
Automatic Generation of Topological Indoor Maps
for Real-Time Map-Based Localization and

Tracking
Martin Schäfer, Christian Knapp and Samarjit Chakraborty

martin.schaefer@tum.de, knapp christian@mytum.de, samarjit@tum.de
Institute for Real-Time Computer Systems,TU-Munich, Germany.

Abstract—Personal location information is regarded as the most
important contextual information transmitted in ubiquitous sys-
tems. Many pedestrian indoor localization systems rely on map-
matching to constrain sensor errors. The maps required for
computer aided localization and tracking need to incorporate
a semantic structure. Such maps are not readily available and
therefore most groups working on localization solutions manually
create the required maps for specific testing scenarios. To provide
a solution for map generation on a larger scale, we have developed
a map generation toolkit that parses standard CAD-plans, to
automatically generate topological maps for indoor environments.
We propose a heuristic parser that separates superfluous data
from the information depicting semantic building entities, e.g.
rooms and doors. In our experiments approximately 95% of
all structures were detected successfully. After the extraction
we transform the extracted building information into an object-
based building model designed for the application of fast particle-
filter-based map-matching algorithms. A performance test with
a typical filter implementation demonstrates that the model
is sufficiently optimized to achieve pedestrian tracking and
localization in real-time.

I. INTRODUCTION

Every personal indoor positioning system needs an underlying
map as reference. An absolute position is of no use without
relation to the surrounding building. Furthermore, many pedes-
trian indoor localization and tracking concepts rely to a certain
extent on map-based filtering algorithms to bound drift and
noise induced errors. These algorithms are most commonly
based on particle filters. The users trajectory is described by a
set of particles. The particle distribution models the measured
trajectory as well as the errors of the measurement systems. To
limit the accumulation of measurement errors, the set is filtered
using map induced constraints. In other words: if a particle
traverses a wall, its weight is reduced to zero and the particle
is deleted from the filter set. To filter the trajectories of all
particles, a topological map structure with fast look-up times
is imperative. In contrast to semantically enhanced outdoor
maps, e.g used for car navigation, information on indoor
environments is usually available in form of architectural CAD
files. These files contain all types of building information
like walls, stairs, windows and appliances. However, their
structure is focused on human readability and does not contain
information that permits a computer to distinguish the different

object types. Since a semantic classification of obstacles and
accessible areas is necessary for map-based indoor localiza-
tion and tracking, most research groups in this domain have
resorted to manual construction of suitable plans [1], [2], [3].
While this approach is valid to demonstrate the performance of
a filtering concept, the application of the proposed algorithms
in global or urban scenarios usually remains infeasible, due
to the lack of time required for the generation of appropriate
maps. As also stated in [4], we argue that the lack of maps
that are suited for both, visualization and map-based filtering,
is one of the main obstacles for the mass-market deployment
of indoor positioning systems. Our work therefore aims to
provide the missing link between architectural maps in CAD
format and semantic mapping information. We present a parser
that analyses standard CAD files to extract topological map
information. This information is used to create an object-based
map optimized for localization and tracking applications. To
illustrate the model’s properties, we additionally propose an
adapted map-matching algorithm and analyze its performance.
The remainder of this paper is structured as follows:
In section II we cite related work. Section III describes the
parsing algorithms necessary to extract information from the
CAD files. Section IV introduces the object-based map and
section V illustrates the proposed map-matching algorithm and
analyses the framework’s performance. Section VI concludes
the paper.

II. RELATED WORK

As CAD plans do not provide any topological information,
several standards on building models have been formulated to
extend the geometric information of CAD plans with semantic
content. The most prominent among them are the Industry
Foundation Classes (IFC) [5] and the CityGML framework
[6]. Both are focused on visualization in the architectural
domain but they already offer detailed descriptions of internal
structures including semantic links. Unfortunately for most
public buildings there are no CityGml models available. In [7]
and [8] concepts to convert CAD data into CityGml models are
proposed, however both approaches require considerable user
interaction and only provide good results with high quality
CAD drawings. For instance rooms must be depicted as closed
polygons, doors must be encoded as an arc and each structure
type must reside in a dedicated layer, which is not the case for978-1-4577-1804-5/11/$26.00 c© 2011 IEEE

