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Abstract— Knowledge of the positions of sensor nodes is crucial 

for numerous applications in wireless sensors network. In this 

paper, we propose to use the Divided Difference Kalman Filter 

(DDKF) as a solution for locating and tracking a mobile node. 

This approach is an alternative variant of the nonlinear Kalman 

filtering already used in this type of applications. The advantage 

of this approach is that it does not require calculation of the 

Jacobian as for the Extended Kalman Filter (EKF) and it does 

not need to use several parameters, as for the Unscented Kalman 

Filter (UKF) which accuracy is closely dependent on the good 

choice of such parameters.  In this work, a comparative 

performance study of four localization methods was conducted, 

namely the DDKF, the EKF, the UKF and the Least Squares 

Kalman Filter (LS-KF) which is a method based on 

multilateration in the least squares sense,  followed by a 

smoothing step,  using Kalman filtering. This study reveals many 

advantages in favor of the DDKF which, when applied for indoor 

localization,  provides up to 40% gain in terms of Root Mean 

Squares Errors  (RMSE) in position estimation,  as compared to 

the other considered methods and  which has a location error 

that is less than 2 meters in   95% of  the considered cases. 

 Keywords- Indoor Localization, Wireless Sensor Network, 

Divided Difference Kalman Filter 

I.  INTRODUCTION  

Wireless Sensor networks (WSN) are often composed of a 

large number of nodes, called sensors. These nodes are entities 

that can operate autonomously to collect and send data relative 

to their environment. In recent years, WSN open up a 

multitude of applications: military, civil security (control of 

fire risks, natural disasters), medical field (remote monitoring 

of physiological information, tracking doctors and patients), 

etc. 

Several applications in WSN depend heavily on the ability of 

nodes to know their position. This problem can be solved by 

the use of GPS system in networks installed outdoors, but 

cannot be adapted to those deployed inside buildings. 

In this latter case sensor network localization requires the 

knowledge of the positions of some sensor nodes called 

anchors and uses inter-sensors measurements such as received 

signal strength indicator (RSSI) measurements, angle of 

arrival (AOA) measurements, and propagation time based 

measurements (time of arrival/ time difference of arrival 

TOA/TDOA) [1].  Generally TOA, TDOA and AOA based 

methods show good location estimation accuracy, however, 

the three methods require precise synchronization among the 

local oscillators of wireless nodes, several types of signals 

with different velocities and multiple antennas at nodes, 

respectively. Therefore, they are disadvantageous in terms of 

cost and energy consumption of sensor communication nodes. 

On the other hand, RSSI-based location estimation method is 

advantageous in terms of cost and energy consumption, 

because most of the current wireless communication standards 

have a function of measuring RSSI in their protocols [2]. 

Several approaches use RSSI metric for estimating the 

position, such as multilateration which is the most basic and 

intuitive method. This method computes a node’s position via 

the intersection of three circles or more. To estimate its 

position using multilateration, a node needs to know its 

distance from anchors using RSSI measurement [3].  Another 

widely used approach is the fingerprinting based positioning 

approach, which consists of two phases: a training phase and 

an online phase. In the training phase, a fingerprint database is 

built. In the online phase, a sensor node measures the 

fingerprint vector of RSSIs from different anchor nodes. The 

fingerprint vector is then compared with fingerprints stored in 

the fingerprint database for determining the location of the 

sensor node. The drawback of this approach is that it is 

expensive for building fingerprint database in the training 

phase and the database needs to be re-established when the 

application scenario changes [4-5]. Whatever the used method, 

since the measurements are noisy, the accuracy of the 

estimated positions is not very good.  The use of the Kalman 

filter may improve this accuracy. 

The purpose of the research presented in this paper is to 

introduce and evaluate an algorithm, based on the Divided 

Difference Kalman filter (DDKF) for indoors localization and 

tracking. This algorithm is an alternative to other Kalman 

variants already used, such as the extended Kalman filter 

(EKF) [6-7] and the unscented Kalman filter (UKF) [8-9], It is 

shown by means of Monte Carlo simulations that the proposed 

algorithm achieves better location accuracy. 

