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Abstract—Many infrastructure-free indoor positioning systems
rely on fine-grained location-dependent fingerprints to train
models for localization. The site survey process to collect fin-
gerprints is laborious and is considered one of the major
obstacles to deploying such systems. In this paper, we propose
TuRF, a fast path-based fingerprint collection mechanism for
site survey. We demonstrate the feasibility to collect fingerprints
for indoor localization during walking along predefined paths.
A step counter is utilized to accommodate the variations in
walking speed. Approximate location labels inferred from the
steps are then used to train a Gaussian Process regression model.
Extensive experiments show that TuRF can significantly reduce
the required time for site survey, without compromising the
localization performance.

I. INTRODUCTION

Despite the fact that people spend majority of their time
indoor, indoor positioning systems (IPS) only have limited
success due to the lack of pervasive infrastructural support,
and the desire to keep user devices as simple as possible.
One major category of indoor localization solutions utilize
location-dependent fingerprints (e.g. received signal strength
(RSS) of WiFi, magnetic, luminous conditions.) to estimate
indoor locations [1], [2], [3]. Generally, these methods work
in two stages: training and operational stages. In the training
stage, comprehensive site survey is conducted to record the
fingerprints at targeted locations. In the operational stage,
when a user submits a location query with her current finger-
prints, a localization server computes and returns the estimated
location.

Site survey for fingerprint-based localization is a laborious
process and needs to be done repeatedly in case of changes
in the environment and infrastructure. Take the authors’ work
space as an example. The area of the main corridor is about
500m2. If the area is divided into 1.2m× 1.2m grids, and 1
minute is spent per grid point – a very conservative estimate
for WiFi fingerprints, the whole process takes about 4.5 hours.
This has not taken into account the amount of time to measure
and mark the grid point locations. To expedite the site survey
process, several researchers have proposed to leverage mobile
crowdsensing to collect location-dependent fingerprints [4],
[1]. While this approach is attractive, it suffers from the
problems of noisy data, poor coverage and possibly frauds [5].

The first two authors made equal contributions to the work.

In this work, we develop TuRF, a fast fingerprint collection
method, where users walk along predefined paths and record
fingerprints using mobile phones. User locations along the
paths are inferred through step counting to accommodate vari-
ations in walking speed. In contrast to traditional approaches
that take multiple WiFi scans1 at selected locations and use the
average RSS values to train a regression model, we show that
instantaneous RSS values collected at moderate walking speed
can in fact be utilized to achieve comparable performance with
significantly less time needed. We adopt Gaussian Process
(GP) to train models for localization. Since the RSSes of
different access points are observed at different locations
during walking, the Gaussian process regression model for
each access point is trained separately and merged afterwards
for localization. Magnetic fingerprints are further incorporated
to improve localization accuracy. Real world experiments
show that the proposed path-based data collection method
can be 9 times faster than traditional point-based method,
without compromising the localization performance. Our main
contributions are thus two-fold:
• A fast fingerprint collection mechanism for indoor local-

ization: We propose a path-based mechanism to acceler-
ate site survey. Step counting is utilized to accommodate
the variations in walking speed. To make full use of
fingerprints collected during walking, GP is employed to
train a regression model for each access point separately.
Maximum Likelihood Estimation method is then adopted
for location estimation in the online phase.

• A walking speed recommendation for path-based fin-
gerprint collection: The selection of walking speed is
an important operation parameter. Walking too slowly
lengthens the site survey time; walking too fast, on the
other hand, results in insufficient training data. From
extensive experiments, we come up with guidelines on
selecting a proper walking speed.

The rest of this paper is organized as follows. A summary of
the related work is given in Section II. In Section III we give a
high level overview of the proposed solution approach. Details
are provided on the mechanism for fast data collection and
regression model training in Section IV. Experimental results

1One scan is defined as collecting the RSS data from all visible access
points at one location.
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are presented in Section V. Finally, we conclude the paper and
outline a list of future work in Section VI.

