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Abstract—Conventional localization systems require the target
to carry a tag, which can be highly impractical for some
individuals, such as the elderly, or in some situations, such
as in emergencies. This requirement can be alleviated by an
emerging set of tagless or device-free localization systems, of
which Radio Tomographic Imaging (RTI) is a common example.
Most variations of this technique assume the use of radio
frequency (RF) signals in the 2.4 GHz band, or combinations
of lower frequencies with that band; however, using only lower
frequencies might decrease the power consumption and the
influence of the environment, and increase the range of the
system. We tested the combination of 433 MHz and 868 MHz
in a single RTI system. We studied two approaches to combine
the RTI images generated by one frequency with the other: an
approach based on literature and a newly developed approach
based on probability theory. This paper compares the result of
both approaches. We found that the result based on literature has
a root-mean-square error (RMSE) of 1.09 m, while our approach
has an RMSE of 0.54 m. While also improving the state-of-the-art
fusion of two frequencies, we proved the feasibility of combining
only frequencies under 1 GHz in an RTI system.

Index Terms—radio tomographic imaging, device-free localiza-
tion, sub-1 GHz frequencies, tagless localization

I. INTRODUCTION

Over the years, many different technologies for accurately
locating individuals or objects have been developed. Common
examples of such technologies are GPS, Wi-Fi, and active in-
frared [1]–[3]. Most of the systems applying these technologies
require their targets, the entities which are to be located, to
each carry an active hardware device, a ‘tag’. Presently, adap-
tive localization algorithms largely eliminate the need for these
tags to be specialized, dedicated hardware [4]. Nevertheless,
depending on the application, the requirement to carry a tag
can be highly impractical (e.g., people in danger who need to
be located quickly by emergency services) and might cause
the system to suffer from a lack of consumer acceptance. For
this reason, there has been a growing interest in localization
systems where the use of a tag is unnecessary: tagless or
device-free localization. These localization techniques rely on
the influence which the presence of the entities themselves has
on its environment.

Device-free localization within a clearly defined environ-
ment is comprised of three different aspects: detection, track-
ing and identification [5]. Detection refers to the ability of the

system to determine whether or not there are changes in the
environment and if so, how many separate entities are causing
these changes. Tracking refers to the tracking of the positions
of entities within the environment. The current possible loca-
tions of entities causing changes are determined. An entity is
tracked (a velocity and a sequence of positions of an entity
over a duration of time are estimated) based on a series of
location estimations (estimations of the location of an entity
at one time). Tracking can be performed for a single entity or
for multiple entities simultaneously (multi-tracking). Finally,
identification can be understood as determining the identity of
the detected and tracked entities. The term ‘identity’ is loosely
defined in this context and can refer to the size, shape, type
of the entity or to an actual identity of an individual. This is
one of the most difficult problems in device-free localization
and there has been very little research regarding this domain.

One highly interesting approach to tagless localization uti-
lizes the changes caused by an individual on a radio frequency
(RF) signal to infer their position. A big advantage of RF-
based localization techniques lies in the fact that RF signals
can easily pass through (non-metallic) walls. Companies like
Time Domain [6] and Camero Tech [7] have developed UWB-
based TTW-imaging products which transmit UWB-signals
and then measure echoes to estimate a range and bearing.
However, constructing a tagless localization system using these
highly complex products can be rather expensive. Additionally,
they tend to have noise and accuracy related problems at
long range [8]. Using a multitude of cheap low-capability
collaborating nodes which measure transmission rather than
scattering and reflection is a far more cost efficient solution.
These nodes are all capable of transmitting and/or receiving
wireless signals, thereby creating an entire network of links
that pass through the environment. Such a network is called an
RF sensor network. Due to multipath effects, a moving object
or individual standing in the Line-of-Sight (LoS) of a link
between two nodes will cause the characteristics of the link
to change. Based on the nature of these changes, the moving
entity can be located and tracked. Because each link between
two RF sensors measures a section of the environment space,
techniques based on this principle are called tomographic
techniques.

One such technique based on the use of a tomographic
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RF sensor network consists of estimating an image of the
changes in environment based on the Received Signal Strength
(RSS) of each link. This is called Radio Tomographic Imaging
(RTI) [9]. Several different variations of RTI exist, rang-
ing from basic localization techniques based on expected
shadowing loss [10] to fully-fledged systems incorporating
advanced multi-tracking algorithms [11] and multi-channel
approaches [12].

