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Abstract—Ultra-wideband (UWB) localization is one of the
most promising indoor localization methods. Yet, non-line-of-
sight (NLOS) positioning scenarios can potentially cause signifi-
cant localization errors and remain a challenge. In this work,
we propose a novel, probabilistic UWB TDOA error model
which explicitly takes into account NLOS. In order to validate
our approach systematically in a real world setup, we leverage
the utility of a group of mobile robots, and introduce our
error model into a real-time localization framework run on-
board the robots. We subsequently extend our framework by
employing a collaborative localization strategy which enables
the sharing of inter-robot, relative position observations. Our
experimental results show how the novel TDOA error model
is able to improve localization performance when information
on the LOS/NLOS path condition is available. These results
are complemented by additional experiments which show how
a collaborative team of robots is able to significantly improve
localization performance when no information on the LOS/NLOS
path condition is available.

Index Terms—Non-line-of-sight, ultra-wideband, mobile
robots, collaborative localization

I. INTRODUCTION

Accurate indoor localization is an enabling technology, with

applications ranging from asset management and inventory

tracking to assembly control for a variety of different in-

dustries. Within the research community, the mobile robotics

domain plays an important role with a vast and continuously

growing body of contributions. Popular localization sensors

employed on-board robots include cameras [18], ultra-sound

sensors [6], laser range finders [19] and even infrared sen-

sors [1], and are used independently or in combination with

fixed landmark beacons [2]. Although such systems have

proven accurate and efficient, their great disadvantage lies in

the requirement for line-of-sight (LOS). Wireless localization

systems alleviate the LOS constraint, in particular those re-

lying on UWB technology because of their large frequency

spectrum, and thus enable localization over large ranges and in

dynamic environments [7]. Nevertheless, they simultaneously

entail issues induced by the propagation through and reflection

off obstacles, which need to be addressed in order to guarantee

reliable localization.

In this paper, we consider the problem of absolute lo-

calization of a team of mobile robots for unknown initial
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Fig. 1. System of two robots (Rn and Rm) and two UWB base-stations
Bu and Bv . The figure illustrates the robots’ relative range (rnm and rmn)
and bearing (θnm and θmn) values. The ranges from the base-stations to the
individual robots are shown (run, rum, rvn and rvm).

pose estimates. We design an algorithm targeting miniaturized,

computationally limited platforms equipped with noisy, low-

power sensing modalities, and ultimately envision our solu-

tion’s portability onto much smaller devices such as portable

tags. Given its efficiency in solving localization problems for

unknown initial conditions, and for accommodating arbitrary

probability density functions, our method of choice is the par-

ticle filter, building on the probabilistic framework of Monte-

Carlo Localization (MCL) presented in [3]. Our localization

strategy uses time-difference-of-arrival (TDOA) measurements

from one or several pairs of UWB base-stations, and on-

board dead reckoning information. Finally, as it is commonly

known that multi-robot collaboration is able to compensate

for deficiencies in the data owned by a single robot [3, 9],

we extend our approach to include relative (inter-robot) range

and bearing observations. We conclude our work by showing

experimental results of the localization performance for both

a single- and a multi-robot scenario.

A. Related Work

UWB has shown to be amongst the most promising localiza-

tion techniques for indoor environments [7]. As a consequence,

it has very recently been adopted by the robotics community.

In [17], an UWB receiver is mounted on a mobile robot which

uses a TDOA algorithm between pairs of anchor nodes to es-

timate its own position. The robot’s self-localization algorithm

is based on UWB measurements, yet it does not employ an

UWB error model. The studies in [4] and [5] develop prob-

abilistic models for biased UWB range measurements which

are combined with on-board odometry data. Yet, both papers

model NLOS biases within augmented-state particle filters that978-1-4577-1804-5/11/$26.00 © 2011 IEEE



do not take LOS/NLOS path conditions and bias probability

distributions into account explicitly, and are therefore limited

by this simplified approach. Lastly, given the novelty of UWB

positioning systems in the robotics community, to the best of

our knowledge, no significant studies have been performed

on the fusion of UWB with on-board exteroceptive sensors,

in the case of single-robot systems, nor any on-board relative

positioning sensors, in the case of multi-robot systems.

B. Problem Formulation

Our problem is illustrated in Figure 1 and described

as follows. We have a multi-robot system of N robots

R1,R2, ...RN , where the number N does not need to be

known by the robots. The robots navigate in bounded space

and are equipped with a dead-reckoning self-localization mod-

ule (e.g., wheel-based odometry). For a robot Rn, at time t,

the pose xn,t is given by the Cartesian coordinates xn,t, yn,t
and orientation φn,t. At time t, any robot Rn in the system

may emit an UWB signal and subsequently receive a TDOA

value τ̂uv,n,t corresponding to its position xn,t with respect

to a pair of base-stations 〈Bu,Bv〉, each of which is fixed

and well-localized in the absolute coordinate system. We

denote by Tn,t = {〈τ̂uv,n,t,Bu,Bv〉} the set of all TDOA

measurements received by robot Rn at time t. Hence, the

TDOA measurement error is defined as the difference between

the true TDOA value τuv,n and measured TDOA value τ̂uv,n

∆τ̂uv,n = τ̂uv,n − τuv,n. (1)

The first goal of this work is to develop a TDOA measurement

model puv,n(∆τ̂uv,n), which can be employed locally on each

robot for localization.