II. RELATED WORK

Indoor positioning has received much attention in recent
years. Existing solutions mainly fall into two categories:
infrastructure-free and infrastructure-based. Infrastructure-
based solutions need additional infrastructure support (e.g.
ultra-wild-band (UWB), acoustic, Blue-tooth). These addi-
tional infrastructures can be used to infer range [6],pseudo-
range [7], angle-of-arrival [8], or proximity [9] information
to target devices. However, these approaches either require
modification to end user devices, costly infrastructure or
fail to achieve satisfactory positioning accuracy. In contrast,
infrastructure-free solutions that use existing signal sources in
indoor environments (e.g. magnetic, luminous conditions) or
sensors on user devices do not require deploying additional
infrastructure. Among various infrastructure-free indoor local-
ization solutions, Pedestrian Dead Reckoning (PDR) based and
Fingerprint based are the two major categories. A comprehen-
sive survey on PDR can be found in [10]. Most PDR-based IPS
utilize the same basic modules i) step counting, ii) stride length
estimation, and iii) heading estimation. In TuRF, step counting
is employed to accommodate the variations in walking speed.

In fingerprint-based IPS, although all location-dependent
environmental measures can be utilized as fingerprints, mag-
netic field magnitudes and WiFi RSSes are most often used.
Traditionally, magnetic field measurements are used for head-
ing estimation. Magnetic field anomalies caused by building
materials and magnetic interference from machinery and IT
equipment make them unsuitable for heading but attractive
for fingerprinting or landmark identification [11], [12]. Special
devices have been developed to utilize magnetic field for
small range indoor navigation [12]. In general, magnetic field
vectors are not unique in a large area, but can be used to
differentiate different locations in a small area. As a result,
recent studies [11], [13] combine WiFi RSSes and magnetic
field measurements for indoor localization. Moreover, mag-
netic field readings have been shown to reduce the searching
space in fingerprint based indoor localization [13].

WiFi Access Points (APs) are prevalent in indoor environ-
ments. Due to the difficulty in acquiring fine-grained synchro-
nization and extract timing information, WiFi RSSes are more
commonly used in localization. Two lines of techniques have
been considered in literature: triangulation with a path loss
model and fingerprinting with databases or models from site
survey. Typically, WiFi RSS fingerprint-based IPS work in two
stages: training and operational stages [14], [15], [16], [11]. In
the training stage, comprehensive site survey is conducted to
record the fingerprints at targeted locations. In the operational
stage, when a user submits a location query with her current
fingerprints, a localization server computes and returns the
estimated location. Existing processes for WiFi fingerprinting
collection are time consuming and expensive [11]. During
site survey, collectors need to stand at each training position
and collect WiFi scans for multiple rounds [11] and possibly

Path-based: 
Collect data along paths

Point-based:
Collect data at points

Fig. 1. Two data collection methods: a) collecting the fingerprints at the 15
points (indicated by solid dots), b) collecting fingerprints along the 8 paths
(indicated by thick solid lines)

at different headings. In [14], the authors use the Gaussian
Process Latent Variable Model (GP-LVM) to solve the WiFi
SLAM problem and hence determine the latent-space locations
of unlabeled signal strength data. Another relevant work is
called Walkie-Markie by Shen et al. [16] Walkie-Markie is
an indoor pathway mapping system that can automatically
reconstruct internal pathway maps of building without any a-
priori knowledge about the building. Central to Walkie-Markie
are the crowdsourced trajectory information (step count, step
frequency, and walking direction) as well as WiFi landmarks
derived from WiFi scans. Closest to our work is the quick
radio fingerprint collection (QRFC) method proposed in [17].
In QRFC, RSS filtering and shaping are used by averaging
neighboring readings along a path to compensate for signal
variations along a path caused by multi-path, shadowing, and
mask effects. The resulting smoothed RSSes are then stored
in a database for “nearest neighbor search” with a relational
factor in the operational stage. In comparison, GP in our work
performs RSS filtering and shaping automatically. Hyper-
parameters in GP that control the degree of spatial smoothness
and temporal variability are determined using the training data.

