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~ Abstract—Received signal strengths have been widely used inthe area under test [7]. Hence, a radio map (RM) is built as a
indoor positioning due to the massive presence of wireless local collection of RSS vectors associated to known positions and
networks_ in buildings. To avoid long training phases theoretical during the localization stage the vectors in the RM are com-
propagation models such as the path-loss model can be used, ared to the upcoming RSS vectors: the user’s position is the
The main issue is that the path-loss parameters, namely the P . P g 3 T p
transmitted power and the decay exponent, can assume a wide €Stimated based on a clustering algorithm. RADAR, presente
range of values, depending on devices, building structure and in [7], is still today a popular fingerprinting algorithm: eh
other environmental features. . o . RM contains only the average of the RSS vectors collected
In this paper, we propose a Bayesian positioning algorithm iy each position and clustering is based on the minimization

based on the Rao-Blackwellized particle filter, where the system . . . . . e
estimates the parameters of the path-loss model independentlgrf of the Euclidean distance. Fingerprinting achieves |aediton

each AP in addition to localizing the user. Both parameters are accuracy down to 2-3 meters if the RM covers sufficiently
described by discrete variables and their probability distribution ~the area under test. The algorithm stability is, howevet, pu
is estimated starting from a uniform prior. We validate the in trouble by the environmental changes, that are usually
algorithm with simulations a_nd two differe_nt experiments; finally, approached by map corrections. To do so, [8] proposes the
some remarks on complexity are also given. RM correction by means of a linear transformation under the
arbitrary assumption that the change is uniform across the
area, while the algorithm in [9] makes use of Model Trees to

Reliable indoor localization techniques are required @ pradapt the RM online without assuming explicit transformati
vide Location Based Services in buildings and urban canyomgnctions. Both algorithms use measurements at reference
e.g., navigation in airports and malls and support of firdt-anodes, and therefore additional hardware, in order to tiatet
units [1], [2]. Satellite navigation systems are inacoeirdi- evaluate the changes. More recently, [10] proposed a tgeani
doors due to multipath, therefore techniques based onéoehl based on principal component analysis to extract featuoes f
low cost sensors are needed [3]. Therefore, the sensordiwhife RM without reference nodes.
are already available in a mobile phone, like acceleroragter An alternative approach to WLAN based fingerprinting lo-
compass, magnetometers, and radio receivers, are gaflerigalization employs theoretical models and resorts to gédeme
growing interest, both in scenarios where they are employgginciples, like trilateration, to localize the user [7111],
alone and when their measurements are fused, e.g. accorgir®]. The theoretical approach is usually not as accurate as
to a probabilistic paradigm [4]. fingerprinting, but it avoids any RM construction; furthere,

We focus on wireless local area networks (WLANSs), whichropagation models can be stated as functions of parameters
are increasingly spreading indoors. WLAN based localizatiavhose calibration is used to fit environmental features. We
makes use mainly of Received Signal Strengths (RSSs)fo€us on the parameters calibration in the case of the path-
the beacon signals which are periodically sent by the Accesss model [7], [11]. To do so, we avoid both a training phase
Points (APs); it does not require any sensitive informat®n and the use of reference nodes by developing an adaptive
change between user and network, in agreement with privagigorithm based on Bayesian probabilistic theory, in which
issues [5]. parameters are learned while performing localization. ARe

Limits to RSS based localization are usually imposed kyre deployed in known positions and we assume independent
the characterization of the radio channel, that is still pero outcomes of the path-loss parameters for each AP.
issue due to multipath and blockage yielded by the buildingIn a previous paper a similar framework is proposed in
structure, the materials of walls and furniture and thegmes which only one parameter of the path-loss model is estimated
of metallic objects and people. Furthermore, it has beeelyid per AP, namely the transmitted power [13]. The parameter
shown how propagation features can harshly change witlignstacked into the state vector and estimated by means of a
short and long term intervals [6]. particle filter together with the user’s trajectory; thetpliss