In nearly all existing RTI systems, the 2.4 GHz frequency
band is used [10]–[12]. It is only recently that interest has
been shown in the use of other frequencies. An adaptation of
the original RTI algorithm for the 800/900 MHz band is made
in [13]. In [14], 868 MHz and 2.4 GHz are combined in a
single RTI system. A 433 MHz RTI system is combined with
a tagged RSS based trilateration localization method in [15].

We constructed and implemented a multi-frequency RTI
system using 433 MHz and 868 MHz in an open indoor envi-
ronment of 60 m2. RTI images are created when an individual
is present in the environment. This is done separately for each
frequency. Next, we combine the two images in two ways:
one based on literature [14], and a new approach based on
probability theory. We compare the positioning results of the
two techniques.

The remainder of this paper is organized as follows. The
basic concept of RTI and several RTI variations are described
in Section 2. Section 3 contains the methodology used in the
construction of the RTI system and the analysis of the resulting
images. Section 4 shows and discusses the results of our
experiments with the multi-frequency system. In Section 5, we
show possible interesting future research directions regarding
RTI and present a conclusion for the research in this paper.

II. RADIO TOMOGRAPHIC IMAGING

Radio Tomographic Imaging (RTI) is a tagless localization
technique which estimates an image representing changes
occurring in an environment. These estimations are based on
the RSS values of each link in a tomographic RF sensor
network. The basic principle of an RTI measurement model is
as follows [8]–[10]:

First, an environment containing an RF sensor network
is defined. This environment is divided into N number of
pixels. Next, a vector y of size M is defined, containing all
RSS measurements for every link in the RF sensor network.
Another vector x is also defined, containing the likelihood of
whether a moving object is present, for every pixel. During
the following step, a weighting matrix W of dimension M x
N is defined with each column representing a single pixel and
each row describing the weighting of each pixel for that link.
With n representing noise, vector y can then be described as:

y =Wx + n (1)

The goal of RTI is to approximate this vector x, which
represents the desired attenuation image. Pixels in which
strong attenuation is present are likely to contain individuals.
There are many different ways to accomplish this. In the next

sections, several important aspects and different types of RTI
models will be discussed.

A. Regularization

Trying to solve the equation in the previous paragraph for
vector x is an ill-posed inverse problem. A single, unique
solution does not exist. If we approximate x by calculating
the least squares solution, the noise n is amplified to such
a degree that the result becomes essentially meaningless.
Therefore, regularization (introducing additional information
to the model in order to stabilize the problem) is necessary.
Possible regularization methods for RTI are discussed in [16].
The chosen regularization method has a large impact on the
smoothness of the resulting tomographic image.

B. Shadowing-based RTI

A basic, linear RTI model is presented in [9] and [10].
It is also called shadowing-based RTI [8]. Vector y contains
a list of differences between the averaging of several initial
calibration measurements (performed when no moving entities
were present in the environment) and live measurements taken
when the system is active. A Maximum A Posteriori (MAP)
formulation is used when trying to determine x. This leads to
the following formula:

xMAP = (WTW + C−1
x σ2

Noise)
−1WT y (2)

where W is an M x N (with M : total number of links, N :
total number of pixels) weighting matrix which describes the
attenuation impact of every pixel for every link. The value
of each element of W is given by Wij = 1/

√
di (with di

= distance between the nodes comprising link i, expressed
in number of pixels) provided that the pixel lies within an
ellipse with foci at the node locations for that link. The width
of this ellipse is described by a constant parameter λ. It is
strongly influenced by the size of the first few Fresnel zones
of the links. Cx is an a priori N x N (N : number of pixels)
covariance matrix, based on the initial assumption that x is
a zero-mean Gaussian random field. It is created using an
exponential spatial decay:

[Cx]kl = σ2
x ∗ e−dkl/δc (3)

where dkl is the distance between pixels k and l, δc is
a space constant which determines the smoothness of the
resulting image and σ2

x is the variance at each pixel. This
matrix is responsible for regularization. The vector y contains
all of the differences between the current link strengths and
previous calibration measurements. The desired attenuation
image vector is xMAP , the value of each element of this
vector being expressed in dB. Finally, σ2

Noise represent noise-
variance. Usually, the noise is Gaussian.

Experimental results indicate accurate localization of two
separate moving entities. These experiments took place in a
4.27 m by 4.27 m, mostly empty environment. It is represented
by 25 x 25 pixels using an RF sensor network of 28 nodes [9].