Another line of work considers AP selection for localiza-
tion. It was found that not all the APs contribute to indoor
positioning in fingerprint-based IPS since APs have different
beacon intervals and power saving mode. Previous studies
show that judiciously selecting a subset of APs can improve
the positioning accuracy (e.g., among those with strongest
RSSes) and 6 to 10 APs distributed around the area are
often sufficient efficient [15], [18]. AP selection schemes are
complementary to fingerprint collection as we generally have
no control over when RSSes can be collected from an AP. The
former can be used during both the training and operational
stages of fingerprint-based localization, and is adopted in
TuRF as well.

III. SYSTEM OVERVIEW

The basic fingerprint-based localization problem consists of
determining a device’s position v = (x1, x2, ..., xd) ∈ Rd,
given multiple RSS observations s = (s1, s2, ..., sm) ∈ Rm
from m APs. This is accomplished by collecting many RSSes
from known locations from the target environment and train a



model, also called fingerprint map, that characterizes the func-
tional dependency between the RSS space and the coordinate
space, e.g., fi : Rd → R, i = 1, ...,m.

Traditionally, site survey for RSS fingerprints is accom-
plished by first selecting a set of known locations in the target
area and then collecting multiple WiFi scans while standing
at each location. As an example, in Fig. 1, a fingerprint
map can be constructed using RSS vectors collected from the
10 intersecting grid points. TuRF instead collects both WiF
RSSes and magnetic field data during walks along predefined
trajectories with known starting and ending locations. In Fig. 1,
fingerprints are collected opportunistically along the 7 paths
(indicated by thick solid lines). Several pertinent questions
need to be resolved in utilizing path-based collections in
training fingerprint map.

1) How to infer the location tags for the unlabeled finger-
prints collected during walking?

2) How fast the walks can be?
3) How to train fi’s from the fingerprints collected during

walking?
In the beginning of data collection, a set of paths are

predefined. During walks, we only know exactly the loca-
tions of the starting and ending points. RSSes contained in
WiFi management frames from different APs are captured
opportunistically at unknown locations during the walk. In our
experiments, a single WiFi scan on an Android device takes
about 1s. Human step frequency is around 2Hz. Thus, multiple
RSS readings can be captured during one step; and multiple
steps are taken during one complete scan.

The system architecture of TuRF is given in Fig. 2. The
proposed fast site survey process can be further divided into
three steps: 1) raw data collection, 2) post processing and
3) model training. In Step 1, the WiFi interface and the
magnetometer sensor on a user device are utilized to collect
fingerprints with timestamps. The accelerometer sensor data
are used for step detection. The timestamps of all step events
are recorded. In Step 2, the step events and fingerprints are
fused using their respective timestamps. A stride length based
location tagging scheme is devised to assign location tags to
the collected fingerprints. In Step 3, given the fingerprints with
location tags, we train one Gaussian process model for each
AP.

IV. TURF LOCATION TAGGING AND TRAINING

In this section, we present the details of TuRF location
tagging and training processes. For the ease of presentation,
we only consider straight-line trajectories. Paths with turns
can be broken into line segments using gyroscope readings
and handled similarly.

A. Location Tagging of Fingerprints

Given a predefined path p with length L. Its endpoints are
denoted as locstart and locend. A sequence of fingerprints
〈(fp0, t0), (fp1, t1), · · · , (fpn, tn)〉 are collected along this
path, where fp is a vector of RSS from different access
points and/or magnetic filed magnitude. For any 〈fpi, ti〉, our

WIFI Magnetometer Accelerometer

Map

Fingerprints with timestamp
Step Event with 

timestamp

Step Counter

Stride Length-Based Location Tagging

Fingerprints with Location Tags

Gaussian Process

Step 1:

Step 2:

Step 3:

Fig. 2. System Architecture

goal is to infer where it was observed (i.e., its location tag).
In this section, we discuss two different location inference
approaches, e.g., constant speed based and constant stride
length based.