Furthermore, at time t, a robot Rm is in the set of neighbors

Nn,t of robot Rn if robot Rm can determine a range rmn,t

and bearing θmn,t to robot Rn, by means of a relative

positioning module. We make the assumption that a robot Rm

can communicate with a robot Rn, if Rm ∈ Nn,t. Hence, the

second goal of this work is to employ relative positioning in

addition to the UWB TDOA measurements to improve the

robots’ localization accuracy.

C. Experimental Setup

Our experimental setup consists of 3 main elements (i)

an UWB positioning system composed of four base-stations,

(ii) a group of four mobile robots, and (iii) an overhead-

camera serving as ground truth positioning system. The UWB

localization system employed in this work is commercially

available from Ubisense 1, Series 7000 (sensors and compact

tags). It is installed on the ceiling of a 40m2 laboratory, with

each of the four base-stations mounted at the extremities of

a 9m2 square robotic arena as depicted in Figure 2. The

robots are all equipped with relative positioning modules, as

well as narrowband communication modules which, in case

of collaboration, enable them to share data as detailed in

Section I-B, above. Finally, the overhead camera system runs

1http://www.ubisense.net

Fig. 2. Experimental setup in the laboratory space. The UWB base-stations
are mounted on the ceiling above the extremities of a 9m2 robotic arena, and
an overhead camera is mounted on the ceiling above the center of the arena.

on a central processor which also enacts the synchronization

of available ground truth positioning data with all incoming

raw sensor data (from the UWB system as well as from the

robots), enabling offline performance evaluation. For further

elaboration and technical details, the reader should refer to

the experiments’ section (Section V).

II. MONTE-CARLO LOCALIZATION

In this section, we briefly review Monte-Carlo Localization

(MCL) [20], as it forms the baseline for our localization

algorithm. We first elaborate the single-robot MCL algorithm,

and then, in Section II-B, extend this standard MCL formalism

to a decentralized, collaborative adaptation (the reader should

also refer to [12] for further details).

A. Single-robot MCL

MCL, as many other localization techniques, relies on the

formalism of the Bayes filter. The Bayes filter is a recursive

algorithm which estimates the probability density of a poste-

rior state, conditioned on the measurements collected. Let us

from hereon consider a robot Rn. At time t, after a sequence

of motion control actions un,t and a sequence of observations

zn,t the filter is denoted

Bel(xn,t) = η p(zn,t|xn,t)

∫

p(xn,t|xn,t−1, un,t−1)

Bel(xn,t−1) dxn,t−1 (2)

where Bel(xn,t) estimates the posterior of state xn,t

and is called a belief. The value η is a normaliza-

tion constant, p(zn,t|xn,t) is a measurement model, and

p(xn,t|xn,t−1, un,t−1) a motion model.

The main idea of MCL lies in the way the belief is

represented—samples, or particles, are drawn from the poste-

rior probability distribution of the robot pose to form a set of

particles. By weighting these particles one obtains a discrete



probability function that approximates the continuous belief

Bel(xn,t), and hence we have

Bel(xn,t) ∼ {〈x
[i]
n,t, w

[i]
n,t〉|i = 1, ...,M} = Xn,t (3)

where M is the number of particles, x
[i]
n,t is a sample of

the random variable xn,t (the pose), and w
[i]
n,t is its weight.

The symbol Xn,t refers to the set of particles 〈x
[i]
n,t, w

[i]
n,t〉 at

time t belonging to robot Rn. In contrast to other methods

(for example Kalman filtering), the advantage of this form of

representation is that it can approximate probability densities

of any shape. Given this flexibility, MCL is, thus, able to

accommodate arbitrary sensor characteristics and noise dis-

tributions. Also, by tuning the total number of particles used,

MCL can adapt to variable computational capacities, at the

cost of accuracy in the reproduction of the targeted continuous

probability densities.

At the beginning of a localization exercise, the set of

particles Xn,0 is initialized: if the initial pose is known, the

particles are drawn from a probability distribution (e.g., a

Normal distribution) centered around the given pose, and if

the initial pose is unknown, the particles are drawn from a

uniform distribution covering the whole environment. Then, in

order to estimate the robot’s pose at each time step, a recursive

update is made. These steps, when performed for the whole

set of M particles, can be formulated as a recursive update

algorithm (as presented in [20]), for a given robot Rn.