many available CAD data. In [9] a variation of the CityGML
model is described. The model named BIGML provides a
semantic map suited for location-based services. The authors
also propose a parser for DXF files, but the parser is once
more limited to few specific CAD files that encode rooms
as polygons and group information in a predefined layer
structure. Besides the extraction of topological plans from
CAD files several research groups also suggest the refinement
of coarsely digitalized floor-plans with user generated data.
In [10] map users are encouraged to indicate appliance and
furniture positions to improve the accuracy of a map. However,
the basic floor-plan must still be derived manually. The authors
of [11] propose the creation of maps during the localization
phase (SLAM). While this approach does necessitate only
minor manual post-processing to generate navigable maps, the
data acquisition process itself remains laborous. Several users
need to thoroughly explore every entity in a building before a
complete map can be obtained. To the best of our knowledge
none of the mentioned frameworks provides automatic map-
creation from standard 2D CAD files and none of the maps is
designed to provide map-based filtering.

III. PARSING CAD FILES

Since we aim at providing a general map extraction tool, our
focus lies on analyzing CAD files in the Drawing Interchange
Format (DXF) published by AutoDesk [12]. DXF is an open
specification specially designed to provide an interchange
format between proprietary CAD formats of commercially
available CAD tools. Since almost every CAD file can be
converted into a DXF file, authorities wanting to equip their
facility with an indoor navigation system, can easily generate
the required format from their building plans.
The CAD data encoded in DXF files consist of several
unconnected lines, arcs and poly-lines (several line segments
concatenated) spread across several drawing layers. Lines
depicting doors are typically grouped in one or two layers.
The outlines of rooms are often grouped together with labels,
pillars and other line information and spread over several
layers. Additionally the desired entities are not distinguished
and the lines delimiting physical rooms are often superim-
posed with drawing information concerning floor, ceiling and
accessory labels. For the scope of this paper, we assume the
CAD data to be structured as one file per each floor of a
building. The current parser is restricted to the extraction of
2D structures like rooms and doors and the 2D projections of
stairs. Thus the resulting maps only contain the projections
of three dimensional structures like stairs. Although this is a
shortcoming, the impact on the suitability for map-matching
is only minor. While a three dimensional map can be useful
to describe complex rooms as pointed out in [2] localization
and tracking in a normal building can easily be achieved
on the basis of several two dimensional floor plans and the
according heights. The main purpose of map-based filters is
to bound noise and drift of a 2D position and the associated
heading. The change of a floor via stairs or an elevator can
be easily detected via a change of the measured altitude. The

measurement of the altitude is generally much more accurate
and does not necessarily require sophisticated filtering.

A. Data Pre-Processing

Before the parser analyses the CAD data, the user has to
indicate the floor depicted by the opened file and mark
the most promising of the visualized drawing-layers. CAD
designs are never completely free of errors. Furthermore,
conversion from proprietary formats into the DXF format
can introduce additional conversion errors like numerical
inaccuracies or logical errors. To take this into account, the
proposed extraction algorithms use error tolerant calculation
and not an exact algebra. A point is defined as a regular 2D
vector p ∈ R2. For brevity, the vector connecting two points
p1 and p2 is written as p12. A line is defined as an ordered
set of two points L := {(p1, p2)| p1, p2 ∈ R2}. On these
types we define the following relations:

a) Aproximately Equal Points: Two points are approximately
equal iff their distance is smaller than a predefined threshold
ε.

∀p1, p2 ∈ R2 : p1 adj p2 ⇔ | p12| < ε (1)

b) Aproximately Equal Lines: Two lines are defined as ap-
proximately equal iff their points are approximately equal.
Start- and end-point can be switched.

∀L1, L2 ∈ L : L1 ≈ L2 ⇔ {∀p ∈ L1,∃!q ∈ L2| p ≈ q} (2)

c) Point Adjacent to Line: A point p is adjacent (adj) to a
line L iff one of L’s endpoints is approximately equal to p.