Constant speed: In order to infer the collector’s location at
time ti along path p, we can simply assume a constant walking
speed. The user’s location at ti can be simply calculated by

loci = locstart +
ti − tstart
tend − tstart

× (locend − locstart), (1)

where tstart and tend indicate the moments when the user
starts and stops walking on p and when the operations are
element-wise addition, subtraction and multiplication in the
coordinate space. This approach is straightforward but is sen-
sitive to variability in walking speed and stops during walking
when encountering obstacles. In order to accommodate the
speed variations during walking, we next propose a step-based
algorithm.

Constant stride length: As discussed in Section III, we use
accelerometer in the data collection process for step detection.
The step events are utilized to provide better location infer-
ence. Let L = |locend−locstart|. Given the timestamps of step
events 〈t′1, t′2, · · · , t′K〉, the constant stride length is calculated
as SL = L

K . Therefore, the user’s location at ti can be further
inferred by

loci = locstart +
j · SL+ SL

ti−t′j
t′j+1−t′j

L
× (locend − locstart)

(2)
where t′j ≤ ti ≤ t′j+1.

Fig. 3 illustrates the second approach. In the figure, there are
5 steps events and 4 fingerprints are along the path. Therefore,
the stride length is estimated L

5 . Since the third fingerprint is
collected during the fourth step, the location tag of the third
fingerprint can be inferred as

locstart +
3 + t6−t5

t7−t5
5

× (locend − locstart) (3)

Obviously, a robust step counter is crucial to accurate
location inference. Step counting is a core module in PDR
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Fig. 3. The location tagging for unlabeled fingerprints

TABLE I
THE COLLECTED FINGERPRINTS BY TRADITIONAL POINT-BASED DATA

COLLECTION PROCESS

Fingerprints Vector Location WiFi Scan ID
〈(bssid10, rss10), (bssid11, rss11), · · · 〉 loc1 1
〈(bssid20, rss20), (bssid21, rss21), · · · 〉 loc2 2

...
...

...
〈(bssidN0 , rssN0 ), (bssidN1 , rssN1 ), · · · 〉 locN N

based IPS [3]. During one step cycle, a person’s body goes
through “stance state” with both feet on the ground, and
the “swing state” when only one foot is on the ground. As
gaits are nearly periodic, steps can be detected by identi-
fying peak accelerations in vertical, forward or lateral di-
rections. Let the 3-axis accelerometer readings at time t
be accx(t), accy(t), accz(t). We first compute the magnitude
acc(t) =

√
accx(t)2 + accy(t)2 + accz(t)2. Then, a low pass

filter is applied to remove high-frequency components[19]
from the signal. Lastly, a two-threshold based peak detection
mechanism is applied to detect step event. Specially, a peak
is identified as a step event if the two conditions are met,
namely, i) the time difference between two adjacent steps must
be greater than a chosen threshold, and ii) the magnitude
difference between the adjacent peak and valley must be
greater than a chosen threshold.

B. Model Training

The outputs of site survey and location tagging are a set of
fingerprints with (inferred) locations. Given a set of collected
fingerprints FP = {(x1, y1), (x2, y2), · · · , (xn, yn)}, where
yi = 〈ybssid0i , ybssid1i , · · · 〉 where ybssidji indicates the RSS of
access point bssidj , observed at location xi. The fingerprint-
based indoor localization problem can be formally defined as:
Given a set of observations FP , and an incoming y∗, how to
predict x∗?

Depending on the fingerprint collection mechanism, the size
of collected fingerprints might vary. For example, the finger-
prints collected by traditional point-based method is given in
Table I, where a fingerprint vector consists multiple elements
one from each AP observed. In contrast, the fingerprints
collected by the proposed method is in fact a scalar value
as illustrated in Table II. Using the data in Table I we can
easily train a regression model with multi-dimensional outputs

TABLE II
THE COLLECTED FINGERPRINTS BY PATH-BASED DATA COLLECTION

PROCESS

Fingerprints Location WiFi Scan ID
(bssid1, rss1) loc1 1

...
...