The rest of this paper is organized as follows:  

The measurement model and the localization and tracking 

algorithms are presented in section II. In section III, the 
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computer simulation results are given and the performance is 

analyzed and compared to that of other algorithms. Finally, 

conclusions are given in section IV. 

 

II. LOCALIZATION ALGORITHMS 

In order to evaluate the performance of the DDKF, we propose 

to compare it to other methods such as the LS-KF, the EKF 

and the UKF. Before describing these tracking algorithms, we 

will first present the metric chosen in our work.  

 

        A.  Received Signal Strength Indicator (RSSI) 

RSSI is an indicator of the power of the signal at the time a 

message is received. A very common model exists to represent 

the RSSI according to the distance: the log-normal shadowing 

path loss model [6]. According to this model, the received 

signal strength is given by: 

 

                P (d) = P0 - 10ηlog10 (d/d0) + Xσ                       (1) 

 

where P0 is the measured path loss in decibels at a distance d0 

from the transmitter, η is a path loss exponent dependant on 

the surroundings and building type, d is the distance between 

the transmitter and receiver in meters, d0 is typically one 

meter, and Xσ is a normal (Gaussian) random variable in 

decibels that has zero mean and standard deviation σ. This 

random variable is introduced to account for fading and 

shadowing effects. 

 

B. Location Tracking  

1) Least Square-Kalman Filter (LS-KF) 

This method consists of two steps; first a static location of 

the node is performed using the multilateration approach, then 

linear Kalman filtering is applied for smoothing. 

 

a) Multilateration 

Multilateration is the algorithm used by the GPS. 

Several other positioning systems also use variants of 

multilateration. This method allows finding the position of a 

blind node from the positions of a number of anchors and their 

distances to this blind node. Assuming that the anchors 

coordinates are (x1,y1),(x2,y2),…,(xn,yn), the blind node 

coordinates are  (x,y)   and the distances between the blind 

node and the anchors are d1,d2,…,dn, as estimated from  RSSI 

measurements, then: 

 

 

 

 

 

 

Using a linearization (i.e. by subtracting the first equation 

from the others) and least squares estimation [10], we can 

obtain the coordinates of the blind node as follows:  
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   and 

     

B =  
x1

2 − x2
2 + y1

2 − y2
2 + d1

2 − d2
2

⋮
x1

2 − xn
2 + y1

2 − yn
2 + d1

2 − dn
2
  

 

b) Kalman Filtering 

 In order to improve the accuracy of the tracking, the 

Kalman filter is used to estimate the trajectory of the blind 

node. It is an iterative estimator based on a recurrence relation, 

which means that only the state previously estimated and 

actual measurements are needed to calculate the estimate of 

the current state. The system of equations used in the Kalman 

filter corresponds to two models: one representing the process 

and the second modeling the measures. These equations are 

given below: 

 

 

 

 

Here, the state vectors Xk = [x,y,vx,vy]
T 

consists of the 

positions x and y and the velocities vx and vy at time k , the 

matrix F is the state transition matrix which relates the state at 

time k to the state  at time k-1 and Vk is the vector representing 

the process noise, which is assumed to have a zero mean  

normal distribution with covariance Q. Zk is the vector of 

observations (measurements) at time k, H is the observation 

matrix, which links  the state vector to the measurements and 

Wk is the observation noise, which is assumed to be zero mean 

white  Gaussian with covariance R. 

A cycle of the Kalman filter consists of two steps, a prediction 

step and a correction step.  

 

Prediction step:    

The estimated state at time k-1 is propagated to obtain the a 

priori state estimate (predicted) at time k, as follows: 

 

Xk
−= F 

 Xk−1
                                  (9) 

  

Assuming a constant velocity movement model, the state 

transition matrix is given by:  

 

                                     F= 

1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

                                 (10) 

 

Where T is the sampling period. 