In our experiments, we only use simple shadowing-based
RTI. The focus of this project lies in the research of the
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changing characteristics of RF links of different frequencies
when a human target is present, not in the simulation of an
advanced RTI system.

C. Variance-based RTI

One important disadvantage of shadowing-based RTI lies in
its assumption that a moving entity blocking the LoS path of a
link will simply cause a decrease of the RSS value for that link.
Due to multipath effects, this is not always the case, especially
for links that cross one or multiple indoor walls. As a result of
this faulty assumption, accurate shadowing-based through-wall
imaging in cluttered environments is almost impossible.

Instead of considering y to be a vector consisting of
differences between calibration measurements and current
measurements, Variance-based RTI (VRTI) uses the windowed
variance of each link’s RSS values [17]. An additional advan-
tage of this approach lies in the fact that initial calibration
measurements are no longer necessary. This makes VRTI
well suited for emergency applications like hostage situations
or building fires where the police or emergency workers
quickly need to be aware of moving entities in an unknown
environment.

When this technique is combined with a Kalman filter,
experimental results show an error margin between 1 and 2
meter when tracking a single individual. These results are
acquired within a building that is part of an environment of
size 9.1 m by 9.1 m [17].

D. Channel Diversity

A possible way to improve the accuracy of RTI systems, is
to make use of different channels within the RF sensor network
which the RTI system utilizes. It is important to note that
this differs from the use of multiple frequency bands, as each
channel still lies within the same band. In [12], a technique
is proposed in which multiple channels in an RTI system
are sorted based on fade level. Links in a deep fade are not
considered to be reliable indicators of the presence of an entity
in the LoS of the link. Anti-fade links are much more desirable.
By utilizing multiple channels at the same time, more links in
general and consequently more links in anti-fade are created,
which improves the accuracy of the system. Interestingly,
through-wall motion tracking with a simple attenuation based
RTI system in a cluttered environment becomes possible once
multiple channels are used [12].

E. Multiple Frequencies

As stated earlier, the vast majority of Radio Tomographic
Imaging systems only utilize the 2.4 GHz frequency band.
One of the first adaptations of RTI for use in other bands was
made in [13]. In their research, they describe the potential
advantages of the use of sub-1 GHz frequencies and construct
an 868 MHz RTI system. This system achieved a maximum
average localisation error below 78 cm in a 5 m x 5 m open
indoor environment. In [14], an RTI system is demonstrated
which combines 2.4 GHz and 868 MHz in a complex office
environment. When comparing the estimated positions to the

actual positions, an RMSE of 26 cm was obtained. A combi-
nation of a tagged RSS based trilateration localization method
and a 433 MHz RTI system is described in [15]. A positioning
error below 1 m was obtained in 90% of all cases in a 4 m x 4
m indoor environment. A major advantage of using sub-1 GHz
frequencies in RTI are the possibility of constructing a more
energy-efficient design. Additionally, the effects of reflections
and multi-path propagation are lessened, which can lead to
a more accurate localization in some complex environments.
This can clearly be seen in [14], where a single-frequency 868
MHz configuration obtained more accurate results than the 2.4
GHz configuration due to the complexity of the environment.
Furthermore, the use of lower frequencies can lead to a larger
range and therefore increases the size of the environments in
which an RTI system can be deployed. An important downside,
however, is the fact that the attenuation caused by human
presence in the environment is considerably lower. Depending
on the complexity of the environment, this can negatively
impact the accuracy rather strongly. In regular environments, a
2.4 GHz implementation will nearly always be more accurate.

III. METHODOLOGY

A. Initial Experiment

The very first step of our research consists of empirically
verifying the suitability of 433 and 868 MHz for use in RTI
with a simple experiment. In this experiment, we investigate
the impact that the presence of an individual has on a single
link for both 433 and 868 MHz.

We construct our setup in the middle of an empty outdoor
football field. Two Silicon Labs WSTK6200 development
board paired with an EZR32 Leopard Gecko radio board [18]
are set up at a height of 1 m at a distance of 7 m from each
other. They are both equipped with a sub-1 GHz antenna and
used to represent nodes in a real RTI system. The modules
communicate with each other using the DASH7 Alliance
Protocol (D7AP), a low power open wireless sensor and
actuator network standard which can communicate on the 433,
868, and 915 MHz bands [19].