Fingerprinting techniques avoid radio propagation madgli exponent, which describes the decay of power with distance,
and rather rely on extensive measurement campaigns acrigssistead not estimated but the algorithm is rather fed with

I. INTRODUCTION
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Fig. 1. RSS likelihood function conditioned on h and «; the plots are obtained by assuming perfect knowledge afid by computing the likelihood
function on a range of values for the path-loss parameters.likblihood function is computed with (& = 1, (b) kK = 5 and (¢)k = 20 independent
measurements. Distaneeis randomly generated from a pdf that is uniform betwédgn= 1.6 m and 15 m and all outcomes are independent.

the free-space value, that is 2. In real scenarios, howtwer, ment model is improved by employing inertial measurements
path-loss exponent is reported to vary in the range of 1 tmm a foot-mounted Inertial Measurement Unit (IMU). Step
4 [11]. Although localization performance improves even bgeasurements obtained by processing inertial measurement
estimating only the transmitting power, relevant potdries with a Zero Velocity Updates (ZUPT) filter are affected by a
in the determination of the path-loss exponent, as shownen drift which causes a growing error in localization [18], [19
literature both in an experimental scenario [14] and adogrd RSS measurements from few APs can correct this error and
to theoretical discussions [15]. Authors in [16] proposeSER produce very accurate results when the path-loss modellis we
based localization algorithm in which the path-loss expbnecalibrated, and this is done on-line without a training ghas
is considered unknown. Although they do not estimate it in arhe price paid is a transient phase during which the path-
explicit way, they implicitly account for it. In fact, the mge loss parameter distributions are gradually refined, but the
estimations which are yielded by the RSS are combined witifigorithm convergence yields a localization accuracy that

a spring-relaxation method: each AP-user distance is reddesuitable till here to many indoor navigation applications.

by a spring, whose elasticity coefficient is made variable The paper is structured as follows: Section Il presents the
with the distance in order to mitigate the path-loss expbngpath-loss model and a discussion on the parameter estimatio
inaccuracy. This approach is based on the claim that sucln&ection Il we develop the Bayesian filter and its implemen
mismaitch yields an error in the distance determination ithattation in terms of RBPF, whose complexity is also discussed;
proportional to the distance itself; therefore, they ps®pdo simulation and experimental results are instead discussed
increase the variance of weak RSS measurements to acc@adtions IV and V, respectively, while concluding remarks
for the error caused by the parameter mismatch. [17] adopidl be given in Section VI.

the joint estimation of both transmitted power and path-

loss exponent by performing a training stage during which Il. PATH-LOSS MODEL AND PARAMETERS

a maximum likelihood estimation of both parameters is made.The path-loss model describes the value of the signal power
Differently from the other approaches, we propose an RS&hich propagates over a finite distance and it is an extension

based localization algorithm in which the path-loss patanse of the Friis formula. According to it, the powd?(r) received

are gradually evaluated for all APs together with the usera distance- is given by [11]

position. The algorithm is based on Bayesian probabilitgt an o

is implemented by means of a Rao-Blackwellized particle P(r) =P, <d°> , 1)

filter (RBPF) in which, for all particles, the user’'s positio r

is sampled based on a predictive model and the RSS measyjgare 4, is a reference distance?, — P(do) is a constant

ments are used to generate the particle weight. The paresnefg, ver representing the transmitted power and antenna gains
are modeled as independent discrete variables, with gessib,q ., is the path-loss exponent (= 2 in free space). This
values in suitable sets. Each pair of values for the tratsthit ,oqel is valid in far field condition. as for—s 0 P(r) — .
power and the path-loss exponent represents a hypothegisiis paper,d, is the limit between near and far field, i.e.,
whose probability is updated at every new measurement {9g assume: > do and, thereforeP(r) < P(dy).

