our ultrasound

measurement model by implementing the scan predictor and

matching method as proposed by Leonard et al. [15]. A vali-

dation gate is used to determine the correspondence between

predictions and observations (we set the gate threshold to

two standard deviations). Because feature extraction is more

difficult to achieve with the Khepera III’s infrared sensors due

to poor coverage of surrounding space, we implement a scan

matching method. We use our range model to generate a range

scan from the 9 infrared sensors, which is then translated and

rotated to produce a maximum overlap with our map. The

resulting pose update is then integrated into our Kalman filter

as proposed in [10].
The qualitative localization performance can be observed in

Figure 7: the error of the position estimates remains bounded,

whereas the dead-reckoning error accumulates constantly. The

quantitative results are reported in Figure 8. They show that

in this basic navigation scenario, the Khepera III is able to

localize itself with an error that is below 1.5cm on average

(which is in the order of the ground truth measurement error),

validating our previously developed sensor models.

IV. CASE-STUDY: LOCALIZATION WITH ABSOLUTE

UWB POSITIONING

In comparison with known positioning technologies, and

especially in indoor environments, in absence of global naviga-

tion satellite systems (GNSS), the potential strengths of UWB

localization systems become apparent [22]. Due to the high

bandwidth, UWB receivers are capable of decomposing multi-

path signal components, yielding potentially high precision

with a high update rate. Furthermore, the technology is highly

scalable and can be implemented at low cost and using very

little power (as the complexity of the positioning algorithms

can be outsourced to an external system). Nevertheless, UWB

positioning performance may be heavily affected by various

(a) (b)

Fig. 9. Overhead images of two variant experimental setups (one checker
square is 25cm large). Common to both variants are the 3m large square
arena, and a short wall surrounding the robot’s path. The robot trajectory is
shown by a dashed line. (a) The arena is empty. (b) The area surrounding the
center square path is cluttered with everyday objects and office furniture (i.e.
metallic desk, chairs, bin, boxes).
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Fig. 10. The graph shows one-dimensional ground-truth and UWB position-
ing data gathered during an experiment. Raw UWB data are highly noisy, and
are thus filtered to produce the shown result.

factors induced by dynamic or highly cluttered operational

environments, leading to non-line-of-sight (NLOS), multi-

path, and shadowing artifacts which are hard to overcome.

The work in this section shows how our previously devel-

oped setup and set of tools can be leveraged to perform in-

depth analyses of the localization performance of an additional

system, here a state-of-the-art UWB positioning system com-

mercially available from Ubisense [28], Version 1.1. In order

to perform this analysis, we design an augmented experimental

setup including the absolute UWB positioning system.

A. Experiments

The experimental setup is similar to the one introduced in

Section III-C. Here, the robot drives along a 4m long path

following the perimeter of a 1m large square at an average

speed of 5cm/s, and uses its infrared sensors (which detect

the inner square wall as depicted in Figure 9) to localize itself

along this path. For future reference, we consider the path’s

origin as the bottom left corner of the 1m large square, with

the robot driving in counter-clockwise direction. The trajectory

is contained in a larger, 3m large square arena as shown in

Figure 9 (a). Additionally, an UWB emitter tag (1cm × 9cm ×
6cm large) which sends localization signals at a frequency of

5Hz is attached to the robot, centered on its top. Four UWB



0.5m

Fig. 11. Robot trajectory (solid line) and trajectory reconstructed from
filtered UWB (dashed line) positioning data. Left: Data gathered from exp1.
Right Data gathered from exp2. It becomes visible how a highly cluttered
environment may affect the localization performance of an UWB positioning
system.

receiver stations are mounted at the corners of the arena at

the height of the ceiling (2.45m). We measure the localization

performance of the UWB system in terms of the euclidean

distance to the localized robot position (which deviates less

than 2cm from the ground truth position, as shown in Figure

8). In order to test the UWB positioning system, we run the

following two experiment variants:

exp1 The arena is empty (illustrated in Figure 9 (a)).

exp2 The area surrounding the 1m square robot trajectory

is cluttered with everyday objects and office furniture

(illustrated in Figure 9 (b)).