One of the two nodes is connected to a computer with an
FTDI-cable. When a button is pressed on this node, it sends a
packet to the other node. The other node receives the packet
and sends a response containing the RSS value with which
it was received. The first node receives and sends both the
RSS value inside the packet as the RSS value with which it
received the packet to the computer. The average of these two
values is calculated in order to obtain an RSS value for the
link. This entire process is then automatically repeated for the
other frequency band.

We measured the RSS value once a person was present
in the LoS and close to it. The person stood at six different
locations within the LoS and at one, two, and three meters
distance from it. We also measured the RSS values when no
one was present as calibration measurements. The difference
between the measurements with a person and the calibration
measurements are shown in Figure 1. The dotted lines repre-
sent the first five Fresnel zones. It is important to note that
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(a) 433 MHz

(b) 868 MHz

Fig. 1. Attenuation of the 433 MHz and 868 MHz communication links
when an individual is located within the environment. The color of each circle
indicates the link attenuation when an individual is present in that location.
A negative attenuation indicates amplification. Data is mirrored on one side.

measurements were taken for human presence on only one
side of the link. Theoretically, this should not matter in an
ideal environment, therefore the data in this figure is mirrored
on one side for clarity. For 868 MHz, there is a large amount
of attenuation when an individual is standing in the line-of-
sight. The impact the subject has on the RSSI value of the
link also clearly reduces as they move further away from the
link. However, due to the fact that this human presence often
overlaps multiple Fresnel zones, it is not possible to simply
determine for any given position whether human presence will
cause the power to increase or decrease based on whether they
are standing in an odd or even numbered Fresnel zone [20].
Nevertheless, the use of 868 MHz in RTI is clearly possible.

For 433 MHz, the attenuation is considerably smaller in the
line-of-sight. Human presence can also influence the link value

Fig. 2. Schematic overview of the environment. Green circles indicate node
locations, blue diamonds indicate training locations and black squares indicate
test locations.

from farther away, increasing the total amount of noise, from
the point of view of an RTI system. This matches theoretical
predictions, due the fact that the larger wavelength leads to
larger Fresnel zones. Still, we consider the LoS attenuation to
be sufficient for use of the frequency band in RTI. It does,
however, either need to be used in combination with another
system or frequency and/or be utilized in an environment with
a very large link density. This is indeed the case in [15].

B. Construction of a Multi-Frequency Tomographic Sensor
Network

All available nodes are used in the multi-frequency tomo-
graphic network we construct. It consists of 20 transceiver
nodes. Just as in the experiment mentioned in the previous
section, each node communicates using the DASH7-standard
and consists of a Silicon Labs WSTK6200 development
board paired with an EZR32 Leopard Gecko radio board.
A schematic of the network as it will be installed in the
environment is presented in Figure 2.

Essentially, the communication schedule which is used in
the network is partially based on the timed-token passing
protocol described in [21] and [14] with some added features
in order to improve the flexibility of the system and incorporate
the possibility of switching between frequencies on a single
piece of hardware. Functionally speaking, there are two types
of nodes: one sub-controller and a set of regular nodes. The
sub-controller regulates the network and passes on the RSS
data to the computer on which the RTI algorithm will be run.
A node only has to broadcast a so-called RTI message to the
entire network once it receives a message from the previous
node.

The steps for setting up the network are described in the
following paragraphs.

First, a sub-controller is placed in the environment and
connected to a computer. On start-up, the sub-controller is
in configuration mode. It is ready to receive all requests from
nodes to join the RTI network.
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Second, the regular RTI nodes are placed in the environment
and powered. They can then be instructed with a button
press to broadcast a ‘Join Network’ packet to a potential
sub-controller within range. All communication related to the
configuration of the network is performed in the 433 MHz
frequency band.

Third, if the sub-controller receives a ‘Join Network’ packet,
it increases an internal network size counter by one and re-
sponds to the node with a ‘Join Network Response’ containing
a node number. This number determines the order in which
the nodes will sent during a scan cycle. The sub-controller is
considered to have node number 0.

The sub-controller can now be instructed to begin the scan
cycles by way of a button press. It switches to RTI mode
and broadcasts its first RTI message packet on the 433 MHz
frequency band. Once the sub-controller is in RTI mode, the
communication schedule is as follows.

