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Abstract—Self-organization is critical to enable novel indoor
Location-Based Services (LBSs) for users and businesses in large,
complex and unstructured buildings. Inspired by high densities
of smartphones in public indoor spaces, in this paper we propose
a self-organizing indoor localization approach that allows the
use of available WiFi Access Points (APs) and iBeacons in the
area to improve location accuracy and environment adaptability.
Our approach is based on a semi-anchored localization that
estimates the unknown location of smartphones, given known-
location anchors (APs) and unknown-location anchors (iBeacons).
We exploit the capabilities of Levenberg-Marquardt optimization
algorithm to accurately estimate smartphone locations in real-
time, in contrast to fingerprinting methods that require a tedious
off-line training phase. Moreover, we use a clustering method
based on the Received Signal Strength (RSS) values to obtain the
initial estimated location for the optimization. We evaluate our
approach using available APs and non-coordinated iBeacons in a
large building to localize smartphones. The experimental results
confirm that our self-organizing approach not only effortlessly
estimates the position of mobile devices, but also provides a higher
localization accuracy than other widely used approaches such
as extant fingerprinting techniques for both scenarios, with and
without iBeacons.

I. INTRODUCTION

Indoor localization is the primary purpose of numerous
mobile computing applications, such as logistics, crowd moni-
toring, network allocation, and marketing. Although the Global
Positioning System (GPS) is definitely the most popular
positioning technology, it does not work well indoor due to
signal attenuation and scattering. Among alternative localization
techniques for indoor environments such as acoustics, magnetic
fields, accelerometers, and Received Signal Strength (RSS),
RSS is the most popular one because of the proliferation of WiFi
and Bluetooth on mobile devices. Moreover, public databases
of access point locations are recently available for a large
number of buildings [1]. Therefore, using short-range radio
communication such as RSS between smartphones and WiFi
Access Points (APs) become one of the most practical solutions
for indoor localization.

Accurate indoor localization using WiFi infrastructure,
however, remains elusive. Although fingerprinting algorithms,
such as RADAR [2], Locally Weighted Regression (LWR)-
Weighted k-Nearest Neighbours (WKNN) [3], Radial Basis
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Function (RBF) [4], and Deep Neural Network (DNN) [5],
can provide acceptable localization accuracy, they require an
enormous amount of measurements, so-called signatures, to
build a database for an off-line training phase before real-time
position estimation. Such an essential requirement imposes
restraints on autonomously deploying a localization system
in practice, especially for large and complex space. Even if
the laborious fingerprinting can be done, the environment may
later change frequently and thus the accuracy of fingerprint-
ing systems decreases. The fingerprinting approach needs to
rebuild the fingerprint database frequently to maintain a high
accuracy because of the change of multi-path effects in indoor
environments. Therefore, a localization approach should be
self-organizing, lightweight, and accurate. It also should adapt
to any configuration or environment. To this end, the feasibility
of leveraging the most prevalent WiFi infrastructure for high
accuracy localization on mobile devices in dynamic unstructured
environments is still an open question.

In this paper, we first conduct an experiment to empirically
study the challenges of WiFi AP-based localization on smart-
phones in terms of the accuracy and calibration requirement.
We find that most current localization algorithms including
fingerprinting have a poor performance in terms of accuracy
(e.g., > 10 m) when there are an insufficient amount of APs
and calibrations. Similar or much larger errors (e.g., > 15 m)
also have been reported in previous works [6], [7]. Such large
errors are unacceptable for many scenarios. It was shown that
a high accuracy of 2 m is possible but only under a high
density of APs, which is usually unfeasible in practical settings.
Such enormous errors may cause a user to make a wrong turn
leading to a different gate in an airport, or an unwanted store in
a shopping mall. We reveal that the large errors are due to the
possibly faraway locations with similar WiFi signatures. The
RSS values typically have a high variability over time even
for a fixed location, due to the different multipath effects in
dynamic indoor environments.

On the other hand, we observe that smartphones and
iBeacons have become very popular in indoor environments,
especially in public spaces and smart buildings. We hypothesize
that the RSS values between the smartphones and iBeacons
would be used as additional information to improve the accuracy
of smartphones positioning, even if the absolute coordinates of
both smartphones and iBeacons are unknown. We propose a self-
organizing localization approach that leverages the relative RSS-
based ranging between smartphone-iBeacons, without requiring
an offline calibration/fingerprinting phase or special hardware978-1-5090-6299-7/17/$31.00 c© 2017 IEEE
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yet producing higher accurate location estimates than current
approaches.