...
(bssidi, rssi) loci 1

(bssidi+1, rssi+1) loci+1 2
...

...
...

(bssidj , rssj) locj 2
...

...
...

(bssidN , rssN ) locN N

with missing values imputed 2. However, this is not the case
for the collected fingerprints in Table II. In this work, we
assume that the RSS of different access points are independent
to each other and a Gaussian process regression model will be
trained separately for each access point. Formally, given FP
and y∗ = 〈ybssid0∗, ybssid1∗, · · · 〉, x∗ can be estimated as

x∗ = argmax
x∈X

∏
i

p
(
ybssidi

∗|x
)

(4)

Now, we are in the position to discuss how to use Gaus-
sian process to calculate the marginal likelihood p(y|x). A
Gaussian process can be thought of as a Gaussian distribution
over functions (thinking of functions as infinitely long vectors
containing the value of the function at every input). Formally,
let the input space X and f : X → R a function from
the input space to the reals, then we say f is a Gaussian
process if for any vector of inputs x = [x1, x2, · · · , xn]T
such that xi ∈ X for all i, the vector of output f(x) =
[f(x1), f(x2), ..., f(xn)]

T is Gaussian distributed. The Gaus-
sian process is specified by a mean function µ : X → R,
such that µ(x) is the mean of f(x) and a covariance (kernel)
function k : X × X → R such that k(x, x′) is the covariance
between f(x) and f(x′). We say f ∼ GP (µ, k) if for any
x1, x2, · · · , xn ∈ X , [f(x1), f(x2), · · · , f(xn)]T is Gaussian
distributed with mean [µ(x1), µ(x2), · · · , µ(xn)]T and n× n
covariance/kernel matrix K:

K =


k(x1, x1) k(x1, x2) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xn)
· · · · · · · · · · · ·

k(xn, x1) k(xn, x2) · · · k(xn, xn)

 (5)

In our model, we utilize the exponential kernel k(x, x′) =
σ2
fexp(−‖x−x′‖/l) where σ2

f is the signal variance of f(X)
and l is the length scale of the kernel. In Gaussian process,
the marginal likelihood is the integral of the likelihood times
the prior

p(y|X) =

∫
p(y|f,X)p(f |X)df (6)

Under the zero-mean Gaussian prior assumption that f |X ∼
N(0,K) and the likelihood is a factorized Gaussian y|f ∼

2One common way for imputing missing values in RSS vectors is to set
the corresponding entry to the lowest possible readings, e.g., -93dBm



N(f, σ2
nI) where I is an identity matrix and σ2

n is the noise
variance, we can obtain the log marginal likelihood as

logp(y|X) =− 1

2
y>(K + σ2

nI)
−1y

− 1

2
log|K + σ2

nI|

− n

2
log2π.

(7)

The limited-memory BroydenFletcher-Goldfarb-Shanno (LM-
BFGS) method is employed to implement this Gaussian pro-
cess regression. Please refer to [20] for more details.

C. WiFi RSS fingerprint selection

Nowadays, WiFi has been deployed in almost all the indoor
environments. As a result, we can always detect many access
points. The effect of redundant WiFi access point is double-
sided. On the one hand, ubiquitous WiFi infrastructure implies
great potential for WiFi RSS based indoor localization. On
the other hand, too many WiFi access points can actually
compromise the localization performance, especially for those
whose WiFi signals are poor. In this sense, we need a AP
selection process to differentiate the “good” and “bad” access
points for indoor localization. We propose a AP selection
algorithm, as described in Algorithm 1. It works as follows:
First, all the detected BSSIDs are pre-screened based on their
noise variances and a noise variance threshold θσ . Then, all the
BSSIDs are further assessed based on the number of “good”
(based on a RSS threshold θrss) BSSIDs at each location and a
threshold θnum. A BSSID might be discarded in noise variance
based pre-screening process, but it will still be retained if
it is among the top-θnum BSSIDs at some locations. After
the BSSID selection process, a set of valid BSSIDs will be
generated. In the operational stage, a user observes a set of
fingerprints and submits a location query. Among the observed
BSSIDs, only the valid ones will be used for localization, as
elaborated in Algorithm 2.