First, the RTI packet is received by all nodes in the network.
Each node saves the RSS value with which it received the
message in an RSS list. Every node updates its RSS list for
each RTI message it receives. It contains the RSS values of
the last message that was received from all other nodes in the
network. If an RTI message is received from a new node for
the first time, the size of the list increases.

Second, because the packet that was received by node 1 was
sent by node 0 (the sub-controller), it is now node 1’s turn to
broadcast an RTI packet. Once node 2 receives this packet, it
knows that it is his turn to send, and so on. The maximum
time between node 1 and node 2 sending is 25 ms. The RTI
packets send by the regular nodes contain the entire RSS list
of that node. When the sub-controller receives these packets, it
does not only merely update its own RSS list like the regular
nodes, but also saves this data in an RSS matrix. This matrix
contains all RSS data from every node in the network.

Third, once the final node in the network has sent an RTI
packet, the sub-controller updates the RSS matrix once more.
Afterwards, it sends this RSS matrix over the UART to the
computer it is connected to. In a real-time RTI system, this data
is directly used as input to an RTI algorithm that is running
on this computer. In our experiments, the data is saved to a
file which is analyzed at a later time.

Fourth, the sub-controller broadcasts a ‘Band Switch’ mes-
sage. The nodes receive this message and switch to 868 MHz.
The cycle then begins again. The nodes and the sub-controller
use separate lists and matrices for each frequency band.

Finally, with another button press, the sub-controller can go
back to configuration mode. If the sub-controller receives RTI
messages while in this mode (which occurs because the button
will most likely be pressed in the middle of a scan cycle), it
saves the data in the RSS matrix as usual. Once the last node
in the network has sent its packet, the sub-controller sends out
one final RTI message containing a special value informing all
of the nodes that this is the last cycle. After the last node has
broadcast its RTI packet, all communication ceases and new
nodes can once again be added to the network.

It is sometimes possible that a packet is not received by a
network node. Systems are in place to deal with the following
two cases:

1) If a regular node fails to receive an RTI message from
the previous node, the network grinds to a halt. Every
node will be waiting for a message from its previous
node, but no new packets will be sent. After a certain
amount of time t has passed, the sub-controller will
notice that it has not received any RTI messages. It will
then decide to skip this scan cycle entirely, sent a ‘Band
Switch’ packet and start anew.

2) If a regular node fails to receive an RTI message from a
node that is not the previous node in between the time
of the node sending during scan cycle i and sending
during scan cycle i + 1, it changes the value for that
node in its RSS list to 0. In doing so, the responsibility
for handling these cases is passed to the RTI algorithm
running on the computer.

It is important to note that all of the data in a single RSS
matrix is not collected at the exact same time. During scan
cycle i, node 1 will transmit a list with RSS values which
have mostly been collected during scan cycle i − 1 (for that
frequency). The sole exception is the value pertaining to node
0, which was collected during the most recent cycle. For node
2 the same principle applies, with the values for all nodes
except for node 0 and node 1 having been collected during
the previous scan cycle. This could lead to a possible slight
increase in position estimation error.

C. RTI algorithm

When analyzing an RSS matrix, the first step always con-
sists of averaging the two corresponding RSS values of two
nodes comprising a single link and doing so for each link. This
results in a vector containing the RSS value of all links. If one
of the 2 RSS values is equal to zero, meaning that there was no
two-way communication during this scan cycle, the other value
is used. If both values are equal to zero, no communication has
taken place between those two nodes, leading to one less link
in the environment. As this occurs only very sporadically in
our setup, RSS matrices containing one or more missing links
are discarded. As stated earlier, in this paper we implement a
basic shadowing-based RTI system.

Multiple measurements are performed in an empty envi-
ronment, which are then averaged to be used as calibration
data. The differences for each link between live measurements
and the calibration data are collected in a vector y which is
then plugged into the formula given in (2). This results in the
creation of an image vector which represents the attenuation
occurring in each pixel. All of these steps are performed
separately for 433 MHz and 868 MHz data, leading to two
different images.

D. Combining RTI images

The main goal of this research is to investigate the possi-
bilities of combining two sub-1 GHz frequencies in a single
RTI system. Therefore, we must find a way to combine the
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information obtained from both 433 and 868 MHz. In [14], a
method is proposed in which the results for 2.4 GHz and 868
MHz are simply added. This methodology assumes, however,
that the attenuation influence of an obstacle follows the same
pattern regardless of frequency. Due to the differently sized
Fresnel zones, this is clearly not the case. We propose a second
method which transforms an image vector into a probability
vector, with each element representing the probability that
someone is present in the corresponding location. We then
calculate the point-wise product of these vectors in order to
obtain a combined vector.