For the sake of completeness, this routine is shown here

in Algorithm 1. Line 3 shows the application of the motion

model, where un,t represents dead-reckoning information—in

our case, odometry readings. Line 4 shows the application of

the measurement model where Tn,t represents the TDOA data.

This TDOA measurement model lies at the core of our current

work, and is elaborated in greater detail in Section III.

Algorithm 1 MCL(Xn,t−1, un,t, Tn,t)

1: X̄n,t = Xn,t = ∅
2: for i = 1 to M do
3: x

[i]
n,t ← Motion Model(un,t,x

[i]
n,t−1)

4: w
[i]
n,t ← Measurement Model(Tn,t,x

[i]
n,t)

5: X̄n,t ← X̄n,t +
〈

x
[i]
n,t, w

[i]
n,t

〉

6: end for
7: for i = 1 to M do
8: x

[i]
n,t ← Sampling(X̄n,t)

9: Xn,t ← Xn,t +
〈

x
[i]
n,t, w

[i]
n,t

〉

10: end for
11: return Xn,t

B. Multi-robot MCL

The framework presented above takes into account a single

robot. However, when operating a collaborative multi-robot

system, the baseline formalism must be adapted to integrate

measurements taken on different platforms [3]. Motivated by

the goal of overcoming the limitations of current multi-robot

localization algorithms, which to date are hard to employ on

Algorithm 2 MultiRobot MCL(Xn,t−1, un,t, r̂n,t, Dn,t)

1: X̄n,t = Xn,t = ∅
2: for i = 1 to M do
3: x

[i]
n,t ← Motion Model(un,t,x

[i]
n,t−1)

4: w
[i]
n,t ← Measurement Model(Tn,t,x

[i]
n,t)

5: w
[i]
n,t ← Detection Model(Dn,t,x

[i]
n,t, w

[i]
n,t)

6: X̄n,t ← X̄n,t +
〈

x
[i]
n,t, w

[i]
n,t

〉

7: end for
8: for i = 1 to M do
9: r ∼ U(0, 1)

10: if r ≤ (1− α) then

11: x
[i]
n,t ← Sampling(X̄n,t)

12: else
13: x

[i]
n,t ← Reciprocal Sampling(Dn,t, X̄n,t)

14: end if

15: Xn,t ← Xn,t +
〈

x
[i]
n,t, w

[i]
n,t

〉

16: end for
17: return Xn,t

Algorithm 3 Reciprocal Sampling(Dn,t, X̄n,t)

1: if Dn,t = ∅ then
2: x← Sampling(X̄n,t)
3: else
4: x ∼

∏

dmn∈Dn,t
pmn(x|dmn)

5: end if
6: return x

large-scale, distributed systems for unknown initial conditions,

we developed an any-time, fully scalable collaborative local-

ization algorithm. This algorithm additionally takes advantage

of reciprocal robot observations to reduce the number of

particles needed to localize, thus reducing the computational

overhead, which is a crucial factor for resource-bounded

mobile platforms.

If we make the assumption that individual robot poses are

independent, we can formulate the event that robot Rn is

detected by robot Rm as

Bel (xn,t) = p (xn,t|zn,0..t, un,0..t)
∫

p (xn,t|xm,t, rmn,t, θmn,t)Bel (xm,t) dxm,t (4)

where p(xn,t|zn,0..t, un,0..t) describes the nth robot’s cur-

rent belief, and
∫

p(xn,t|xm,t, rmn,t, θmn,t) Bel (xm,t) dxm,t

describes the mth robot’s belief about the position of

robot Rn. For such a collaboration to take place, robot

Rm needs to communicate rmn,t, θmn,t and Bel (xm,t) to

robot Rn. Thus a communication message is composed as

dmn,t = 〈rmn,t, θmn,t, Xm,t〉. If several robots in a neigh-

borhood Nn,t communicate with robot Rn, the received

information is the set of all communication messages Dn,t =
{dmn,t|Rm ∈ Nn,t}. We note that the collaborative aspect of

this formalism lies in the integration of robot Rm’s belief into

that of robot Rn. This update step is shown in Algorithm 2

(line 5).

In addition to using a robot detection model for updating

the belief representation Bel(xn,t), our collaborative approach



relies on a reciprocal sampling method, which alleviates issues

(such as particle collapse or particle depletion) due to finite

particle set sizes. As for a standard MCL algorithm, the poste-

rior estimate of reciprocal MCL is represented by Bel(xn,t)—
the difference between the two methods lies in the proposal

distribution. Let us refer to the iterative process described in

Algorithm 2: instead of sampling from Bel(xn,t−1) in line

11, the reciprocal MCL algorithm samples from the distri-

bution x
[i]
n,t ∼ p(Dn,t|x

[i]
n,t), according to a robot detection

model (line 13). Thus, samples are drawn at poses which are

probable given the reciprocal robot observations, and which

are independent of the previous belief Bel(xn,t−1). Then, by

employing the reciprocal sampling algorithm within the col-

laborative paradigm of our general framework, a detected robot

augments its own belief with new pose estimates deduced from

reciprocal robot observations with a fixed proportion of α. In

particular, as this method exploits the information available in

a whole robot team, it continuously creates particles in areas

of the pose space which are likely to be significant, and allows

for very small particle set sizes.