∀p ∈ R2,∀L ∈ L : p adj L⇔ {∃!q ∈ L| p ≈ q} (3)

d) Adjacent lines: Two lines L1, L2 are adjacent (adj) iff L1

contains one endpoint adjacent to L2.

∀L1, L2 ∈ L : L1 adj L2 ⇔ {∃!q ∈ L1| q adj L2} (4)

e) Paralell Lines: Lines L1 and L2 are considered as approx-
imately parallel || iff the dot product of their vectors almost
equals the product of their lengths (±ε).

∀L1(p1, p2), L2(p3, p4) ∈ L : L1||L2 ⇔
|(p2 − p1) ∗ (p4 − p3)| − |p12| ∗ |p34|| < ε

(5)

f) Orthogonal Lines: Lines L1 and L2 are considered as
approximately orthogonal ⊥ iff the dot product of their vectors
is approximately zero (±ε).

∀L1(p1, p2), L2(p3, p4) ∈ L : L1||L2 ⇔
|(p12) ∗ (p34)| < ε

(6)

g) Line 1 Contains Line 2: A line L1(p1, p2) contains the line
L2(p3, p4) iff both points p3 and p4 are almost covered by the
line L1 and not exactly matching L1’s points p1 and p2.

∀L1(p1, p2), L2(p3, p4) ∈ L : L2 ⊂ L1 ⇔
∃u ∈ R2, ∃a ∈ R, 0 < a < 1|
u = p1 + (p12) · a, u ≈ p3 ∧
∃v ∈ R2, ∃b ∈ R, 0 < b < 1|
v = p1 + (p12) · b, v ≈ p4

(7)

To reduce the amount of redundant data the following pre-
processing steps are automatically performed on each superset
of layers selected for one of the extraction routines:
• If several layers contain information required in the

same extraction routine, these layers are merged into one
superset.

• A line that is approximately equal to another line (a
duplicate) is removed from the superset.

• A line L1 contained in another line L2, that has no other
adjacent lines than L1, is removed from the superset.

• Adjacent lines that are parallel and have no other neigh-
bors, i.e that could also be formulated as one single line
without loosing information, are concatenated.
∃L1, L2 ∈ L| L1 adj L2 ∧ L1||L2

∃p ∈ εL1|p adj L2 ∧ p !adj Li|i6=2 ⇒ fuse L1, L2.

B. Extracting Doors

In well drawn CAD plans, the walls show an open passage
at the door sill and the door is normally encoded as a line
depicting the open door. The opening path usually touches the
wall of a room indicating the position of the closed door. The
origin of the arc indicates the hinge. The information important
for map-matching is the actual door sill. As already pointed
out in [13] the extraction of a door from a drawing showing
all these features is rather trivial. The left sketch in Fig. 1
shows such an ideal door. In contrast to this representation,
the right image in Fig 1 shows a detail from CAD data. Four
doors are shown, none of which has a clearly visible door sill.
Two doors seem to open into a wall. Further the opening path
of a door is sometimes encoded as an arc and sometimes as
a polyline approximating an arc. To take these circumstances
into account we focus on the extraction of characteristic arcs
and polylines to identify doors. As depicted in Fig. 2 up to
two lines eligible as door sill can be identified per arc.
If one line is found this usually depicts the open door. In some
sources two lines per door are depicted, one for the open door,
the other one representing the actual door sill. To isolate the
desired door sills our parser performs the following sequence.
• Find consecutive lines that roughly depict a quarter

circle with a radius ≈ the length of a door step.

• Convert these lines to arcs. An arc is defined by its
center pc, and a start ps and end point pe.

Open Door

Opening Arc

WallWall

Doorsill

Fig. 1. Comparison of an ideal door with a detail taken from a CAD-file

Fig. 2. Examples of alternative door representations, often only one of the
dotted lines (the open door) is present in the CAD data

• Find arcs that roughly depict a quarter circle with a
radius ≈ the length of a door step.

• For each identified quarter circle, search for lines that
are adjacent to the arc’s center and adjacent to one of
the arc’s endpoints ps/pe . If such a line is found save
the line between pc and the opposing endpoint pe/ps as
door sill candidate.