all particles. Dealing with probability distributions her than Restating (1) in dBm for the signal strengtt(r) (square
point-wise estimates of the parameters makes the algorithga; of power) we find:

more robust. This is shown by means of both computer and
real world experiments. In the last case, the user's move- h(r) =h —20alog,, (r/do), 2



whereh = 10log,, Fo is the transmitted power in dBm. RSSwhereh; anda; are the j-th AP parameters ang is a white

measurements in dBm are corrupted by a Gaussian white naseo-mean Gaussian process

with mean given by (2) and variance denotedd:iy> 0, ie.

njr~N(0,07). (6)

yNN(h(T)7U§)' ©)) . . .
Finally, independence is assumed among measurements of

The Gaussian probabilistic model is used in the literatare glifferent APs, given the user’s state. Our aim is to estimate

environments where slow fading is going to be relevant; it e user’s state, and the path-loss parametérsandc«; for

shown that it corresponds for the signal strength in Watt toadl APs based on the set of RSS measureménis }.

Lognormal probability density function (pdf) [7], [11], 8L

The path-loss parameters are, in our case, the transnfit-Bayesian filter

ted powerh and the exponend in (2). We here consider —The Bayesian filter computes the posterior pdf of user®stat

them unknown but static, at least over a sufficiently shoghq path-loss parametérs:

time interval (our experiments last few minutes). Theinjoi

estimqtion, combﬁned with inaccuracy on the usgr’; pasitio P (X01k7{hj7aj}j:1:NAp | {yj,lzk}j:LNAp) ; 7)

and with RSS noise, could be prevented by ambiguity. As an

example, we refer to simulation scenarios whemdependent starting from suitable independent prior distributionattive

measurements are sampled according to the model (3), waill indicate, with a litle abuse of notation, withp(X)

o, = 3 dBm andr randomly varying between, = 1.6 m and po(h;,«;), respectively. The posterior pdf (7) can be

and 15 m. In Fig. 1 we show the likelihood function ofdecomposed in order to split the parameter estimation terms

the measurements conditioned on the distan@nd on the from the localization term:

parametersh and «; in this caser is exactly known and

we compute the likelihood function over a wide range d?<X01k7{hj7aj}j:1,...,NAp | {yj,lzk}jzl,_..,NAp) = (8)

parameter values. The panels of Fig. 1 show the likelihood /), .

function depicted against the parameters at diffefgrit = 1 o X g o _ ( ‘ o )

in panel (a),k = 5 in (b) andk = 20 in (c), respectively. JE[l P (R evjlXouks Yjase) | =P (Xook Wsaikdjmn,nar

The representation is in terms of contour plots (the lines ar

at 1%, 50%, and 90% of the maximal value, the red crossLet us focus on the localization term, the last on the right of

indicates the values adopted to generate the measuremefi®) A further factorization yields the recursive formudet

After just one measurement, in (a), the likelihood functisn

symmetrical around a straight line, meaning ambiguity agnon Nar

infinite pairs of values. The following measurements brind (XOC’“| {yj=1ik}j:1:NAp) = H P (Y5 Xores Yj1:k-1)
relevant information and even at= 5 the likelihood function i=1

is an oval centered on a section of the previous line. After 20 p (xk|x0:,€_1, {yjal:k_l}j:lzNAp)
measurements most ambiguity has vanished and the accurate

estimation of the parameters is possible by, i.e., maximizi p (XO:k71| {yj,l;kq}j:l:NAP) ;
the likelihood function. The fact that the maximum of the 9)

likelihood function does not coincide exactly with the vadu ) _ ) )
used in the RSS generation is a consequence of the RSS ndfag first term on the right hand side of (9) is the product of