 

 
 

 
 x − x1  2 +  y − y1  2 = d1

2

 x − x2  2 +  y − y2  2 = d2
2

⋮
 x − xn  2 +  y − yn  2 = dn

2

  

                             𝑆 =  
𝑥
𝑦                                               



𝑆 (𝐴𝑇𝐴) −1𝐴𝑇𝐵                                
 

A =  

x1 − x2 y1 − y2

⋮ ⋮
x1 − xn y1 − yn

  

 

 

 

(2) 

(3) 

(5) 

               Xk = F Xk−1 + Vk                                             (7)  

       

  Zk = H Xk + Wk                                              (8) 

 

(6) 

(4) 
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The covariance matrix of the predicted errors Pk
−  may be 

expressed as a function of the previous covariance matrix of  

the estimated errors Pk-1 and process noise covariance matrix 

Q as follows: 

                                     Pk
−= F Pk-1 F 

T
+ Q                               (11) 

 

If the fluctuations of the acceleration around zero are assumed 

to be constant during each update time interval and if they are 

modeled by a white noise with variance σ𝑄
2 , then Q is given by 

[11]: 

 

                        Q= 
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 Update step: 

This step requires in the first the calculation of the Kalman 

gain defined by: 

 

  Kk
   = Pk

− H 
T  

[H 
  Pk

−H 
T+R 

 ]
-1                               

(13) 

 

Where H is the observation matrix and R is the measurement 

covariance matrix. 

Since the measurement is the position obtained from the 

multilateration step, the matrix H is given by: 

 

H=  
1 0
0 1

   
0 0
0 0

                                  (14) 

 

Assuming that the components of the measurement noise 

along the x and y axis are zero mean and uncorrelated, with 

variances σx
2 and σy

2, R is given by: 

 

R=  
σx

2 0

0 σy
2                                       (15) 

 

Finally, the a posteriori state estimate Xk
     and corresponding 

covariance matrix Pk
  are updated as follows: 

 

Xk
   =Xk

−+ Kk
    [Zk

   
 –H 

 Xk
−]                         (16) 

 

Pk
 = (I-Kk

   H) Pk
−                                  (17) 

 

 

2) Extended Kalman Filter (EKF) 

In the LS-KF method, described previously, the 

multilateration is used to calculate the positions from RSSI 

measurements then the positions are filtered using the Kalman 

filter; another alternative is to use the RSSI measurements, 

provided by the sensors, directly in a nonlinear filter to 

estimate the positions. Several nonlinear filters exist [12], 

among which the EKF is probably the most common and most 

popular. The EKF solves the problem of non-linearity by 

calculating the Jacobian of the nonlinear measurement 

equation around the estimated state. The equation 

measurement is expressed as: 

 

Zk= h (Xk
 

 ) + Wk                                (18) 

 

Since in our case the process equation is linear, the prediction 

step in the EKF is the same as in the Kalman filter (see 

equation (9)).  However, since the equation measurement is 

nonlinear the measurement matrix H in the correction step 

must be replaced by the Jacobien. Without loss of generality, 

the expression of this Jacobien will be given below in the case 

of four anchors. In this case the observation vector Zk consists 

of RSSI measurements collected from the four anchors, 

assumed to be located at (x1,y1), (x2,y2), (x3,y3), (x4,y4). The 

observation function h(Xk
−) and the corresponding Jacobian Hk 

are derived from the log-normal shadowing path loss model 

[6]:  

h (Xk
−) =  

P0 − 10 ηlog10 (d1/d0)

P0 − 10 ηlog10(d2/d0)
P0 − 10 ηlog10(d3/d0)

P0 − 10 ηlog10(d4/d0)

                   (19) 

Hk=  
−  10η

ln⁡(10)
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                   (20) 

 

Where dn is the Euclidean distance function expressed as: 

 

dn = (x − xn)2 + (y − yn)2                  (21) 

 

In the above equation x, y are the first two elements of the 

predicted state vector Xk
−. 