The reciprocal sampling routine is shown in Algorithm 3,

where line 4 represents the reciprocal sampling step. Algo-

rithm 2 shows the complete routine of multi-robot reciprocal

MCL. The second part (lines 8–16) resamples particles from

the weighted proposal distribution to create a new, updated

pose belief. Particles are sampled from the robot’s own belief

with a probability 1−α, and with a probability of α, particles

are sampled from the probability density function proposed

by the detection model (line 13). Without going into further

details in this paper, we performed empirical tests which

showed that small proportions of α were beneficial, and thus

a proportion of α = 0.05 was employed throughout our work.

Further, there are a multitude of methods which can be applied

to sample from a given distribution. Here, we employ the slice

sampling method [11], which is a low-cost method based on

Markov chains, and particularly useful since it can sample

from arbitrary shaped distributions. The symbol U on line 9

of Algorithm 2 refers to the uniform distribution.

III. UWB TDOA MEASUREMENT MODEL

UWB is a radio technology which is characterized by its

very large bandwidth compared to conventional narrowband

systems, and in particular features high positioning accuracy

(due to a high time resolution) and high material penetrability

(due to the large bandwidth). Despite these desirable traits,

the resolution of multipath signals leads to complex TOA

algorithms prone to estimation errors, which inevitably leads

to ranging inaccuracies. In this section, we first develop a

baseline error model for TOA measurements, and then extend

it analogously to model the errors of TDOA measurements.

We note that as of the following, the terms TOA and TDOA

are used interchangeably with the terms range and range

difference, as they differ only by a constant factor (propagation

speed). For clarity, we omit the subscript t in the following

derivations.

A. Preliminaries: TOA Measurement Model

We employ a popular error model [16] for the range between

a base-station Bu and a target node Rn

r̂un = run + εun + Y bun (5)

where run represents the true distance, bun is a non-negative

distance bias introduced by a NLOS signal propagation, and

εun ∼ N (0, σ2
N ) is a zero-mean Gaussian measurement

noise with variance σ2
N , common to all base-stations. The

random variable Y follows a Bernoulli distribution, i.e., it

takes the value 1 with probability (1 − PLun
) and the value

0 with probability PLun
, where PLun

is the probability of

measuring a LOS path, and correspondingly, (1 − PLun
) is

the probability of measuring a NLOS path. Whereas modeling

εun is straightforward, modeling the bias bun is less obvious.

Current work discusses a variety of viable statistical models

with exponential behavior [10, 15]. Indeed, biases may not

only be caused by multipath propagation, but also by signal

delay or by signal attenuation, and thus are dependent on

bandwidth and distance. Despite the complexity of NLOS error

patterns, we resort to a statistical model, the log-normal dis-

tribution, as it is shown to best characterize the spatial NLOS

error behavior in the comprehensive measurement campaign

of [10]. Thus, the bias bun follows a log-normal distribution

bun ∼ lnN (µlnN ,u, σlnN ,u), and is unique for each base-

station Bu.

Our TOA measurement model returns the likelihood that a

given range error occurs. For a range error defined as

∆r̂un = r̂un − run (6)

the TOA measurement model describes the likelihood of ∆r̂un
occurring when a robot Rn measures a certain range distance

r̂un from a base-station Bu at an actual position xn with

a nominal range run from a base-station Bu. In order to

differentiate the two path conditions, we denote the event of

a LOS path from location xn to base-station Bu as Lun, and

the event of a NLOS path L̄un, respectively. Then, in order to

model the range error, we describe the probability distribution

of ∆r̂un as the sum of the random variables bun and εun,

drawn from their respective probability distributions. For a log-

normal probability density function plnN ,u(b) with parameters

µlnN ,u and σlnN ,u, and a normal probability density function

pN (ε) with a standard deviation σN , the probability density of

an error ∆r̂un, occurring in a NLOS condition, can be written

as

pun(∆r̂un|L̄un) = (plnN ,u ∗ pN )(∆r̂un) (7)

which is the convolution of the probability density function

of the bias value, with the probability density function of

the Gaussian noise value. Correspondingly, we can write the

probability density of an error ∆r̂un, occurring in a LOS

condition, as

pun(∆r̂un|Lun) = pN (∆r̂un) (8)

Finally, with use of the total probability theorem, we combine

the above equations to obtain the probability density of ∆r̂un
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Fig. 3. Illustration of TOA and TDOA measurement models within a particle filter. The pose estimates (particles) are represented by triangles with increasing
transparency for decreasing weights. The curved lines represent the noisy/biased TOA range measurements in (a)-(b) and noisy/biased TDOA measurements
in (c)-(e). The robot body shows the actual robot position. The TOA measurement model for a single base-station is illustrated in (a) for a LOS condition
and (b) for a NLOS condition. The TDOA measurement model for a single base-station pair is shown in (c) for both base-stations in LOS conditions, (d) for
the bottom base-station in NLOS, the top base-station in LOS conditions, and (e) for both base-stations in NLOS conditions.