• For all arcs with more than one door sill candidate: For
each candidate Li try to find a wall line containing Li.
If found, mark Li as valid candidate. If no candidate
remains or more than one candidate remains, mark the
arc for user interaction.

The algorithm implementing the described steps reads as
follows:

Algorithm Door-Extraction

foreach (a r c in rawArcs){
/ / s o r t o u t a r c s t h a t do n o t f i t
i f ((a r c . r a d ≤ dMin) | | (dMax ≤ a r c . r a d)){

c o n t i nu e ;
}
i f (a r c . a n g l e D i f f () ! ≈ 9 0 . 0◦)){

c o n t i nu e ;
}

v e c t o r d o o r C a n d i d a t e s ;
foreach (l i n e in rawDoorLines){

/ / s o r t o u t l i n e s t h a t are
/ / t o o s h o r t or t o o long
i f ((l i n e . l e n g t h ≤ dMin) | |

(dMax ≤ l i n e . l e n g t h)) c o n t in u e ;

/ / s o r t o u t l i n e s n o t a d j t o a r c s c e n t e r
i f ((l i n e ! adj a r c . c e n t e r) c o n t i nu e ;

/ / i f a l i n e from a r c s c e n t e r t o one end
/ / p o i n t i s found t h e o p p o s i n g l i n e
/ / i s a c a n d i d a t e f o r c l o s e d door
i f ((l i n e adj a r c . end){

newLine = Line (a r c . s t a r t , a r c . c e n t e r) ;
d o o r C a n d i d a t e s ← newLine ;

} e l s e i f (l i n e adj a r c . s t a r t){
newLine = Line (a r c . end , a r c . c e n t e r) ;
d o o r C a n d i d a t e s ← newLine ;

}
}

i f (d o o r C a n d i d a t e s . s i z e () = = 1){
d o o r S t e p s ← d o o r C a n d i d a t e s [1] ;

} e l s e i f (d o o r C a n d i d a t e s . s i z e ()>1){
foreach (cand in d o o r C a n d i d a t e s){

cand . s e t I n V a l i d () ;
foreach (w a l l in w a l l L i n e s){

i f (w a l l contains cand){
cand . s e t V a l i d ;
break ;

}
}
i f (! cand . i s V a l i d ()) {

d o o r C a n d i d a t e s . remove (cand) ;
}

}
i f (d o o r C a n d i d a t e s . s i z e ()>1){

prob lems ← a r c ;
}

}
}
t r e a t I n t e r a c t i v e l y (p rob lems) ;

C. Extracting Rooms
For room extraction a more sophisticated approach is
necessary, since the variation of room representations used
in CAD files is significantly higher. For instance, in the
available data we encountered problems like incomplete room
boundaries, lines delimiting several rooms and lines depicting
only half a wall. We therefore propose an iterative algorithm
that isolates closed and almost closed line-sequences that
are candidates for rooms. These candidates are stored and
filtered for duplicates and erroneous detections using several
additional constraints. The algorithm is structured into four
stages (a,b,c,d). Fig. 3 gives an example for each stage for
better understanding.

(a) Iterate all lines Li for the generated superset and search
for lines adjacent to each Li’s Endpoint (not their starting
point). The lines found are called successors of Li.

(b) For each successor Lj build a poly-line Pij consisting of
Li and Lj . Make a copy of the superset L containing all
lines dedicated to room extraction, remove line Li and its
successors from the copy forming the new subset Li.

(c) Grow each poly-line by finding new successors in the
reduced set Li and by building new poly-lines Pijk.... The
set of unused lines is reduced for each split (Lij...).

(d) The propagation of a poly-line is complete when the poly-
line forms a closed polygon with its starting point. This
polygon is inserted into the list of room candidates. If a
polygon with another point is found, it is discarded. The
propagation is canceled if no adjacent lines can be found.
This criterion leads to robust termination because the set
of possible lines is reduced with each step.