In particular, the self-organizing localization can be carried
out when smartphones have both WiFi and Bluetooth enabled to
simultaneously scan RSS from APs and iBeacons, respectively.
Smartphones opportunistically scan radio signals emitted from
surrounding APs and iBeacons. One should note that our
approach does not require that the smartphones have to
be connected to the APs and iBeacons to obtain the RSS
measurements since smartphones regularly emit ”probes” to
scan APs and iBeacons and receive the response including RSS
values. Given the RSS measurements, we formulate a semi-
anchored localization cost function. The cost function uses APs
and iBeacons as anchors; however, only the coordinates of APs
are known. We employ the Levenberg-Marquardt optimization
algorithm [8] to estimate the coordinates of smartphones as it
was proven to be the best for non-linear least squares in [8]–
[10]. Moreover, we use a clustering method based on the RSS
to obtain the initial estimated location for the optimization.
Experiments using data from a real indoor building environment
show that our approach is minimally invasive and easy to deploy
while providing much higher localization accuracy than most
current approaches yet requiring a laborious offline calibration
phase. Our specific contributions in this paper are:

i) Semi-anchored localization with non-coordinated iBeacons
ii) Cluster-based initialization for self-organization

iii) Empirically analysis of fingerprinting localization algo-
rithms with calibration

iv) Experiment evaluation with the real-world environment

The rest of this paper is organized as follows. Section II
reviews the related techniques of WiFi localization, especially
for indoor environments. Section III states the localization
problem and challenges in unstructured and extreme environ-
ments. Section IV presents our approach through mathematical
model and optimization, followed by performance evaluation
and important observations presented in Section V. Finally, we
conclude our paper in Section VI.

II. RELATED WORK

Although GPS is definitely the most popular positioning
technology, it does not work well in GPS-blocked environments
due to signal attenuation and scattering. As alternative tech-
nologies, a short-range radio communication such as WiFi is
widely used for indoor environments. Most WiFi-based indoor
localization systems are mainly categorized into either location-
based fingerprinting techniques or ranging based on radio signal
propagation models.

Fingerprinting techniques build a fingerprint database that
can be used to approximate a location. The database, a so-called
radio map, is constructed by measuring RSS at a number of
known locations – signatures. The test location is then estimated
by comparing the new RSS values to the fingerprint database.

RADAR [2], [6] is a naive fingerprinting technique that
determines smartphone’s location by finding a known signature
that is most similar to the actual RSS measurement of the
location. In RADAR, it is shown that the highest accuracy is
obtained by computing the mean coordinates of three nearest
neighboring signatures. The Nearest Neighbours technique,

in addition to its simplicity, turned out to be among the
most accurate ones. More advanced techniques such as LWR-
WKNN [3] (a data interpolation technique) and RBF [4]
(a supervised learning technique) also have been used for
fingerprinting. Recently, deep learning techniques are also used
to predict smartphone locations [5]. However, building such a
fingerprint database is a laborious task as it requires to collect
fingerprints from numerous positions. The built fingerprint
database generally stays valid only for a short time as the
environment may change due to objects and human mobility,
among others.

Alternative techniques that are most related to our approach
use the characteristic model of radio frequency propagation to
avoid the laborious fingerprinting [11]–[17]. As RSS decreases
when the distance between the transmitter and receiver increases,
the distance can be estimated using a propagation model such as
the Log-Normal Shadowing Model (LNSM) [18]. The LNSM
in [18] defines the received signal strength as a function
of the distance and two environmental parameters, i.e., the
transmission power of the reference transmitter and the path loss
exponent. These parameters together with unknown coordinates
can be estimated using a least-squares fitting technique [12]–
[14]. Range-based localization usually gives a relatively poor
accuracy due to the intrinsic phenomenon of the radio signal
propagation. Most indoor environments cause severe multipath
effects that lead to a high variability over time for the same
location. Such high variability results in a large error even for
a stationary device. Moreover, RSS values do not convey the
subcarriers in an Orthogonal Frequency-Division Multiplexing
(OFDM) for richer multipath information such as WiFi Channel
State Information (CSI) [19], which can be exploited to improve
the accuracy. Since WiFi CSI requires expensive hardware
and is sensitive to privacy breaching, we do not consider this
technique in this paper.

Furthermore, the WiFi APs in public places are generally
limited and deployed in the middle of the areas of interests so
that they can cover most parts of the areas with a minimum
cost. However, in order to achieve a high localization accuracy
for both fingerprinting and radio propagation techniques, APs
need to be placed abundantly in optimal locations, usually at
the boundary of the area. In addition, APs are usually affixed to
the ceilings, not in a same horizontal plane with smartphones
carried by users. The difference in height increases the variance
of measurements. It turned out that existing techniques have
a poor performance in terms of accuracy (e.g., > 10 m) in
most real environments, albeit they were shown perform well
in customized test beds, of which the AP are optimally placed
for the purpose of the experiments.