By applying Bayes’ theorem, we can express the probability
of an entity being present for each pixel as:

P (Ai | xi) =
P (xi | Ai)P (Ai)

P (xi | Ai)P (Ai) + P (xi | Ai)P (Ai)
(4)

where P (Ai | xi) represents the probability of an entity being
present at pixel xi. P (xi | Ai) is the likelihood of the value xi
given that someone is present. P (Ai) represents the a priori
probability that an individual is present at a certain pixel,
regardless of xMAP values.

In order to determine the value of P (xi | Ai) and P (xi |
Ai), extra training steps besides the initial calibration are
necessary. We perform measurements for when an individual
is present in a number of training locations in our environment
and apply all the regular steps of shadowing-based RTI until
we obtain a series of RTI images. Next, we take the values
of all pixels in these RTI images which lie within a certain
radius r of the true locations of the individuals and calculate
a normal distribution. The probability density function of
this distribution represents P (xi | Ai). Similarly, a normal
distribution is fitted to the values of all pixels which lie outside
a radius r of the true locations. This leads to P (xi | Ai).
P (Ai) is determined empirically. An interesting future

research topic would be to investigate the possibility of a live
RTI system dynamically changing this parameter based on how
often it detected the presence of one or more individuals. This
lies beyond the scope of this paper, however.

Both the additive method as well as the method based on
probability will be performed and the results will be compared.

E. Positioning

Once we have obtained an RTI image which combines the
results from both frequencies, we can move on to the final
step: determining the number and estimating the locations of
individuals present in the environment. A weighted centroid-
based approach is used in combination with a threshold. This
approach is based slightly on the positioning procedure with
proximity scans proposed in [22].

First, a threshold is applied to the entire RTI image. This
threshold is calculated according to the following formula:

T = λ ∗max(x) (5)

With x being the whole RTI image and λ an empirically deter-
mined parameter. Next, the weighted centroids are calculated
of the still remaining connected components whose size is

Fig. 3. Photograph of the environment

equal to or larger than a second threshold t. This threshold is
also determined empirically. The coordinates of these centroids
are considered by the system to be the location of individuals
present in the environment.

IV. RESULTS

We construct the tomographic sensor network described in
Section 3 in an open indoor classroom environment of size
10 m x 6 m. All 20 nodes are distributed along the edge of
the environment wherever feasible. Additionally, we select 26
locations where an individual will be present. We want to use
approximately 60% of these positions as training data for our
probabilistic model. As a result, 16 locations are randomly
selected to be used for this purpose. The accuracy of our
localization system will be assessed by using the remaining
10 locations as test data. All of these locations are indicated
in Figure 2. A photograph of the environment is presented
in Figure 3. First, we generate RTI images for all of our
test locations and both of our frequencies. In Figure 4, two
433 MHz image vectors and two 868 MHz image vectors are
shown. By themselves, the 433 MHz RTI images do not appear
to be appropriate for use in localization. Attenuations near
the actual locations are fairly low and many local maximums
are far removed from the correct positions. 868 MHz fares
somewhat better, as in (b) the largest attenuations are clustered
around the correct location. However, the image vector in (d)
appears to suffer from the same problems as the 433 MHz
images. From a purely visual point of view, we can already
see the benefits that combining these images would bring. The
local maximums in (c) and (d) are spread out throughout the
images, but match for both frequencies at the correct location.

In our next step, we combine the RTI images. As stated
earlier, we do so for two different methods: an addition-
based method and a probabilistic method. Figure 5 shows
the combined RTI images for the same locations as those
presented in Figure 4.

The probabilistic approach looks to be quite successful, as
the remaining clusters all encapsulate or are very close to the
actual location. For the addition-based method quite a few
clusters still remain, although in both (a) and (b) the clusters
containing the pixels with the largest attenuation are also very
close to the correct positions.

Our final step consists of applying our weighted centroid-
based positioning method in order to obtain an actual location.
Results are shown in Figure 6. In all cases, the estimated
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(a) RTI - 433 MHz (b) RTI - 868 MHz

(c) RTI - 433 MHz (d) RTI - 868 MHz

Fig. 4. RTI images for 433 and 868 MHz. Actual locations are indicated by
the black diamond. Pixel values in dB.