and represents the estimation error. measurement likelihood functions, one per AP, which are con
ditionally independent. Each factor requires a margiaéiin
I1l. BAYESIAN FILTER AND RBPFIMPLEMENTATION over the path-loss parameters of the same AP, i.e., for the |-
factor:
The user’s state at the time instant 0, 1, ... is composed
of both its positiond, € A C R? and its velocity P (Yj k[ X0k, Yj1:k—1) = / P (Yjklhjs 0y Xocks Yj1:k—1)
hj,o;
o 30,
X), = {eg,eﬂ , 4) -p(hj, o[Xo:k—1,Yj,1:6—1) d by day,
(10)

where A is the two dimensional indoor area under test and

the coordinates are expressed according to a local Cartedia '€ the likelihood fl_mctlon conditioned on.the path-los_s
reference system. A numbe¥,p of APs are deployed in parameters, based on independence assumptions, results in

known locations ofA, namely, the j-th AP is i@ 4p ;. The
RSS measurement; , from AP j is drawn from a Gaussian
pdf, conditioned on state and parameters. By explicatimg ti and is given by (3).
dependence and user’s state in (2) and (3) we find:

p(yj,k hjyaj7XO:k7yj,1:k71) = p(yj,k|hjaajaxk)7 (11)

1The notationj = a : b stays forj = a,a +1,...,b and is used across
Yik = hj — 10a;logqo (||0k — O ap,;||/do) +njk,  (B) the paper for shortness.



Algorithm 1 WLAN localization with path-loss parameter
estimation
Initialization:
> %comment: Initialize user’'s state and particle weights%
for i =1to Np do
Draw the initial user’s stat&), ~ po(Xo)
wi = Np*
Select a set 0fVg hypothesedd; ,
o for j =1to Nap do
for s=11to Ng do
Lx > %comment: Initialize parameter distributions%
Pr{H; xj} = Ng"
Fig. 2. Testbed adopted in the simulations; in the figire= 40 m and end for
L, =20 m and the APs are in the positions denoted by red circles. end for

end for
Iterations:

Ly e

The second term on the right hand side of (9) is the

user’s movement model; by assuming the Markov property,k - )
we simplify it in while ( New measurement available o

for i =1 to Np do

P (xk\x():k,l, {yj,lzk,l}j:hNAP) =pXp|Xe—1) . (12) Draw the user’s state! ~ p(x;|x: ;)
, for j =1to Nap do
The users movement model depends on the ty_pe of user, e.g., ComputeIJZﬁ’k like in (20)
a pedestrian or a robot, and two examples will be provided for s — 10 Ng do
when discussing the results. . . Update P(Hj,slxé.k,yj,1;k) like in (21)
As for the parameter pdf, the update formula is obtained by end for :
means of the Bayes theorem, i.e., for the j-th AP: end for

> %comment: Update the particle weights

p (hj, ojlXoke, yjae) = ;= W '
Gy O ) Yj Wy, = Wy,_q- Hj'valP Ik

P (Yjklhy, g, Xe) 'p(hjaolj|xo:kayj,1:k-—1)’ (13) end for
P (Y5.6Xe, Y 1:6-1) > %comment: Normalize particle weights, increment time
where simplification (11) is employed and W= wi
wi — w1
p (hj, ajlXo:r, Yje—1) = p (hy, ajXok—1,yj,1:0-1) - (14) k]: A +k1
B. Path-loss parameter model end while

The model of the path-loss parameters should represent d€rmination: compute MMSE or MAP trajectory.
fair compromise between accuracy and mathematical trikctab
ity. Our choice is to discretize the variables by defining ddin
set of Ng hypotheses for each AP, e.g., for the j-th AP:

Hj7s:{h§,o¢j},s:l,...,NS. (15)

C. RBPF implementation

. The Bayesian filter described in the previous Sections
The values of the parameters can be sampled on eithej a . ;