Thanks to their low cost and low power consumption, the
use of iBeacons has gained popularity. Many existing solutions
including [20]–[22] use iBeacons, in addition to APs, to provide
location information. In these works, authors assume that
iBeacons are stationary and have a known location, functioning
as anchors for localization. Using smartphones of the crowd to
sniff both iBeacons and APs is an interesting solution to push
the limits of WiFi-based localization.

Using smartphones to sniffs both WiFi APs and Bluetooth
iBeacons is not new itself as being proposed in [23], [24].
However, the iBeacons used in such works are deployed at
fixed and known locations, functioning as anchors. Conversely,
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Fig. 1: Illustration of self-organizing localization for unstruc-
tured and dynamic environments. Available APs and iBeacons
are stationary; however, iBeacons do not have location informa-
tion. Smartphones are roaming around the area without location
information. The main goal is to localize smartphones using
APs location with the support of non-coordinated iBeacons.

in this paper iBeacons are non-coordinated since they are mobile
and have unknown locations. To the best of our knowledge,
none of the previous works has addressed the use of such
non-coordinated iBeacons to enhance smartphone localization,
especially without using a fingerprinting technique.

III. REAL-WORLD INDOOR LOCALIZATION PROBLEM
STATEMENT

A. Objectives

As depicted in Figure 1, we aim at a self-organizing
localization system for smartphones based on available WiFi
and Bluetooth infrastructure in the area. Both APs and iBeacons
play the role of anchors; however, only APs have a known
location. Since we consider large and complex indoor areas, it
is laborious to register the coordinates of all iBeacons when
deploying them. Even if that can be done, iBeacons may
also be moved afterward because of building renovations or
infrastructure replacements. This means that keeping position
information of iBeacons up-to-date is either very costly or even
infeasible. For the same reason, burdensome fingerprinting or
calibration is not preferred in our targeted scenarios, which
dynamically changes over time. Smartphones carried by users
are mobile. Smartphones opportunistically scan radio signals
emitted from surrounding iBeacons and the APs. The collected
RSS measurements then are sent to a central server. One should
note that our approach does not require that the smartphones
are connected to the APs to be able to scan them since WiFi-
enabled smartphones regularly emit ”probes” to connect to APs
and receive the response including the RSS of the radio signals.
The most computationally intensive part of our approach is
the optimization phase, which is done on the server side. The
estimated coordinates of the smartphones will be sent back to
the users.

B. Challenges

In dynamic indoor environments, localizing smartphones
based on radio signal is challenging since; since, RSS values are

coarse information and significantly vary with the environments,
which comprise various factors as follows.

1) Unstructured Environment: In many existing works,
the environment is well known and calibrated. This makes
it possible to apply advanced radio propagation models for
high localization accuracy. In our study, the environment is
unstructured and dynamic. This means that we do not know
the environmental parameters such as the number and type of
walls to employ an advanced model. Therefore, in this work
we focus on a simple radio propagation model such as LNSM.

2) Already Existing AP Deployment: In many existing
works, the APs are thoughtfully deployed at certain positions
to obtain as high accuracy as possible, which are usually at the
edge of the area. However, the existing APs that were already
deployed for maximum WiFi internet coverage are typically
not at the border of the area but in the middle. Therefore,
it should be noted that in the experiment of this study only
already existing APs are used, no additional APs were deployed
or no existing APs were moved for the purpose of localization.

3) Non-coordinated iBeacons: In most existing works,
iBeacons for assisting localization are carefully distributed
across the area and have a known location. In our study, we
aim at utilizing the already deployed iBeacons for infrastructure
monitoring in large complex buildings. Keeping position
information of iBeacons up-to-date is either very costly or even
infeasible for such buildings. Therefore, in our experiment we
assumed that the locations of iBeacons are unknown.

4) Limited RSS Measurements: In most existing studies,
RSS measurements are made at stationary locations for a
quite long duration and with various orientation and position
of the smartphones, especially for the calibration phase of
fingerprinting techniques. Such tedious calibration is what we
want to eliminate in this study. Therefore, in our experiment
there are only a few measurements at each point and such
measurements are under a random smartphone’s orientation.