(which is obtained by measuring a range r̂un at an actual,

nominal range run) as

pun(∆r̂un) = pun(∆r̂un|Lun) · PLun

+ pun(∆r̂un|L̄un) · (1− PLun
). (9)

Figures 3 (a) and (b) show an application of Equation 9,

weighting particles in (a) a LOS scenario and (b) a NLOS

scenario, for a single base-station, where the probability of

PLun
is assumed known (in this case we have (a) PLun

= 1
and (b) PLun

= 0). We observe that the model produces

particles with high weights in the area of the actual robot

position, even when the measurement is biased. Also, it is clear

from the figures that information on the actual LOS/NLOS

path condition is essential to obtain good localization.

B. TDOA Measurement Model

In practice, TOA systems are rarely implemented due to the

complexity induced by the required synchronization of a mo-

bile node with the base-stations. Instead, it is a common choice

to implement TDOA systems which are significantly more

practical, since only the synchronization among base-stations

is required. Thus, the direct range measurement between a

mobile node and base-station is replaced by the difference

between two individual range measurements each taken at a

different base-station.

Extending the TOA formalism shown above, we define the

difference range value (i.e. TDOA) between two base-stations

Bu and Bv to a target node Rn as

τ̂uv,n = r̂un − r̂vn (10)

and then easily model the TDOA error ∆τ̂uv,n as previously

shown in Equation 1. Simultaneously, we can describe the

TDOA error as the difference between the range errors occur-

ring at the individual base-stations Bu and Bv as described in

Equation 5, resulting in

∆τ̂uv,n = ∆r̂un −∆r̂vn. (11)

Finally, we describe the probability density of a given TDOA

measurement error ∆τ̂uv,n as the substraction of two random

variables drawn from the probability densities describing the

TOA error models of the two respective base-stations. We

use the results of Equations 9 and 11 to model this resulting

probability density as

puv,n(∆τ̂uv,n) = (pun ∗ p−vn)(∆τ̂uv,n) (12)

which is a convolution of the probabilities to measure range er-

rors ∆r̂un and ∆r̂vn, and where we denote p−vn(x) = pvn(−x)
for all x.

Algorithm 4 shows the particle weight update equation

based on the probability density function of Equation 12.

Figures 3 (c)-(e) show an application of the TDOA error model

of Equation 12, weighting particles in (c) a LOS condition for

both base-stations, (d) a LOS condition for the top base-station

and a NLOS condition for the bottom base-station and (e) a

NLOS condition for both base-stations. We see that Equation

12 is able to capture all possible conditions. Also, we observe

that the model produces particles with high weights in the

area of the actual robot position. Finally, analogous to the

conclusions of Figure 3(a) and (b), we note that the availability

of information on the actual LOS/NLOS path condition is

essential for good localization.

Algorithm 4 Measurement Model(Tn,t,x
[i]
t )

1: w←
∏

〈τ̂uv,n,t,Bu,Bv〉∈Tn,t
puv,n(∆τ̂uv,n)

2: return w

C. Estimation of TDOA Model Parameters

In order to employ accurate error models on the measured

quantities during localization, we perform an a priori offline

system identification process which returns a set of optimized

model parameter values. In other words, based on a set of

gathered data, we estimate the parameters µlnN ,u, σlnN ,u

describing the log-normal bias distributions of each individual

base-station Bu, as well as the standard deviation of the

common Gaussian noise σN . Simultaneously, we estimate the

proportion of measurements made in LOS path conditions

PLun
for each base-station Bu, at all queried positions xn in

the data set. The data used for the identification procedure was

gathered in a dedicated robotic experiment, and is independent
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Fig. 4. The graphs show the estimated error models. Normalized histograms of the actual TDOA error data, and a superposition of the estimated probability
density function of Equation 12 for base-station pairs (a) 〈B1,B2〉, (b) 〈B1,B3〉 and (c) 〈B1,B4〉. (d) Estimated probability density function of Equation 9
for all individual base-stations.