  

If the measurement noises of the anchors are assumed to be 

independent with each other, the measurement covariance 

matrix is given by:  

R = 

 
 
 
 
 
𝜎1

2 0 0 0

0 𝜎2
2 0 0

0 0 𝜎3
2 0

0 0 0 𝜎4
2 
 
 
 
 

                          (22) 

 

By applying the Kalman filter to the linearised system, we 

obtain the following equations for the update step: 

 

Kk
   = Pk

− Hk
T  

[Hk
   

 Pk
−Hk

T  
+R 

 ]
-1     

                   (23) 
 

Xk
   =Xk

−+ Kk
    [Zk

   
 –h(Xk

−)]                           (24) 
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 Pk
 = (I-Kk

   Hk
   ) Pk

−                                 (25) 

 

3) Unscented Kalman Filter 

 

The EKF works well for systems with moderate nonlinearities; 

but when the nonlinearity becomes too strong the EKF is not 

efficient [12]. The UKF has recently become an alternative to 

the EKF, It uses the unscented transformation which allows 

calculating the mean and covariance of a transformed variable 

from a set of sample points, called sigma points that are 

propagated using the non-linear transformation.  

The different steps of the UKF are described in the following. 

Given the predicted state vector, the sigma points are 

calculated and stored in the columns of the matrix χk of size L 

× (2L +1), where L is the dimension of the state vector. These 

points are calculated using a deterministic algorithm: 

 

      (χk)0 = Xk
−

                                                         (26) 

 

(χk) i = Xk
−+    L + λ  Pk

− i , i= 1………L      (27) 

 

(χk) i = Xk
− −    L + λ  Pk

− i , i= L+1………2L      (28) 

 

where (χk)i  denotes the i
th

 column of matrix χk and  λ  is 

defined by: 

 

λ= α
2 
(L+κ) −  L.                                 (29) 

 

In (29), α
 
and κ control the spread of the sigma points. α is 

usually set to 0 ≤α ≤1 and κ is a secondary scaling parameter 

which is usually set to zero.  

First, the Kalman Filter state prediction is applied (equations 

(9) and (11)) due to the assumed linear process dynamics. 

Then in the correction step, the sigma points (χk)i are 

transformed by the measurement function,  

 

(Zk) i = h((χk-1 )i ), i=0……..2L                    (30) 

 

and their weighted mean is computed:  

 

Z k=   2L
i=0 wi

(m)
 (Zk)i                                          (31) 

 

Where wi
(m)

 is the weight associated with the sigma point i, 

defined by: 

w0
(m)

=λ/ (L+λ)                                (32) 

 

wi
(m)

= 1/ {2(L+λ)}, i=1…..2L               (33) 

 

The vector Z k, plays the role of the predicted measurement 

vector that may be used to calculate the a posteriori state 

estimate: 

Xk
   =Xk

−+ Kk (Zk – Z k)                          (34) 

 

Where Zk is the vector of real measurements and Kk is the 

Kalman gain, given by:  

Kk = Pxz  Pzz
−1                                                  

(35) 

 

Where  

Pzz    =   2L
i=0 wi

(c)
[(Zk)i -Z k ] [(Zk)i -Z k ]

T 
+R           (36) 

 

Pxz   =   2L
i=0 wi

(c)
[(χk)i -Xk

− ] [(Zk)i -Z k ]
T 

             (37) 

 

In (36) R represents the covariance matrix of the measurement 

noise, and the weight wi
(c)

is defined by:  

 

w0
(c)

= 
λ

(L+λ)
 + (1- α

2 
+ β)                          (38) 

 

wi
 c 

= 
1

2 (L+λ)
  , i=1…..2L                         (39) 

 

β is a parameter used to incorporate any prior knowledge 

about the error distribution  (for Gaussian distribution, β = 2 is 

optimal). 