: . . o : nas been implemented by means of the RBPF [20] and is
suitable grid or according to some prior information. Their

odf is therefore represented by the set of probabilitiesaghe SUMMarized in the algorithm box. Initialization is done by
. . sampling the user’s state from the prior paf(xo) and by

hypothesis, whose update is found by means of the Bayes,[. . 1

theorem, as in (13): S€ t|_ng all the hypothegs propablhtles W$ fqr all Np
' ' particles. Then, for the i-th particle at the time instant 0,

Pr(H;j s[Xo:k, Yj,1:1) = the user’s state is drawn according to
P W)k Hjs, Xi) - p (Hj s

XO:k—layj,lzk—l) (16)

D (Yj.k Xk Yj1:6—1) ’ Xt~ p(XplXE_ ), (18)
for all 7 ands. Finally, the integral in (10) results in the finite
sum and the weight is computed from the RSS likelihood function
P (YjkXoks Yj1:k—1) = (17)
Ns Nap
Zp(yj,k|H‘,saXO:kyyj,l:k—l) -Pr{H; s|Xo:k—1,Yj,1:k—1} - wi = wh_,- H P (Y5 X6k Yitk—1) | 5 (19)

s=1 Jj=1
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Fig. 3. Simulation results in the testbed of Fig. 2 in terms & RMSE of the proposed algorithm (black continuous curvé}, féd with true parameters
(red dashed) and SIR with expected parameters (blue dottedl)simulations were run with 1000 particles and RSS noisianmag = 5 and the results
were averaged over 100 independent realization; we pro@stae RMSE against time, (b) the empirical CDF of the RMSE.
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Estimation of parameters in simulation of Fig. 3: we defiie absolute error on (a) the transmitted power and (b) #ib-lpss exponent; for

visualization issues we depict in all cases only the maximumjmim and mean absolute error over the 5 APS.

in which the parameter pdf is involved like in (17)

I;,kép (l/j,k|xézk7yj,1:k—1) = (20)

Ns
ZP (Yj | Hyjysr Xbutr Yj1:e—1) - PY{H; 6|X0 1, Yj1:6—1 ) -
s=1
As last step of the iteration, the hypothesis probabilifes
updated according to (16), with

Pr(Hj,s Xf);k7yj,1:k) =
p (yj,k|H’,37X§€) 'p (Hj,s|xé;k71>yj,1:k—1)

i ) 21
P (Y5, /X5s Yj16-1) (1)

for all hypotheses and APs. When the algorithm terminates,
the estimated trajectory can be computed by either avegagin
over the particles to obtain the Minimum Mean Square error
(MMSE) estimator or maximizing it (Maximum A-Posteriori

- MAP - estimator).

The computational complexity required by the proposed
algorithm is linearly proportional to the number of paris)
Np, to the number of APsN p, and to the number of
hypothesesNgs. The advantage of applying RBPF is that the
state sampling, that is the heaviest operation, refers tmly
the user’s state, whose dimensionality does not dependeon th
number of APs and parameters. These latter are only involved
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Fig. 5. Experiment in a fairly65 x 20 m office floor with 4 APs: the trajectory in dashed blue line iained by applying FootSLAM [19] and is here
considered the ground truth, while the estimated trajedsdenoted by a red continuous line; the AP’s true positioesd@noted by green triangles and they
are employed by the algorithm; the trajectories are arrangetld floor layout, that is not known by the algorithm. Here, A @@rticles andry, = 5 dBm
are employed.
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Fig. 6. Localization error in the experiment of Fig. 5, compgrbur proposal (black continuous lines), SIR with fixed paeters (red dashed lines) and
IMU’s based localization (blue dotted lines); we proposgtle localization error against time and (b) the empirical CDF

in the evaluation of the conditional RSS likelihood funaip is described in this simulation by means of the popular Nearl
which can be efficiently done in logarithmic domain. Constant Velocity Model (NCVM) sampled at time instants
kT [21]
V. SIMULATIONS Xpp1 = FXp +Vp, k=0,1,2,..., (22)