V. PERFORMANCE EVALUATION

To evaluate the performance of TuRF, real world experi-
ments are conducted on the second floor of the Information
Technology Building, McMaster University. Fig. 4 shows the
floor plan the evaluation area. The area is around 500m2 with
dimension 69m by 54m. Both training and testing fingerprints
are collected using a Nexus 5 smart phone in the corridors. No
infrastructure changes were observed during the experiments.
Most of the experiments are conducted during working hours
with people walking around the area. An Android App was
implemented in Android for raw data collection and step
detection. All data post-processing modules are implemented
in Python based on open source data science libraries are used,
such as Numpy, GPy, and Pandas [21], [22], [23].

In order to make WiFi scan faster, the WiFi interface on
the phone is locked to 2.4 GHz using Android API. After
band locking, a complete WiFi scan takes between 360ms
and 420ms. In the evaluation area, there are 21 APs from
our campus networks. 22 other BSSIDs are also observed

Algorithm 1: BSSIDSelection
Input : BSSIDs = {bssid1, bssid2, · · · },

GPRs : a set of GP regression models
θσ : the threshold for noise variance,
θrss : the threshold for RSS value,
θnum : the threshold for number of valid bssids

for each position
Output: A list of valid bssids

1 validBSSIDs = BSSIDs;
2 sort BSSIDs based on noise variance in descending

order;
3 foreach bssidi ∈ BSSIDs do
4 σ2

n = bssidi.σ
2
n;

/* Step 1 */
5 if σ2

n ≤ θσ then
6 isDiscarded = False;
7 else
8 isDiscarded = True;

/* Step 2 */
9 foreach x ∈ X do

10 count = 0;
11 foreach bssidj ∈ validBSSIDs do
12 f = f bssidj ; // get the GPR
13 rss = f(x);
14 if rss ≥ θrss then
15 count++;
16 end
17 end
18 if count < θnum then
19 isDiscarded = False;
20 end
21 end
22 end
23 if isDiscarded == True then
24 remove bssidi from validBSSIDs;
25 end
26 end
27 return validBSSIDs;

Algorithm 2: Localization
Input : Observations = {(bssid1, rss1), · · · },

GPRs : a set of GP regression models,
validBSSIDs : output of BSSIDSelection

Output: Predicted location
1 observedBSSIDs = {bssids in Observations};
2 BSSIDs = validBSSIDs ∩ observedBSSIDs;
3 return argmaxx∈X

∏
bssid∈BSSIDs p

(
ybssid|x

)

during data collection in the evaluation area. After running the
AP selection process described in Algorithm 1, a total of 33
BSSIDs are selected. In the experiments, 33 WiFi RSS features
along with 2 magnetic features are utilized. As discussed in
Section IV, a Gaussian process regression model is trained for
each feature, separately.



Fig. 4. The floor plan of the evaluation area. Red dots represent the locations
selected for point-based data collection whereas the blue line segments are
the predefined paths for path-based data collection

TABLE III
THE DESCRIPTION OF COLLECTED FINGERPRINTS

Data Type # of path/point # of WiFi scan
Point-based Training data 338 points 10140
Path-based Training data
(Normal speed)

12 paths 2335

Test data 74 points 4440

For comparison, we collect the training data in two ways:
point-based data collection, where the user stands at each of
the data collection points to collect multiple scans; and the
path-based data collection in TuRF, where the user walks in
two directions along a set of predefined paths. The evaluation
area is divided into 1.2m × 1.2m grids and a total 338
points (red points in Fig. 4) are selected for point-based data
collection. The blue lines on Fig. 4 correspond to the paths
for walking data collection. The distance between two parallel
paths is about 1m. There are a total number of 12 predefined
paths. 74 test points were selected evenly spread across the
evaluation area, and testing data were collected using the
point-based method. The datasets are summarized as Table III.