Finally the estimated covariance matrix is updated as follows: 

 

Pk
 =  Pk

− − Kk
   Pzz   Kk

T                               (40) 

 

4) Divided Difference Kalman Filter (DDKF) 

Based on Stirling's interpolation, the DDKF is proposed to 

solve nonlinearity problem by approximating the mean and the 

covariance of stochastic variables generated by nonlinear 

transformation of stochastic variables with known mean and 

covariance [13]. Stirling polynomial interpolation formula, 

limited to the second order for a non linear function h is: 

 

h (x) = h (x ) + D Δx h + 
1

2
D 2

Δx h                 (41) 

 

Where D Δx and D 2
Δx are the first and the second order 

operators of the central divided difference of h(x). In the scalar 

case, these operators are given by: 

 

D Δx = x − x  
h  x +ξ −h  x −ξ 

2ξ
                       (42) 

 

D 2
Δx = (x − x )2 

h x +ξ −h  x −ξ −2h (x ) 

ξ2              (43) 

 

ξ is the interval step-size for the approximation,   3  is the 

optimal value for a Gaussian distribution [11]. 

 

Two filters were proposed in [14], the DDKF1, based on first-

order approximation, and the DDKF2, based on second-order 

approximation. These filters are described below. 

In both filters, the prediction step is the same as in the linear 

Kalman filter, since in our case the process equation is linear. 

 

a) The First Order Divided Difference Kalman Filter 

(DDKF1) 

 The DDKF1 compute the mean and covariance in the 

first order polynomial approximation. 
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Let Sk denote the Cholesky decomposition of the predicted 

covariance matrix Pk
−: 

Sk = Chol (Pk
−),                                (44) 

and Z k the predicted measurement 

 

Z k= h (Xk
−)                                     (45) 

 

The Kalman gain can be calculated according to: 

 

Kk = Pxz  Pzz
−1                                         (46) 

 

Where  Pzz     and   Pxz     are given by: 

 

Pzz   =H(Xk
−, Sk, ξ) H

T
(Xk

−, Sk, ξ) + R                   (47) 

 

Pxz   = Sk H
T
(Xk

−, Sk, ξ)                                (48) 

 

In the two previous equations the (i,j) element of H is defined 

as: 

 Hj,i(Xk
−, Sk, ξ) = ( hj (Xk

−+ ξ (Sk 
 )i) – hj (Xk

−- ξ (Sk
 )i))/2 ξ    (49)                    

 

The a posteriori state vector Xk
    and the associated covariance 

matrix Pk
  are updated according to: 

 

Xk
   =Xk

−+ Kk( Zk – Z k)                           (50) 

 

Pk
 =  Pk

− − Kk
   Pzz   Kk

T                            (51) 

 

b) The  Second Order Divided Difference Kalman Filter 

(DDKF2) 

 The DDKF2 is obtained by calculating the mean and 

covariance using the second order polynomial approximation.  

The implementation of the DDKF2 filter follows the same 

steps as the DDKF1. The only difference is that equations (45) 

and (47) should be replaced by the following equations: 

 

𝑍 k= 
ξ2−𝐿

ξ2  h(Xk
−) + 

1

2ξ2  (h (Xk
− + ξ (Sk) i) + h (Xk

− − ξ( Sk) i))𝐿
𝑖=1  (52) 

 

Pzz =H(Xk
−, Sk, ξ) HT(Xk

−, Sk, ξ)+H(2)(Xk
−, Sk, ξ) H(2)T(Xk

−, Sk, ξ)+R (53)   

 

Where   

Hj,i
(2)

(Xk
−,Sk,ξ)= 

 ξ2−1

2ξ2  ( hj(Xk
−+ξ (Sk )i)+hj(Xk

− −ξ (Sk)i )−2 hj(Xk
−)  (54) 

 

III. RESULTS  

A number of Monte Carlo simulations were carried out to assess 

the algorithms performance, in terms of both accuracy and 
numerical cost, of the localization and tracking methods, 

described in the previous section. In the first simulation, one 

mobile node moves at a speed of 1 m/s in a 10m*10m rectangular 

area, with four anchors located at the four corners of this area, as 

shown in figure 1.  