B1 B2 B3 B4

µlnN -0.43 -0.3 -0.24 -0.09
σlnN 0.611 0.7 0.61 0.33
σN 0.047
PL 0.49 0.32 0.28 0.09

TABLE I
OPTIMIZED MODEL PARAMETER VALUES PER BASE-STATION.

from the data sets used in the experiments performed later in

this paper. Four robots perform a random walk in the arena

for 16 minutes so that 4000 TDOA data points are gathered

per base-station pair, ensuring homogeneous coverage of the

arena space. By processing the UWB TDOA data and as-

sociated ground truth positions, we obtain a distribution of

TDOA error values (refer to Equation 1). Then, based on our

probability density model of Equation 12, we minimize the

Kolmogorov-Smirnov distance with the empirical cumulative

density function (CDF) obtained from the collected data. This

optimization procedure is done using a numerical gradient-

descent algorithm, namely the BFGS Quasi-Newton method.

The average Kolmogorov-Smirnov distance obtained after

minimization is 0.036, showing a good representation of the

data.

The resulting optimized parameter values (thirteen in total)

are reported in Table I. Figures 4 (a)-(c) show normalized

histograms of the actual TDOA error data (with base-station

B1 as the reference base-station), and a superposition of the

probability density function of Equation 12 with the optimized

parameters for three base-station pairs. Figure 4 (d) shows the

probability density function of Equation 9 with the optimized

parameters for all individual base-stations.

D. Estimation of the LOS/NLOS Path Condition

As evident from the discussion of Figure 3, an accurate

estimation of the LOS/NLOS path condition is essential for

good localization. Without knowledge of the ground truth

position, this can be done only in an overdetermined system

(e.g., for 5 base-stations in 3D), with only one base-station in

NLOS and all others in LOS. However, with the knowledge

of the ground truth position and a fully determined system,

we can determine the LOS/NLOS condition if we know that

at least one of the base-stations is in LOS. Thus, we can

resolve this condition in real-time only in very specific cases.

In the experiments’ section of this paper (Section V), we

will discuss the implications that different assumptions on the

path conditions may have on the performance of the system.

It is in this context that we hypothesize the knowledge of

optimal LOS/NLOS path conditions. In order to emulate this

knowledge, we develop a simple algorithm which, based on

the measured TDOA values and their associated ground truth

positions, is able to provide an estimate of the occurring bias

for each base-station.

For a given robot Rn, and for all elements 〈τ̂uv,n,Bu,Bv〉,
we pose the equation (see Equations 5 and 10 )

τ̂uv,n = τuv,n + bun − bvn (13)

where bun and bvn are unknowns. Note that the zero-mean

Gaussian measurement noise values εun and εvn are sig-

nificantly smaller than the bias, and thus we ignore their

contribution here. Still, this system of equations remains
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Fig. 5. The graphs show the estimated bias values for each base-station
(marked in the corners), along the tracks of the mobile robot during data
collection. The robot’s ground truth position is continuously tracked by an
overhead camera.



underdetetrmined. Hence, we make the assumption that at

least one base-station has a bias equal to zero, which is likely

true in our experimental setup, but not generally true. We can

now solve this linear system of equations and find all bias

values bun for all base-stations Bu that provided a TDOA

measurement.

Figure 5 shows an example application of the estimation

algorithm. A mobile robot moves randomly inside our exper-

imental arena while ground truth tracking is performed and

TDOA measurements are taken. The tracked positions shown

in the plots are colored to illustrate the associated estimated

bias values for each of the four base-stations in our setup.

As expected, we observe that higher bias values occur close

to the respective base-stations as the arena walls lie in the

direct signal path (see Figure 2 for an image of the physical

installation).

IV. RANGE & BEARING MEASUREMENT MODEL

As introduced in Section II-B, the robots use relative

observations to collaborate. In this Section we detail our robot

detection model, which is built upon relative range and bearing

measurements. The idea of the range and bearing model is

to propose a probability density function which is based on

the relative observations made by the detection sensors, and

which is also based on the belief of the detecting robot. We

then simultaneously use this probability density function as

an observation model in the belief update, and as a proposal

distribution for the reciprocal sampling routine. Again, for

clarity, we omit the subscript t in the following derivations.

A robot Rm detects a robot Rn with a range rmn and

relative bearing θmn. We formulate the detection model as

pmn(xn|dmn) which describes the probability that robot Rm

detects robot Rn at pose xn = [xn yn φn], given the detection

data dmn. For a given particle i in robot Rm’s belief, we define

the range difference ∆rmn, and the bearing difference ∆θmn.