RSS variations during walking: In this experiment, we
evaluate signal variations due to the shadowing effect of
human body, movement and multi-path induced fading during
walking. We select a 10m path and collect RSSes from the
same AP using both methods. In the point-based method,
RSS are collected from 11 evenly distributed locations along
the path. In the path-based method, the user walks slowly
along the path at roughly 0.9m/s. Fig. 5 depicts the collected
RSS by two different methods. The blue dots indicate the the
mean RSS of 30 WiFi scans and the corresponding vertical

0 1 2 3 4 5 6 7 8 9 10
Distance(m)

70

65

60

55

50

45

R
SS

(d
B)

Walking
Standing

Fig. 5. RSS comparison between point-based and path-based data collection
method

bar represents the RSS value range (min and max) at each
measuring point. The red dots represent the RSS collected
during walking and the locations of these RSSes are inferred
by constant stride length based location tagging discussed in
Section IV. From Fig. 5, we see that most of the RSSes
observed during walking fall in the range of RSSes collected
when standing. The location tags inferred from constant stride
length appear to work well. Fig. 5 provides a clear insight as
to why path-based data collection works – it trades off scans
collected per location with scans from more locations.

Gaussian process regression: For each of the 35 features, one
Gaussian process model was trained using the training data.
The hyper parameters (σn, σf , l) are estimated by maximizing
the marginal log-likelihood of the training data. We limit
the range of noise variance σn between 0.00001 and 9. The
GPy framework is used in the optimization process [22]. The
resulting GP generates a map with 0.1m × 0.1m grids to be
used for localization. The data collected from one AP during
normal walking speed is shown in Fig. 7. The colored dots
indicate the data collected during walking. We impute missing
data using -93 dBm if there is no RSS collected within 6 meter.
Fig. 6 shows the mean RSS value prediction using GP. The
mean RSS value changes smoothly over the evaluation area.
The predicted mean RSS value is close to the RSS observed
during walking.

Required time for site survey: The total time for site survey
can be broken down into i) setup time, during which markers,
starting and ending points of paths are decided and measured,
and ii) data collection time. Table IV summarizes the setup and
data collection times for different data collection methods. In
TuRF, it takes us 15 minutes to measure the evaluation area
and get the coordinates of the endpoints of predefined paths.
For comparison, we ask the user to walk back and forth along
each path at slow, normal, fast speed, respectively. It takes
another 16, 27, 46 minutes to finish the data collection when
the user walks at fast, normal and slow speeds, respectively.
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Therefore, the total times needed for data collection, when the
user walks in fast, normal, and slow speed, are respectively,
31, 42, and 61 minutes. This is in contrast to data collection
using the point-based method. It takes 120 minutes to measure
the evaluation area and setup the markers. The total times for
data collection, when 1, 10 and 30 WiFi scans are collected
at each marker, are respectively, 67, 135, and 270 minutes. As
shown in Table IV, TuRF reduces both the setup time and the
data collection time significantly. Another potential benefit of
path-based data collection is that the few endpoints of paths are
much easier to maintain for future fingerprint update compared
to hundreds of markers needed for point-based data collection
if the markers are accidentally damaged or removed.

Localization performance: In this experiment, we compare
the localization accuracy using the training data collected by
point-based data collection and TuRF. We also evaluate the
impacts of location tag inference methods, walking speed and
magnetic features. Six variants of the combined techniques are
evaluated.

• WiFi+speed: Only WiFi RSS fingerprints are used. The
location tagging is based on constant speed.