When the algorithm has finished iterating over all lines, some
polygons have been detected multiple times and are redundant.
This is due to the fact that several lines belonging to the
same room all lead to the generation of a duplicated room. In
addition, some falsely detected rooms can occur. For instance,
closed polygons depicting a large pillar can be detected as
a room and overlapping polygons can be created due to
erroneously parsed annotation lines. We therefore use the
following post-processing rules to clean the list from errors
and complete the map’s raw data.
• Delete all polygons with surfaces below a predefined

threshold ath (usually 1− 2m2).
• Delete all polygons that have no edge superimposing a

door or a stair (every room has an entry).
• Delete all polygons intersecting two other polygons.
• Delete all polygons that are inside bigger ones.

1st fork: Line 1

has adjacent lines

6 and 2

2nd fork: Line 2 has

adjacent lines 5 and 3

2nd fork: Line 6 has

adjacent lines 7 and 8

Abort: Line 7 has no successor

Abort: Line 4 has no successor

since 3 was removed in 2nd fork

Abort: Line 4 has no successor

since 5 was removed in 2nd fork

1st

iteration,

starting

with line 1

3
2

1

2

1
5

1 7 6

1 6

9

1 6

8

4
2

1
5

3
2

1
4

2

1

1
7

2
3

4 5

9

8

 6 1

1 6

Success: Line 9 closes polygon

a b dc

Fig. 3. Schematic Description of the Room Extraction Process

a
b

c

a
b

c

Fig. 4. Extraction Examples: Region a) and b) show corrected source errors, region c) gives an example for the algorithm’s limitations

Fig. 4 shows a section of an analyzed floor containing several
problematic regions. The extracted rooms are shown in green
continuous lines while the raw lines are depicted using dotted
black lines. Region (a) and region (b) are examples for
the error correction functionality of the proposed algorithm.
Although several intersecting lines perturb the plan, the rooms
are correctly identified. Region (c), on the other hand, is an
example for the algorithm’s limitations. It is unclear, which of
the lower lines depicts the room’s boundary.

D. Extracting Stairs and Elevators

Straight stairs are usually depicted as rectangles partitioned by
several equidistant parallel lines, sometimes superimposed by
an arrow that indicates the stairs’ direction. Turns or corkscrew
stairs are depicted as equally partitioned arcs (see Fig. 5).
By determining the bounding shape of the partitioning lines
the outlines of a stair can be determined. Elevators are often
drawn in the same layer as stairs and are visualized as barred
or crossed box. If possible outlines for stairs and elevators
are found on one floor, both adjacent floors are parsed for
stairs and elevators with similar outlines at similar places. If
the floor contains a matching region, this region is defined as
portal between the two floors that contain it.

E. Parsing Results

To evaluate the average detection quality, we compare original
building plans with the extracted representations. Table I lists

Fig. 5. Different Stair Types and Elevator

the results for one typical university building.

Floor Doors Detected Ratio Rooms Detected Ratio
-1 98 98 100% 73 69 94.5%
0 80 79 97.5% 59 56 94.9%
1 76 76 100% 57 57 100%
2 73 73 100% 54 51 94.4%
3 68 68 100% 50 50 100%
4 70 70 100% 48 46 95.8%
5 50 47 94% 33 32 96.7%
Average: 98.8% 96.6%

TABLE I
EXTRACTION RESULTS BUILDING 1

The door detection algorithm is observed to be quite robust.
On average, 98.8% are of the depicted doors were detected. No
false positives were found. The remaining outliers are mostly
caused by inaccurate sources, e.g. a door being literally drawn
beside its room. The detection ratio obtained for rooms is
similar on average but the algorithm is not as robust due to
the different drawing alternatives. However, failures can be
corrected via a user interaction interface that visualizes the
differences between the raw data and the extracted informa-
tion. The user can thus identify inaccuracies and remedy them
with an integrated drawing GUI. The detection of stairs is up
to now the most error prone part of our parser. For regular
stairs good results are obtained but minor irregularities can
already lead to the algorithm’s failure.