TABLE I
ERROR STATISTICS FOR POSITION ESTIMATION USING 33 DATA SETS

false false
RMSE [m] negatives positives

868 MHz 2.325 0 9
433/868 MHz Addition 1.093 0 6
433/868 MHz Probabilistic 0.544 1 0

position appears to be remarkably close to the actual location.
In (b), we can see that two clusters exist after image-wide
thresholding was applied, but due to the small size of one of
the clusters, this was correctly ignored.

We perform the aforementioned steps in all 11 locations
with data that was collected during 3 different scan cycles.
This means that this localization technique is evaluated based
on 33 data sets. We compare a single-frequency 868 MHz
approach, a multi-frequency approach based on the addition
method and a multi-frequency approach based on our proba-
bilistic model. Error statistics are presented in table I.

All experiments are performed for one individual present in
the environment. If the positioning system faultily detects an
empty environment, it is counted as a false negative. If more
than one individual is detected, it is considered to be a false
positive. The RMSE is calculated for those cases in which the
amount of individuals present is estimated correctly.

It appears that the use of the probabilistic method clearly

(a) RTI - Combined - Addition-
based method

(b) RTI - Combined - Addition-
based method

(c) RTI - Combined - Proba-
bilistic method

(d) RTI - Combined - Proba-
bilistic method

Fig. 5. Combined RTI images. Actual locations are indicated by the black
diamond. Pixel values for non-probabilistic images in dB.

leads to the lowest RMSE and number of false positives,
although it is slightly more vulnerable to false negatives. This
is due to the fact that our probabilistic approach essentially
consists of a multiplication of probabilities. If one of the two
probability vectors assigns a very low probability to the actual
location, a possibly good result from the other vector is utterly
negated. Fortunately, this appears to occur only rarely.

The most important problem with the addition-based (and
the single-frequency) method is the large amount of false
positives. In the previously shown RTI figures, it was already
made clear that correct thresholding was necessary to eliminate
the large amounts of clusters that still remained. The same
problem leads to the larger RMSE-values when compared to
the probabilistic method, as in some cases the clusters around
the actual location are filtered away, while nearby clusters
remain.

V. CONCLUSION & FUTURE WORK

We have successfully managed to construct a fully fledged
multi-frequency RTI system which combines two sub-1 GHz
frequency bands. The system is accurate, with an RMS posi-
tioning error of 0.54 m compared to 1.09 m of a state-of-the-art
method, when implemented in an open indoor environment of
size 10 m x 6 m. These results confirm that an accurate RTI
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(a) RTI - Combined - Addition-
based method

(b) RTI - Combined - Addition-
based method

(c) RTI - Combined - Proba-
bilistic method

(d) RTI - Combined - Proba-
bilistic method

Fig. 6. Combined RTI images after positioning. Actual locations are indicated
by the black diamond. Pixel values for non-probabilistic images in dB.

system which utilizes only sub-1 GHz frequencies is possible.
While the use of 433 MHz in a single frequency system is
very difficult unless a large amount of nodes is used, here
it was successfully used in combination with 868 MHz. Our
best results were obtained by combining the separate RTI
images for each frequency using a probabilistic model, which
significantly outperformed an addition based approach. The
probabilistic model was slightly more susceptible to false neg-
atives, however. This is a problem that will likely worsen when
the system is implemented in more complex environments, and
certainly bears looking into for future research.

One of the main advantages of the use of sub-1 GHz
frequencies is the increased range. Currently, we are looking
into the feasibility of a sub-1 GHz RTI system in a large
scale, outdoor environment. The primary focus here will lie
on using RTI principles to estimate the amount of individuals
present in the environment, not on outright localization. The
knowledge gained in these experiments will eventually be used
to improve multi-tracking with RTI in general and to quantify
the relationship between environment size, system accuracy
and the amount of RTI nodes that are present.

ACKNOWLEDGEMENT

Part of this work has been funded by the iFest project,
cofunded by iMinds and VLAIO.

REFERENCES

[1] J. Paek, J. Kim, and R. Govindan, “Energy-efficient rate-adaptive gps-
based positioning for smartphones,” in Proceedings of the 8th interna-
tional conference on Mobile systems, applications, and services. ACM,
2010, pp. 299–314.