  

 

 

A. Accuracy 

 The localization accuracy is an important criterion for 

assessing localization algorithms; it is evaluated using two 

metrics, which are the Root Mean Square Error (RMSE) in 

position and the cumulative distribution function (CDF) of the 

estimation errors. The RMSE is calculated as follows: 

 

𝑅𝑀𝑆𝐸 𝑘 =  
1

N
 (x0 (k)N

i=1 − xi,est  (k)) 2 + (y0 (k) − yi,est  (k)) 2     (55) 

 

Where N is the total number of runs, xi,est (k) and yi,est (k) is 

the estimated position at run i and time k, and x0(k) y0(k) is the 

true position  of the mobile node, at time k. 

The results obtained and averaged over 500 runs are presented 

in figures 1 to 3. In figure 1 the true trajectory is plotted 

together with the trajectories estimated by different filters, for 

one run, while in figure 2, the RMSE in position obtained with 

different filters is plotted versus time. Finally, in figure 3 the 

cumulative distribution function is plotted, for different filters. 

 
Figure 1.  True and estimated trajectories for a particular run. 

 

 
Figure 2.    RMSE in position obtained with different filters. 

 

 

 

0 1 2 3 4 5 6 7 8 9 10
-2

0

2

4

6

8

10

Y(m)

X
(m

)

 

 

Anchor

real trajectory

UKF

EKF

DDKF2

DDKF1

LS-KF

0 2 4 6 8 10 12 14 16 18
1

1.5

2

2.5

3

3.5

time(s)

R
M

S
E

(m
)

 

 

RMSE UKF

RMSE EKF

RMSE DDKF2

RMSE DDKF1

RMSE LS-KF



2013 International Conference on Indoor Positioning and Indoor Navigation, 28
th

-31
th

 October 2013 

 

 
Figure3.  Cumulative distribution function of the location errors 

 

From figures 2 and 3 it can be observed that the DDKF2 is the 

most effective approach with an error less than 2 meters in 

95% of cases, whereas for the other approaches the same 

accuracy is achieved in only between 55 % and 68 %  of 

cases. The LS-KF provides positions with high accuracy when 

the mobile node is at the center of the area, but this accuracy 

decreases when it moves away from the center. This is due to 

accuracy of the used multilateration method, which is position 

dependent.  

 

For a further assessment of the performances of the studied 

tracking algorithms, two factors that affect the localization 

accuracy are examined:  anchors’ density, and anchors’ 

placement.  

 

 B. Density of the Anchor Nodes 

 Increasing the density of the anchor nodes may 

minimize localization errors. This is confirmed by the results 

presented in Figures 5 to 9, where the CDF of the different 

filters are plotted for different anchors’ densities. For 4 

anchors, the placement is the same as in figure 1. The 

placement of 8 anchors is obtained from that of 4 anchors by 

inserting an additional anchor midway between every two 

neighboring anchors. The placement of 12 anchors 

corresponds to that of 8 anchors with 4 additional anchors 

placed at the center of the rectangular area. Finally, the 

placement of 16 anchors is obtained by inserting 4 new 

anchors midway between the 4 previous anchors, as shown in 

figure 4. 

 

 
Figure 4.  Anchors Geometry  

 
Figure 5.  Cumulative distribution function of the location error for LS-KF 

 

 Figure 5 shows that the number of anchors does not greatly 

affect the accuracy obtained by LS-KF method. 

 

 
Figure 6.  Cumulative distribution function of the location error for EKF 
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Figure 6 shows that the precision obtained using 12 or 16 

anchors with the EKF estimator is approximately the same and 

is significantly higher than the accuracy obtained by using 4 

and 8 anchor nodes. We note that the EKF is very sensitive to 

the geometry of anchors, which explains the divergence of the 

filter when it uses 8 anchors. By using 12 or 16 anchor nodes, 

the positioning errors are less than 1.5 m in 50% of the time.  

 
Figure 7.  Cumulative distribution function of the location error for UKF 

 

Figure 7  shows  that, for the UKF, approximately 95% of 

positionning errors are less then 1.3m using 12 or 16 anchors, 

while 50% are less then 2m using 4 or 8 anchors.