The range and bearing differences are given by the geometric

relations

∆rmn =
√

∆x2
mn +∆y2mn − rmn

∆θmn = atan2(∆ymn,∆xmn)− (φ[i]
m + θmn)

where we denote ∆xmn = (x
[i]
m − xn) and

∆ymn = (y
[i]
m − yn). Assuming Gaussian noise and

knowledge of the range and bearing standard deviation

(σr and σθ , respectively), and the independence of range and

bearing measurements, the detection probability is

pmn(xn|dmn) = η ·
∑

〈

x
[i]
m

w[i]
m

〉

∈Xm

Φ

([

∆rmn

∆θmn

]

,

[

σ2
r 0
0 σ2

θ

])

· w[i]
m (14)

where Φ(·,Σ) is the zero-mean multivariate normal prob-

ability distribution with the covariance matrix Σ and where

η is a normalization constant. Also, in the case where robot

Rn reciprocally detects robot Rm, it can use the additional

information of its own relative observations to determine

(a) (b)

Fig. 6. Detection model for multiple detecting robots, (a) for two robots
and (b) for three robots. Here, a set of 20 particles is shown, represented
by oriented triangles. The detected robot is shown in white. The model’s
probability density is superimposed on the detected robot. The dotted line
and the orientation of the robots show the actual relative range and bearing.
The particle positions were generated randomly from a normal distribution
(σx = σy = 0.2m, and σφ = 0.2rad), and range values are perturbed by a
white noise with σr = 20% and for the bearing values with σθ = 0.2rad.

the orientation difference ∆φmn, which is defined by the

following geometric relation

∆φmn = π − φ[i]
m − φn + θmn − θnm. (15)

The detection probability is then augmented by an additional
component, resulting in

pmn(xn|dmn) = η ·
∑

〈

x

[i]
m

w
[i]
m

〉

∈Xm

Φ









∆rmn

∆θmn

∆φmn



,





σ2
r 0 0
0 σ2

θ σ2
θ

0 σ2
θ 2σ2

θ







 · w[i]
m (16)

Finally, the detection model can be formulated as an update

equation as shown in Algorithm 5. Algorithm 3 shows how

samples are drawn from the detection model in the reciprocal

sampling routine. Figure 6 shows an illustration of the proba-

bility density function resulting from the detection model, (a)

for two detecting robots and (b) for three detecting robots. We

observe how, for an increasing number of detecting robots, the

localization accuracy increases.

Algorithm 5 Detection Model(Dn,t,x
[i]
t , w

[i]
t )

1: w← w
[i]
t ·

∏

dmn∈Dn,t
pmn(x

[i]
t |dmn)

2: return w

V. EXPERIMENTS

The framework of our experimental setup is as elaborated

in Section I-C and as previously shown in Figure 2. The

robots employed in our experiments are Khepera III robots,

which are differential drive robots of 12cm diameter produced

by K-Team corporation2. The Khepera III robot has a Ko-

reBot extension board providing a standard embedded Linux

operating system on an Intel XSCALE PXA-255 processor

running at 400 MHz. Communication is enabled through an

IEEE 802.11b wireless card which is installed in a built-

in CompactFlash slot. The robots are equipped with high

2http://www.k-team.com/



Fig. 7. The Khepera III robot is equipped with an extension range and
bearing module which utilizes sixteen evenly-spaced infrared Light Emitting
Diodes (LEDs). On top of this board, we mounted an active marker (LED)
tracking module which simultaneously carries the Ubisense tag.

resolution wheel encoders, and an extension range and bearing

module [14], which provides the robots with relative range

and bearing measures. The noise values were experimentally

determined on our actual hardware setup (σr = 0.2 · rmn, and

σθ = 0.2rad), with a maximum detection range of 3m. Figure

7 shows the robot equipped with the range and bearing module

on the lower level, and the LED ground-truth position tracking

module on the upper level. The Ubisense UWB emitter tag is

attached on the tracking board (barcode-side up). The overhead

camera system is installed in combination with the open source

tracking software SwisTrack [8] 3. We use a GigE color camera

which has a standard resolution of 1032x778 pixels, and is

mounted 2.5m above the robotic arena. The resulting picture

resolution is 5.5 pixels per cm2, and the maximum error of the

resulting ground truth positioning is below 3cm (as reported

in [13]).

The robot arena is delimited by a 30cm high wall, but other-

wise contains no obstacles (other than the robots themselves,

which can occlude and thus prohibit relative range and bearing

measurements). At the start of each experiment, the robots

are randomly placed in the arena and have no knowledge of

their pose (i.e., all particles are uniformly distributed over the

3http://en.wikibooks.org/wiki/SwisTrack
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Fig. 8. Empirical cumulative density function of the localization errors over
all runs, (a) for a collaborative multi-robot system, (b) for a non-collaborative
system. The curves show results for the Average, Naive, and Spatial algorithm
configurations.

arena). For all experiments, the robots move straight at a speed

of one robot-size per second (12cm/s) and avoid collisions.

Relative range and bearing measurements as well as odometry

updates are made at a frequency of 5Hz, the UWB tags emit

positioning pulses at an update frequency of 1Hz, and the

overhead camera tracks the robots at 10Hz. We perform 7

experiments (on our real setup) of 3min 40s each, and collect

synchronized data sets consisting of unfiltered UWB TDOA

measurements, relative robot range and bearing measurements,

robot odometry measurements, and ground truth positioning

information from the overhead camera. In order to evaluate

the single-robot and multi-robot approaches separately, we

divide our experimental configurations into non-collaborative

and collaborative subcategories:

Non-collaborative 4 non-collaborative robots with only UWB
TDOA data and odometry.
Collaborative 4 collaborative robots with relative observation
data, UWB TDOA data, and odometry.