[2] E. C. Chan, G. Baciu, and S. Mak, “Using wi-fi signal strength to
localize in wireless sensor networks,” in Communications and Mobile
Computing, 2009. CMC’09. WRI International Conference on, vol. 1.
IEEE, 2009, pp. 538–542.

[3] N. Bulusu, J. Heidemann, and D. Estrin, “Gps-less low-cost outdoor
localization for very small devices,” Personal Communications, IEEE,
vol. 7, no. 5, pp. 28–34, 2000.

[4] M. Weyn, “Opportunistic seamless localization,” PhD, Universiteit
Antwerpen, pp. 58–64, 2011.

[5] M. Youssef, M. Mah, and A. Agrawala, “Challenges: device-free passive
localization for wireless environments,” in Proceedings of the 13th
annual ACM international conference on Mobile computing and net-
working. ACM, 2007, pp. 222–229.

[6] “Time Domain Corporation,” "http://www.timedomain.com/", Page re-
trieved on 11/07/2016.

[7] “Camero Tech,” "http://www.camero-tech.com/", Page retrieved on
11/07/2016.

[8] A. J. Wilson, “Device-free localization with received signal strength
measurements in wireless networks,” Ph.D. dissertation, The University
of Utah, 2010.

[9] J. Wilson and N. Patwari, “Radio tomographic imaging with wireless
networks,” University of Utah, Tech. Rep.

[10] ——, “Radio tomographic imaging with wireless networks,” Mobile
Computing, IEEE Transactions on, vol. 9, no. 5, pp. 621–632, 2010.

[11] M. Bocca, O. Kaltiokallio, N. Patwari, and S. Venkatasubramanian,
“Multiple target tracking with rf sensor networks,” Mobile Computing,
IEEE Transactions on, vol. 13, no. 8, pp. 1787–1800, 2014.

[12] O. Kaltiokallio, M. Bocca, and N. Patwari, “Enhancing the accuracy of
radio tomographic imaging using channel diversity,” in Mobile Adhoc
and Sensor Systems (MASS), 2012 IEEE 9th International Conference
on. IEEE, 2012, pp. 254–262.

[13] S. Adler, S. Schmitt, and M. Kyas, “Device-free indoor localisation using
radio tomography imaging in 800/900 mhz band,” in Indoor Position-
ing and Indoor Navigation (IPIN), 2014 International Conference on.
IEEE, 2014, pp. 544–553.

[14] A. Fink, T. Ritt, and H. Beikirch, “Redundant radio tomographic imaging
for privacy-aware indoor user localization,” in Indoor Positioning and
Indoor Navigation (IPIN), 2015 International Conference on. IEEE,
2015, pp. 1–7.

[15] A. Jimenez and F. Seco, “Combining rss-based trilateration methods with
radio-tomographic imaging: Exploring the capabilities of long-range rfid
systems,” in Indoor Positioning and Indoor Navigation (IPIN), 2015
International Conference on. IEEE, 2015, pp. 1–10.

[16] J. Wilson, N. Patwari, and F. G. Vasquez, “Regularization methods
for radio tomographic imaging,” in 2009 Virginia Tech Symposium on
Wireless Personal Communications. Citeseer, 2009.

[17] J. Wilson and N. Patwari, “See-through walls: Motion tracking using
variance-based radio tomography networks,” Mobile Computing, IEEE
Transactions on, vol. 10, no. 5, pp. 612–621, 2011.

[18] User Manual EZR32LG 868MHz Wireless Starter Kit, 1st ed., Silicon
Labs.

[19] M. Weyn, G. Ergeerts, R. Berkvens, B. Wojciechowski, and Y. Tabakov,
“Dash7 alliance protocol 1.0: Low-power, mid-range sensor and actuator
communication,” in Standards for Communications and Networking
(CSCN), 2015 IEEE Conference on. IEEE, 2015, pp. 54–59.

[20] P. Modes, “Basics of radio wave propagation,” 2006.
[21] S. Savazzi, M. Nicoli, and M. Riva, “Radio imaging by cooperative

wireless network: Localization algorithms and experiments,” in Wireless
Communications and Networking Conference (WCNC), 2012 IEEE.
IEEE, 2012, pp. 2357–2361.

[22] B. Wagner, T. Ritt, and D. Timmermann, “Multiple user recognition with
passive rfid tomography,” in Positioning, Navigation and Communication
(WPNC), 2014 11th Workshop on. IEEE, 2014, pp. 1–6.