F. Creation of the 3D Topology

When the parsing process is terminated, the algorithm starts
to construct the map bottom-up. First, the rooms are created.
The lines of a room’s outline are compared to the room’s
doors and both are used to create an edge vector that is later
used in the filtering algorithm. When a door is inserted, the
room is added to the door object, since the door will serve as
gateway during the filtering process. When all rooms of one
floor are parsed, the BoundingBox of the floor is calculated
as conjunction of all rooms’ outlines. Equally, a building’s
BoundingBox is determined using the floors’ outlines and

their altitude values. When all floors have been extracted and
the according 2D topologies have been built, the separate
topologies need to be merged into a connected 3D topology.
The coordinate systems of the floor plans are not absolutely
coherent for all plans. Therefore, it is necessary to match the
separate coordinate systems with each other. For a building
with a strictly vertical facade the floors’ outlines can be used to
match the coordinate systems. Unfortunately, not all buildings
have strictly vertical facades and subterranean levels may even
have a completely different outline than the upper floors of a
building. We therefore additionally match specific structures
like elevators to obtain coherent coordinate systems. Since an
elevator traverses a building on a strictly vertical path, the
outline of the elevator is always situated at the same position
on each floor. Hence, we define the coordinate system of the
ground floor as reference and then propagate this coordinate
system throughout the other floors. Elevator outlines and
identical floor outlines are used as anchor references. In the
end we obtain a three dimensional semantic topology model.

IV. SEMANTIC TOPOLOGY MODEL

The model shown in Fig. 6 is similar to the one proposed
in [9] and contains the physical entities Building, Floor,
Stairs, Elevator, Room and Door. Additionally several abstract
entities are introduced, namely a general container, a portal
and an edge.

A. Container

The majority of the the proposed structures inherit from a
generic container. Every container defines a reference point
as a relation between a Cartesian coordinate system and
the coordinates of this point in a global coordinate system
(currently the World Geodetic System 1984 -WGS84). Thus
every position in the local coordinate system can be matched
to the global coordinate system. Further every container in-
corporates information about its extension above and below
surface relative to its reference point and stores information
about its outline. Hence, it is easy to determine whether the
container includes a given position or not.

B. Building

A building serves as container for one or several floors and
their interconnecting portals. An approximation of the build-
ings 3D outline is obtained by interconnecting the outlines of
all included floors.

C. Floor

A floor serves as container for all structures on one level.
Its geometric outlines are defined by a bounding polygon,
the floor’s height and the height above ground relative to
the ground floor of the incorporating building. Further a floor
incorporates an ID as level identifier.

D. Room

A room is stored as a polygon. Each edge of this polygon can
be either traversable (a door or a portal entry) or not traversable

Door

+doorSill: Line

+openDoor: Line

+getDestFrom(src:Room*): Room*

Edge

+getType(): EdgeType

Floor

+levelId: string
Room

+weight: double

+getEdgeIntersecting(path:Line): Edge*

Building

+get3dOutline(): 3dBody

Particle

-newPos: Point

-oldpos: Point

-weight: double

-heading: Pose

1..n

 1..n

1..n

2

4..n

1

Portal

+outline: Polygon

+getEdgeIntersecting(path:Line): Edge*

+getDestFromRoom(src:Room*): Room*

ElevatorStair

 1..n 1..n

 2..n

Container

+outline: Polygon

+top: double

+bottom: double

+reference: Position

+contains(pos:Position): bool

+transform(Position): WGS84

4..n

Fig. 6. UML-Model of the Semantic Map Including Particle Representation

(a wall). Every Room provides a test function to determine
whether a path from a position inside the room leads to a
position outside the room. If this is the case, the traversed edge
indicates whether the path is plausible or not. Additionally, a
weight attribute can be used to assign a usage indicator to the
room which can be used for advanced filtering techniques (see
also V).

E. Edge

An edge is the elementary segment of each polygon. It can be
either a non traversable wall (default) or it can be extended to
model the passage from one room or portal into another room.

F. Door

A door is a traversable edge that interconnects rooms on the
same floor. Each door stores its door sill, the open door and
associations to the rooms interconnected by the door. It further
provides direct access to the destination of a path traversing
the door.