Then, in order to analyze the impact of information on the

LOS/NLOS path condition PLun
, we combine the above

categories with each of the configurations listed below:

Naive No NLOS paths are assumed and PLun = 1,∀u,xn; this
constitutes a naive approach in a mixed LOS/NLOS scenario.
Average The LOS proportion PLun is as estimated by the
system identification procedure; this corresponds to an average
value valid over the arena as a whole (values can be looked up
in Table I).
Spatial According to the algorithm shown in Section III-D,
quasi-optimal spatial knowledge of the LOS/NLOS condition
is available; PLun = 1 when the estimated bias value bu,n is
below some threshold (here 0.2m), for each individual position
xn,t where a TDOA measurement τ̂uv,n,t is received.

Each robot runs its localization algorithm with a set of 500

particles. We subsequently test the algorithm performance over

100 iterations for each dataset, for each of the 6 configurations

elaborated above. We discuss the localization performance in

terms of the mean positioning error of all particles in a given

robot’s belief (RMSE), a metric which implicitly includes

the spread (or variance) of the particle positions. Figure 8

shows the empirical cumulative density function of the RMSE

distribution over all runs, in (a) for the collaborative algorithm,

and in (b) for the non-collaborative version. Table II reports

the error values.
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Fig. 9. Localization error over time, averaged over all runs (a) for a col-
laborative multi-robot system, (b) for a non-collaborative system. The curves
show results for the Average, Naive, and Spatial algorithm configurations.
The errorbars show a 95% confidence interval.



Collaborative Non-collaborative

P(X ≤ x) Spatial Average Naive Spatial Average Naive

68.3% 0.35 0.57 0.56 0.42 0.67 0.71
95.5% 0.92 1.04 1.21 1.52 1.44 2.46
99.7% 2.37 1.83 2.83 3.01 2.71 3.54

TABLE II
ERRORS IN METERS FOR RESULTS SHOWN IN FIGURE 8

We observe that in general, the collaborative algorithm

produces smaller localization errors than the non-collaborative

algorithm. For instance, in the Spatial configuration for PLun
,

95.5% of the time the error of the collaborative system is

below 0.92m, in comparison to an error of 1.52m respectively

for the non-collaborative system. Indeed, by imposing addi-

tional geometric constraints through the relative observations,

the collaborative robot team is more likely to converge to

correct position estimates. Also, for any robot that has an

approximate estimate of its true position, the propagation of

this belief to its team-members will accelerate the process of

localizing the whole system. Furthermore, we observe that our

Spatial configuration will generally produce better results than

the Average or Naive configurations, but is outperformed by

the Average configuration for high cumulative densities. This

is due to our approximative estimation of the bias values as

explained in Section III-D, and thus in the worst case (i.e.

when all base-stations are in NLOS), can lead to large outliers.

Nevertheless, as is observed in Figure 9, the average localiza-

tion error is lowest (below 0.4m) for the Spatial configuration,

which is additionally confirmed by the very small confidence

intervals. Finally, we observe that the collaborative system is

able to compensate for the lack of NLOS knowledge of the

Naive configuration with respect to the Average configuration,

whereas in the non-collaborative system the performance of

the Naive configuration deteriorates. Indeed, it is logical that

when one can distinguish between LOS/NLOS conditions

and estimate the NLOS bias (or where there are no NLOS

situations), UWB alone is able to achieve good accuracy.

Hence, the contribution of the collaborative system is espe-

cially important when LOS/NLOS conditions are unknown

(which is the typical case). Finally, we note that although we

used only a very modest particle set size (500 particles), the

algorithm was able to achieve localization, and that for larger

particle set sizes, an improvement on the localization accuracy

is to be expected for all scenarios.

VI. CONCLUSION

In this work, we considered the problem of localization for

unknown initial conditions in NLOS scenarios. We presented

a novel, probabilistic UWB TDOA error model, and based on

data gathered on our real hardware setup, we estimated optimal

model parameters. This error model was then introduced into

a particle filter based localization algorithm, and validated

in combination with on-board dead-reckoning information

(odometry) in an experiment using multiple mobile robots.

Additionally, we extended our particle filter algorithm to a

fully scalable, decentralized adaptation enabling inter-robot

collaboration. The results showed how our TDOA error model

is able to improve localization performance by taking into

account explicit knowledge of the LOS/NLOS path condi-

tion. Also, additional experiments showed how collaboration,

through skillful exchange of positioning information in a

multi-robot team, leads to a clearly improved localization

performance. Further work will consider the estimation of the

UWB error model parameters in real-time.
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