We propose a preliminary validation of the algorithm byn which the state is, like before, the 4-dimensional vector
means of simulations. The synthetic testbed is depictedgn Fcomposed by the user’s position and velocity ands a zero

2 and is ad0x 20 m open area where 5 APs are denoted by reflean white Gaussian process. In (22) the 4 matrix F is
circles and they emit a beacon signal with a constant perigéfined like

T. 1 7
The user’s state transition (18) F= ( 0 1 ) ©l2,

p(Xelxt ), k=1,2,..., having for simplicity introduced the identity matrix of order
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whereos? is the noise variance and multiplies all entries. The
initial statexy is drawn from a Multivariate Gaussian (MG)

prior distribution with diagonal covariance matrix; thastard T

deviations are set to 1 m for the position coordinates énd 0_;} =

0p,) and 0.1 m/s for the velocity components; ( anda; ). o ‘A AP4
We draw the independent parameter vallgsind«; for each

AP from two Gaussian distributions with known meahgand AP 3

ag, and diagonal covariance matrices; in all the simulations
the standard deviation of the Start!ng distributions anet.tse ig. 7. Experiment in a5 x 25 m office floor with 4 APs; notation and
on = 3 dBm ando, = 0.3, respectively, and 1000 particleSexperiment parameters are the same as in Fig. 5.
are employed.
The parameter hypothese$H:}, s = 1 : Ng, are
represented by all the couple§h;,«;} obtained by the (b)and in both cases we notice that after an initial trarishe
combinations of the values; from -50 dBm up to -30 dBm absolute errors clearly decrease; at the end of the sironlati
with step 1 dBm andy from 1.5 up to 3.5 with step 0.1.  the average absolute error is reduced by 60%-70% with respec
The black curves in both panels of Fig. 3 refer to they the maximum in both cases.
localization error achieved in the simulation scenario if. F
2. The RSS measurements have been generated with variance V. EXPERIMENTS
073 = 5 and the walk lastd( = 500 seconds at the pace of Two experiments have been carried out in different building
T.:. L's (that is 1 measurement per Secoﬁd)- We compute %Wd configurations in order to validate our algorithm. The
Minimum Mean Square Error (MMSE) estimator of the whol

traiect h MSE | 4 e 100 ind dent fiser's state model (18) is here provided by the output of a
rejectory, wnose WISt 1S averaged on= INAEPENTENt ¢45t-mounted IMU: the raw inertial measurements are fittere
realizations. For simplicity, we depict in our figures thetro

. . K . - . a ZUPT algorithm and the resulting step measurements are
MSE (RMSE), since its dimensions are in meters; in deta{y 9 g Step

. ) . ‘then used to sample the new user’s state [18], [19]. The RSS
panel (a) shows the localization RMSE against time Whllr% b [18], [19]

| (b ; i irical lative densitv fiorct easurements are collected by means of either a laptop or
Fgg?:)( ) reports on its empirical cumulative density fiowe a mobile phone. The use of an expensive and invasive foot

In th Fig. 3 d i th t of T mounted IMU is realistic in a professional application eli&
n the same Fig. > we draw two other Set of CUrves. r]5isaster Management scenario, but not for commercial mass-

redfde;sl?ed tljndes reff?rr1 to perfor;nanc_e of thle a|90;:thr_n r‘]"“market services; in the latter case it can be replaced by the
perfect knowledge of the parameters, 1.e., only one Nyhe; o ia| sensor available in most smartphones: their ingmy
is considered,Ns = 1, which corresponds to the value iil be a challenge to afford in the close future.

adopted n data generation. This case IS equwalgnt 10 aPPYrpe firgt experiment takes place in an office floor which is
the Sampling Importance Resampling (SIR) algorithm wher out 65 m long and 20 m wide, where the user walks for