 
Figure 8.  Cumulative distribution function of the location error for DDKF1 

 

Figures 8 and 9 shows that the DDKF1 and DDKF2 can 

achieve a localization error of a few tens of centimeters when 

using more than 8 anchor nodes. 

For the DDKF1 estimator, in 90% of the time, the positioning 

errors are approximately less than: 0.8m, 1.2m, 2m and 2.75m  

using, respectively, 16, 12, 8 and 4 anchor nodes.       

For the DDKF2 estimator, in 90% of the time, the positioning 

errors are approximately less than: 0.6m, 0.8m, 1.2m and 1.8 

m  using, respectively, 16, 12, 8 and 4 anchor nodes.                 

 
 
Figure  9.  Cumulative distribution function of the location error for DDKF2 

 

 

To summarize, we can say that increasing the number of 

anchors reduces the localization errors mainly when using 

methods based on nonlinear Kalman filtering. However, no 

significant gain is brought about by increasing the number of 

anchor nodes beyond a certain value. This has to be avoided, 

since increasing this number increases mainly the complexity. 

 

 C. Geometry of the Anchor Nodes 

 The geometry of the anchor nodes also affects 

localization accuracy. To confirm this fact, three scenarios 

have been considered. As illustrated in figure 10, in the first 

scenario the anchor nodes are placed on the perimeter of the 

area, whereas in the second scenario they are placed at the 

center, and in the third scenario they are placed in a corner of 

the area. The mobile follows the same trajectory as in figure 1. 

 

 
Figure 10.    Geometry scenarios  

 

The following table summarizes the time average  RMSE 

obtained with the different filters, for the three scenarios.  
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 Scenario1 Scenario2 Scenario3 

LS-KF 2.83 3.76 3.65 

EKF 2.58 2.08 2.09 

UKF 2.19 2.33 1.88 

DDKF1 2.53 2.24 6.41 

DDKF2 1.67 1.98 3.29 

 
Table1 Impact of anchor nodes placement  

 

From this table, it can be observed that the geometry of the 

anchor nodes plays a major role in the accuracy of the 

estimated positions. It can also be observed that although the 

most suitable scenario is filter dependent, globally the best one 

corresponds to anchor nodes placed at the perimeter of the 

area. Notice also that the DDKFs are the most sensitive to the 

geometry of the anchor nodes, which means that the 

approximations that they are based on are not valid for certain 

anchor nodes geometries. 

 

 D. Computation requirement 

 Another metric to compare the different methods is 

the numerical cost. This has been evaluated by counting the 

number of additions, subtractions, multiplications and 

divisions, necessary for the implementation of one cycle of 

each filter. The results are given in table 2.  

 

Method Number of operations per cycle 

LS-EKF 766 

EKF 1370 

UKF 2341 

DDKF1 1831 

DDKF2 2122 

 
Table 2.   Computation requirement 

 

As it can be seen from this table, the LS-KF is the least 

computationally intensive; it is followed by the EKF and the 

DDKF1 then by the DDKF2 and the UKF.  

 

IV. CONCLUSION 

In this paper a divided difference Kalman Filter has been 

proposed to solve the indoor tracking problem in sensor 

networks. The performance of this filter has been compared to 

other variants of the Kalman filter, using Monte Carlo 

simulations. The results of simulations show that a significant 

improvement in the accuracy localization is brought about by 

using the DDKF2. Another advantage of this filter is that it 

does not require the calculation of the Jacobian, which is not 

often obvious, as is the case in the EKF, and does not depend 

on the clinching choice of some parameters that affect the 

estimation accuracy, as it is the case in the UKF. 

In this paper the impact of the density of anchors on the 

location accuracy has also been examined. Indeed, as 

expected, in general the localization accuracy increases when 

the number of anchors increases, but only up to certain given 

value. However the price to pay for this is an increase in the 

computational load.  Also, the location of anchors has a 

significant impact on the localization accuracy. The choice of 

the best anchors’ geometry is an open subject that deserves a 

further study.  
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