TABLE IV
TIME SPENT ON FINGERPRINT COLLECTION

Setup Time Data Collection Time
Point-based, 1 WiFi scan at each
marker

120 minutes 67minutes

Point-based, 10 WiFi scans at
each marker

120 minutes 135 minutes

Point-based, 30 WiFi scans at
each marker

120 minutes 270 minutes

TuRF, walk in fast speed 15 minutes 16 minutes
TuRF, walk in normal speed 15 minutes 27 minutes
TuRF, walk in slow speed 15 minutes 46 minutes

• WiFi+stride: Only WiFi RSS fingerprints are used. The
location tagging is based on constant stride length.

• WiFi+magnetic1+speed: Both WiFi RSS and magnetic
field magnitude are used as fingerprints. The location
tagging is based on constant speed.

• WiFi+magnetic1+stride: Both WiFi RSS and magnetic
field magnitude are used as fingerprints. The location
tagging is based on constant stride length.

• WiFi+magnetic2+speed: Both WiFi RSS, magnetic field
magnitude and magnetic field magnitude on Z-axis are
used as fingerprints. The location tagging is based on
constant speed.

• WiFi+magnetic2+stride: Both WiFi RSS, magnetic field
magnitude and magnetic field magnitude on Z-axis are
used as fingerprints. The location tagging is based on
constant stride length.

The results are depicted as Fig. 8. The red horizontal line indi-
cates the performance of point-based data collection algorithm
in which both WiFi and magnetic fingerprints are utilized.
The vertical bars represent the localization performances of
path-based data collection methods. A few observations are in
order from Fig. 8. First, localization results from the constant
stride length based location tagging algorithm are constantly
better than those from the constant speed based algorithm in
all the cases. This indirectly confirms that location tags using
constant stride length are likely to be more accurate. Second,
incorporation of magnetic fingerprints can indeed improve the
localization performance. Using both magnetic features are
beneficial. Third, when constant stride length location tagging
is used, TuRF outperforms point-based data collection when
the walking speed is slow and normal. Recall from Table III,
the total numbers of WiFi scans in the point-based method
and TuRF at the normal walking speed are 10140 and 2335,
respectively. With fewer scans, the superior performance of
TuRF can be attributed to denser spatial sampling. Fourth, as
expected, slower walking speeds allow collection of finger-
prints and thus lead to better localization accuracy.

Walking speed recommendation: As shown in Fig. 8, we
observe that lower walking speed leads to better localization
performance in TuRF. However, there exists a trade-off be-
tween the time spent on site survey and localization accuracy.
Through extensive experiments, we find that a reasonable
localization performance can be attained if there are one or



slow normal fast
0.0

0.5

1.0

1.5

2.0

Lo
ca

liz
at

io
n 

Er
ro

r(m
)

wifi+speed
wifi+stride

wifi+magnetic1+speed
wifi+magnetic1+stride

wifi+magnetic2+speed
wifi+magnetic2+stride

Fig. 8. Comparison of different strategies, walking speeds, features and
location tagging approaches

TABLE V
WALKING SPEED RECOMMENDATION FOR DIFFERENT DEVICES

Device Required time for
one WiFi Scan

Recommended
walking speed

Nexus 5 380 ms 2.63 step/s
Samsung Galaxy Note 3 1420 ms 0.70 step/s

Samsung Galaxy S4 780 ms 1.28 step/s
Samsung Galaxy Mini III 1150 ms 0.87 step/s

more WiFi scans that can be done within one step. Based on
this observation, the recommended walking speed is given by,

recommended walking speed ≤ 1

tWiFiScan
(8)

The amount of time for one WiFi scan is both device
and configuration dependent. Rule-of-thumb walking speed
recommendations for different Android devices are given in
Table V.

VI. CONCLUSION

In this paper, we presented TuRF, a fast path-based data
collection method for fingerprint collection. The Gaussian
process regression model was utilized to provide a flexible
model training process for localization. Experimental results
demonstrated the efficiency and effectiveness of the proposed
method. We found that TuRF can indeed reduce the required
time for site survey without sacrificing localization perfor-
mance. As future work, we are interested in incremental
fingerprints updating strategies and investigate the adaptive
data collection approaches where users are promoted if walk
speeds shall be adjusted and revisits to some areas are required.
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