,Tle s:?te bslpacg tlts dcomposed onl)étof tkgjebusers stgte [2 jout 3 minutes back and forth the hallways and some rooms.
S0 the biue dotted curves are ovtained by assuming ofyyq ger equipment is composed of a foot mounted IMU and a

one hypothesls, but the values here are the prior méans hand-held smartphone which logs the RSS measurements from
and ag. In this latter case the mismatch on the parametezisAIDS within a IEEE 802.11 (WiFi) b/g network; the process-
will be on the same order of magnitude as the prior pdf ' '

standard deviations, 3 dBm fdr and 0.3 fora. Although |%g has been done off-line. We notice that RSS measurements

h deviati t that | in Fig. 3 h1‘rom different APs are usually not synchronous and this is
such deviations are not that jarge, we can see In Fig. Acounted for in the algorithm by assigning dummy values

big the produced error can be, and in panel (a) we nolige yo \eightsri, of (20), for all 4, which refer to missing
that the blue curve diverges. On the other hand our propo asurementszhe parameter hypothelSes} , s = 1 : N

is very close to the red curve, since the model mismatch . . S ,
. . L ) e obtained by the combinations of the valugsfrom -
highly mitigated by the parameter estimation. This latter | y

explicitly reported in Fig. 4 for the same simulation: pane%6 dBm up to -30 dBm with step 2 dBm andfrom 1 up to 4
§

- S ith step 0.5. The standard deviation of the RSS measurement
(a) refers to the transmitted power estimation and shows P

: L set too, = 5 dBm.
average, maximum and minimum absolute effar ||, of the v

estimation within all 5 AP% The same is done far in panel Flg' 5 shows the layout of the testbeq W'th. thg AP's
locations (manually evaluated) and two trajectories: inebl

2The mean of the parameter pdf is used in the computation of tteaes (daShe_d "ne) the_ ground-truth and in red (Continuous "ne)
error. the trajectory estimated by our proposal. The ground-truth
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Fig. 8. Localization error in the experiment of Fig. 7, compgrbur proposal (black continuous lines), SIR with fixed paeters (red dashed lines) and
IMU’s based localization (blue dotted lines); we proposkgt(e localization error against time and (b) the empirical CDF

has been evaluated by means of FootSLAM, which is ky the APs.
Simultaneous Localization And Mapping (SLAM) algorithm Fig. 7 presents the second experiment, performed in another
based on the IMU only and presented in [19]; FootSLAMpffice environment about 45 m long and 25 m wide, with a
in this case run with as many @sx 10* particles, provides square hallway and 4 APs. The user walks about 7 minutes
trajectories within a sub-meter error, as the matching with - corresponding to 3 rounds in the hallway with visits to
map layout confirms. From a first inspection of the resulsome of the offices. In this case the RSS are collected by
we can point out two issues of interest. On the right side afhand-held laptop while the foot-mounted IMU is still used
the floor the estimation is very accurate, both in the hallwag obtain step measurements. In this scenario the resdts ar
and in the rooms, due to the proximity of the APs to theorse than in the first experiment, due especially to a little
trajectory, especially AP 3. On the left side of the floomotation in the estimated trajectory (red curve in Fig. 7¢ W
instead, localization suffers from the disposition of thBsA notice, however, that this setting is harder since, althodig
and the error increases. The black continuous curves in6FigAPs are still deployed, two APs - AP 2 and 3 - are located in
guantify the localization error - against time in panel (ajla the same position, thus reducing the area coverage ande abov
the corresponding CDF in panel (b). We can see that at thk signal diversity. However, the localization error dgpd
far ends of the walk, corresponding to the user walking in the Fig. 8 highlights a performance gain with respect to the
left part of the floor, the error grows up to 2 meters, while @lgorithm with fixed parameters - the error is below 2 meters
is much below 1 meter in the other case. In the same figume 80% of time.
we also depict the comparison with the result of two other
algorithms: the red dashed lines refer to the SIR algoritad f VI. CONCLUSION
with the average parameter values= 2 andh = —40 dBm,  we proposed a localization algorithm for indoor environ-
while the blue dotted curves refer to the algorithm WhiCthO&nents based on RSS measurements, which are modeled by
not make use of RSS measurements, but only of the IMUSeans of the path-loss model. The algorithm was developed
measurements. in the framework of Bayesian probability theory and acceunt
The algorithm with fixed parameters has a very unstabler the path-loss model calibration. In detail, we dealthwit
behavior, since the localization error alternates low ealto the transmitted power and the path-loss exponent, that are
4-meter-peaks, due to model mismatches. Changing the paually not known in real scenarios, at least with accuracy.
rameter values yields a different disposition of the ermals Our algorithm is able to gradually estimate such parameters
but does not improve the algorithm stability. Furthermordpgether with the user’s trajectory, without any previoasi-c
using only IMU’s step measurements brings to a drift in thieration phase.
localization error, as widely documented in the literat{irg], The theoretical Bayesian filter is implemented by means
[19] and, in our case, the error amounts already to 6-7 metefsa Rao-Blackwellized particle filter, where a state triosi
after 3 minutes. Nonetheless, using IMU to propose the sisemodel is assumed in order to propose the new user’s position
state has a strong impact in mitigating inaccuracy if the usend the RSS measurements are, then, used to weight the
walks a short time in a part of the floor that is not well coveregarticles. The path-loss parameters are defined in terms of a