G. Portal

A portal is the second type of container that can serve as
physical location. It models a connection between two or
several floors. Similar to a room, it has an outline and provides
a test function to determine whether a path from a position
inside the portal to a position outside the portal is plausible.

H. Stairs

A stair object is a special portal that interconnects two floors
with each other. Stairs are modeled as the two dimensional
projection of the real stairs. This projection, which is approxi-
mated as a polygon, contains traversable edges and rigid edges,
similar to a room. Additionally it includes an access function
that provides the destination of a given path similar to a door.
The difference is the location of the associated rooms. They
must lie on adjacent floors.

I. Elevator

The structure of the elevator class resembles to the stairs class.
The main difference is the preservation of three dimensional
information and the number of associated rooms. The struc-
tural information of the elevator is encoded as a polygon which
contains up to two traversable edges (the elevator’s doors).
When an edge is traversed leaving the elevator, the height of
its current position is used to determine the destination room.

V. FILTERING ALGORITHM

For localization and tracking, we implement a map-matching
particle filter, which basically consists of three well-known
phases: re-sampling, propagation and correction (see e.g.,
[14] or [15] for details on particle filters). Similar to the
approaches used in [2] and [16], we use measurements from
a 3D accelerometer, 2 2D gyrometers and a 3D magnetic
field sensor as input for the propagation phase of the filter
and apply the map constraints in the correction phase. The
detailed structure of the filter’s re-sampling and propagation
phase is out of scope of this work and does not differ

fundamentally from the cited works. What differs is the
retrieval of legal paths necessary for every particle during the
filters correction phase. As depicted in Fig. 6, we define a
particle incorporating its old and new position, its heading,
its weight and a pointer to its room. Using this type and the
proposed map structure the filter’s correction algorithm can
be formulated as follows:

Map-based particle filter correction phase

foreach (p in p a r t i c l e S e t){
p a t h = p . newPos − p . o ldPo s ;
∗ edge = p . room−>g e t E d g e I n t e r s e c t i n g (p a t h) ;
i f (edge == n u l l){

p . w e i gh t = p . we i gh t ;
} e l s e i f (edge−>ge tType ()== Wall){

p . w e i gh t = 0 ;
} e l s e i f (edge−>ge tType ()== Door){
∗door = edge ;
p . room = door−>ge tDes tFrom (p . room) ;
p . w e i gh t ∗= p . room−>ge tWeigh t (newPos) ;

}
}

A. Filter Performance Evaluation

To deduce an upper bound for the proposed filter’s complexity
it is necessary to describe the steps of the proposed filtering
algorithm in more detail: In the beginning of the propagation
phase each particle object contains a pointer to the room it
is residing in. When a particle is propagated, an iterative
containment query is launched to determine its new location.
Using a variant of the so called “winding number“ method
described in [17] we determine whether the particle has left
the room and if so which edge it has traversed. When the
edge provides a legal path, the traversed edge directly indicates
the new room and the particle weight is readjusted according
to the weight of this new room. Hence, no search iterations
across adjacent entities are necessary and the complexity of
the described algorithm only depends on the edge number of
the polygon a particle is residing in. Thus an upper bound for
the overall complexity of the filtering algorithm can be given
as O(Npart ∗ max(npolyi))|i = [1..rooms] where Npart is
the number of particles currently used and npolyi

indicates
the number of edges of polygon polyi. Most room-outlines
consist of relatively few edges and hence npolyi

is relatively
small. The number of particles Npart depends on the filter’s
application. In tracking-scenarios, less than 1,000 particles
often suffice to model the position’s uncertainty. On the other
hand in a localization-scenario a significantly higher particle
number is necessary. As a testing scenario for the latter case,
we uniformly distributed 45,400 particles on an office-floor
that covers 1,050m2 to perform localization. Run on a 1.6 GHz
Mobile-CPU, the entire particle filtering process, including re-
sampling, propagation and correction, terminated in less than
150ms. Hence it is significantly faster than required to provide
real-time position updates for pedestrian movement. This will
obviously also hold true for the tracking scenario where less
particles are required.