For each of the two experiment variants, the robot drove 25

times along the 4m long path. Due to the high noise level of

the UWB positioning data, we employ a robust, least-mean-

square filter with a 12s time window (which was the time

window yielding the lowest error). This filter is applied equally

on all obtained UWB data. Figure 10 shows x-coordinate data

gathered during an experiment (of variant exp1). One observes

that original UWB data frequently deviate from the ground-

truth values, often by more than 1m, and that the localization

performance is strongly improved by our filter.

B. Discussion

Figure 11 shows the robot trajectories and the trajectories

reconstructed from filtered UWB data gathered during 3 runs

around the square of the variant exp1 and exp2 experiments.

It becomes clear that the performance of the UWB positioning

system is heavily affected by the cluttered environment present

in the exp2 setup. Also, given the repetitive nature of the

robot’s trajectory, it becomes apparent how certain objects

in the cluttered environment consistently deviate the position

estimates made by the UWB system.

We exploit the robot’s precise localization information to

quantitatively evaluate the UWB system’s positioning error.

In order to do this, we track the error as a function of the

robot’s position along the 4m long path. Figure 12 shows the

position estimation error obtained from the UWB system for

the two experiment variants exp1 and exp2. It shows how in a

clear environment the UWB system performs relatively well,
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Fig. 12. The graph shows the localization error averaged over 25 runs
along the 4m long path. Two experiments were conducted, one for an empty
space (exp1) and one for a cluttered space (exp1). The errorbars show a 95%
confidence interval.

and has a near to constant error throughout the run (0.13 ±
0.035m). Further, it shows how in a cluttered environment the

overall performance deteriorates (0.23 ± 0.13m). In particular,

for the experiment in the cluttered environment the graph

shows how the error is strongly dependent on the locality

of the measurement (which is also confirmed by the small

errorbars). In this case, the graph suggests that the position

1.8m along the path (corresponding to the top right corner of

the square) is particularly susceptible to positioning errors, as

the average value increases to over 0.6m. This is due to the

placement of the table (as seen in Fig. 9) composed mainly

of metal, which is known to heavily affect UWB signaling.

By analyzing positioning errors (offline or even online) in

combination with information on the measurements’ localities,

one can potentially deduce how the specific configuration of

objects in a cluttered environment affect an UWB system’s po-

sitioning performance. Further, in unknown environments, the

actual sensor data collected by the robot could be considered

in order to make conclusions about the presence (or absence)

of objects, as well as their type. Yet finally, it is important

to note that while the robotic platform localizes very well in

environments with a dense distribution of features on which

it can apply its localization filter, in an empty environment,

the robot may have to rely on dead-reckoning localization

over long time spans, which may result in high errors (as

was seen in Figure 7). The latter situation is contrasted by

the performance of the UWB positioning system, which can

provide absolute positioning at all times and performs more

reliably in an empty space.

V. CONCLUSION

In this work we have provided an analysis and demonstra-

tion of the Khepera III robot’s localization capabilities based

on its on-board sensors. We performed our evaluations with

a precise, real-time ground truth measurement system using

an overhead camera. The experimental results presented here

have shown that our models can be integrated into classical



navigation algorithms to produce good performance, creating

a baseline reference for future navigation research using the

Khepera III platform. Furthermore, we perform a proof-of-

concept case-study employing a commercially available state-

of-the-art absolute UWB positioning system. We show how

the UWB system’s performance can be precisely evaluated.

Moreover, given the strong localization capabilities of the

robot, the error statistics can be formulated as a function of the

measurement localities. Ultimately, our baseline set of tools

proposes a powerful approach towards advancements in indoor

positioning technology.
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