probability distribution that is updated after each measwant. [16] Qing Zhang, Chuan Heng Foh, Boon-Chong Seet, and A. @gFo

This representation has two main benefits: onIy the usete st Variable elasticity spring-relaxation: improving the ay of localiza-
tion for WSNs with unknown path loss exponeRersonal Ubiquitous

is sampled, so the complexity of this operation is not relate  comput, 16(7), pages 929-941, October 2012.
to the presence of parameters, and, above all, the param@tgr H. Nurminen, J. Talvitie, S. Ali-Loytty, P. Muller, E. ltwn, R. Piche,

estimation is not point wise but it is gradually improved, and M. Renfors. Statistical path loss parameter estimatiah g
sitioning using RSS measurements in indoor wireless networks

related to th_e quantity of information ava|la_ble. This almi Indoor Positioning and Indoor Navigation (IPIN), 2012 Imetional
over-estimation issues and makes the algorithm robust. Conference onpages 1-9, 2012.

4ot ; ; ] E. Foxlin. Pedestrian tracking with shoe-mounted inégensors|IEEE
Validation of the proposed algorithm has been carried odf Comput. Graph. Appl 25(6), pages 38-46, 2005.

by means of both simulations and experiments. For the Jatt@k) M. Angermann and P. Robertson. FootSLAM: Pedestrian kimeous
two different buildings were employed and fusion with inert localization and mapping without exteroceptive sensorschhiking on

; _ ; human perception and cognitioRroceedings of the IEEELOO(Special
data derived from a foot-mounted IMU was also discussed. - 5" "2 lssue). pages 1840 —1848, 13 2012.

Future challenges follow mainly two directions. The formepo] B. Ristic, S. Arulampalam, and N. Gordoeyond the Kalman filter:
is represented by a better characterization of radio pmpa?z particle filters for tracking applicationsArtech House Publishers, 2004.
1]

. . . L " Y. Bar-Shalom, X.R. Li, and T. KirubarajanEstimation with Appli-
tion, above all in near field conditions, where the tradiion cations to Tracking and Navigation: Theory Algorithms armaft®are

path-loss model turns out to be increasingly inaccurate Th  John Wiley And Sons, 2001.
latter challenge is instead represented by three dimeaisiolg2] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. Aotial

. . . . . on particle filters for online nonlinear/non-Gaussian Bage tracking.
scenarios, which are not mere extensions of two dimensions, |eee"Trans. on Signal Processing0(2), pages 174-188, Feb 2002,

but offer different issues.
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