VI. CONCLUSION AND FUTURE WORK

In this paper paper we have presented a novel parser that
automatically extracts semantic building information from
architectural CAD floor plans. Since these plans are available
for the majority of public and official buildings, our work
provides a practical low-cost solution to create topological
maps of large-scale urban environments. The created map-
model can be used for efficient particle-filter-based map-
matching algorithms. Our performance evaluation with a stan-
dard implementation has proven that real-time indoor tracking
and localization, based on the proposed model, are easily
achievable. Our next steps are to investigate the possibilities
of weighted maps that incorporate different likelihoods for
different rooms. Those likelihood values could, for instance,
reflect the usage of certain rooms or structural changes not
incorporated in the often slightly dated CAD-files. Finally we
plan to extend the map-model towards a navigable map.

REFERENCES

[1] Widyawan, M. Klepal, and D. Pesch, “A bayesian approach for rf-
based indoor localisation,” in 4th International Symposium on Wireless
Communication Systems (ISWCS), 2007.

[2] O. Woodman and R. Harle, “Pedestrian localisation for indoor envi-
ronments,” in ACM International Conference on Ubiquitous Computing
(UbiComp), 2008.

[3] S. Beauregard, Widyawan, and M. Klepal, “Indoor PDR performance
enhancement using minimal map information and particle filters,”
in IEEE/ION Position Location and Navigation System Conference
(PLANS), 2008.

[4] L. Wirola, T. Laine, and J. Syrjä Andrinne, “Mass-market requirements
for indoor positioning and indoor navigation,” in International Confer-
ence on Indoor Positioning and Indoor Navigation (IPIN), 2010.

[5] The Industry Foundation Classes (IFC) specification, Buildingsmart
International Std., Rev. IFC2x3-TC1, 2007.

[6] OpenGIS R© City Geography Markup Language (CityGML) Encoding
Standard, Open Geospatial Consortium Inc. Std., Rev. Version: 1.0.0,
2008.

[7] S. Z. Annet Groneman, “Toposcopy: a modeling tool for citygml,” in
Proceedings of the GSDI 11 World Conference, 2009.

[8] T. Becker and M. Butz-Bonczyk, “Interpretation von 2D-CAD Plänen
zur automatisierten Erstellung eines CityGML Gebäudemodells,” in
Entwicklerforum Geoinformationstechnik 2007 - Junge Wissenschaftler
forschen, 2007.

[9] M. Kessel, P. Ruppel, and F. Gschwandtner, “BIGML: A location model
with individual waypoint graphs for indoor location-based services,” PIK
- Praxis der Informationsverarbeitung und Kommunikation, vol. 13, p.
260–266, 2010.

[10] A. Rice and O. Woodman, “Crowd-sourcing world models with open-
roommap,” in 8th IEEE International Conference on Pervasive Comput-
ing and Communications Workshops (PERCOM Workshops), 2010.

[11] P. Robertson, M. Angermann, and B. Krach, “Simultaneous localization
and mapping for pedestrians using only foot-mounted inertial sensors,”
in ACM International Conference on Ubiquitous Computing (UbiComp),
Wessling, Germany, 2009.

[12] Autodesk, DXF Reference, AutoCAD R© Std., Rev. v.u.26.1.01, 2012.
[13] A. K. L. Miu, “Design and implementation of an indoor mobile naviga-

tion system,” Ph.D. dissertation, Massachusetts Institute of Technology,
2002.

[14] I. M. Rekleitis, “A particle filter tutorial for mobile robot localization,”
Centre for Intelligent Machines, McGill University, Tech. Rep. TR-CIM-
04-02, 2004.

[15] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter:
Particle Filters for Tracking Applications. Artech House, 2004.

[16] B. Krach and P. Robertson, “Integration of foot-mounted inertial sensors
into a bayesian location estimation framework,” in 5th Workshop on
Positioning, Navigation and Communication, (WPNC), 2008.

[17] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker, “A characteriza-
tion of ten hidden-surface algorithms,” ACM Computing Surveys, vol. 6,
no. 1, pp. 1–55, 1974.