5) Non-deterministic RSS Measurements: The variability
of the RSS measurements of most smartphones are also
quite large (e.g. the standard deviation of 500 samples is
> 2.5 dBm for smartphones we used in our experiment) due
to the multipath effects in indoor environmets, even when the
smartphones are stationary. A tolerance of 1 dBm causes an
error of approximate 0.7 m with the AP, or of 1.5 m with
the iBeacons in our experiment. The negative impact of the
variability on accuracy was reduced by increasing the number
of measurements. However, acquiring numerous measurements
is infeasible in our study as discussed above.

6) Limited Radio Range: The area we conduct our exper-
iment is large and complex, with various walls and layouts.
Most existing iBeacons in our experiment also have None-line
of Sight (NLOS) with smartphones. A smartphone cannot listen
to all available APs and iBeacons from an arbitrary point in
the area. On average, only 36% APs and 30% iBeacons can be
scanned by a smartphone from a location in our experiment.

7) High Ceilings: In many existing studies, anchors and
unknown/blind nodes are placed in the same plan. In our
study, already existing APs and iBeacons are above the ceiling
with a height of more than 4 m, while smartphones are only
approximate 1 m above the floor. Assume that a smartphone is
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currently 4 m right under an iBeacon. When the smartphone
moves 3 m horizontally along the floor, the distance between
the smartphone and the iBeacon will increase only 1 m due
to the 3-dimensional space, instead of 3 m if the iBeacon and
smartphone are in the same horizontal plane. This smaller
difference in distance causes a smaller difference in the
corresponding RSS measurements. This makes the localization
problem definitely challenging for both radio propagation and
fingerprinting techniques.

IV. SOLOC: SELF-ORGANIZING LOCALIZATION APPROACH

This section is divided into two parts: model presentation
and model optimization.

A. Model Presentation

We consider a network that consists of M stationary APs
with known position and N iBeacons with unknown positions.
All these devices are assumed to be within the area of interest.
The main problem is to localize a smartphone at K unknown
locations, given a total of K corresponding RSS observations
measured by smartphones in the area. We assume that there is
no reference information (e.g. trajectories, movement patterns,
or ground truth positions) about the smartphones used to scan
the APs and iBeacons. We also assume there is no information
available about the position of the iBeacons.

Let S = {(xi, yi, zi)T , i = 1, ..,K} denote the set of K
position vectors of the unknown positions of smartphones,
where the corresponding RSS observations are measured.
Let A = {(xi, yi, zi)T , i = K + 1, ..,K + M} denote
the set of M position vectors of known-location APs. Let
B = {(xi, yi, zi)T , i = K +M + 1, ..,K +M +N} denote
the set of N position vectors of unknown-location iBeacons.
Let P̃ = {P̃i,j , i = 1, ..,K, j = 1, ..,M +N} denote the set
of K observations of RSS measurements collected by available
smartphones in the area of interest, where P̃ij denotes the RSS
of the measured power of observation i, transmitted from node j.
Since the propagation is symmetric, we assume that P̃i,j = P̃j,i.
Note that the vector of the RSS measurements combines
both Bluetooth and WiFi measurements. A smartphone can
opportunistically scan RSS at multiple positions and we only
consider the number of observations. For each observation
i, i = 1, ..,K, we have P̃i = {P̃i,1, P̃i,2, .., P̃i,M+N} that
contains M +N RSS values from M APs and N iBeacons at
location i.

As advanced models are not suitable for dynamic and
complex environments because of laborious calibration, we
use the LNSM model for our localization problem. In fact, the
LNSM model is still commonly used in many works including
[10, 17, 18, 23] as it is simpler and still valid in many indoor
environments [22]. Applying the LNSM model, we model P̃i,j
as:

P̃i,j ∼ N (P̄i,j , σ
2
i,j),

P̄i,j = Pj,d0 − 10βj log10(
di,j
d0

),
(1)

where di,j =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2. Pj,d0
and βj are the parameters representing the transmission power
of the transmitter j in dBm at a distance of d0 and the path-loss

exponent, respectively. The reference distance d0 is typically
set to 1 m for computation convenience.

Mathematically, we define the problem as a semi-anchored
localization problem, combining cost functions for known-
location anchors (APs) and unknown-location anchors (iBea-
cons):

θ̂ = arg min
θ

K∑
t=1

 M∑
i=1

(P̃t,i − P̄t,i)2 +
M+N∑
j=M+1

(P̃t,j − P̄t,j)2
 .

(2)

The unknown parameter matrix θ̂ includes the estimated
locations of smartphones at observation points, iBeacons, and
environmental parameters.

θ2M+N+K,3 =



x1 y1 z1
x2 y2 z2
...

...
...

xK yK zK
xK+M+1 yK+M+1 zK+M+1

xK+N+2 yK+N+2 zK+N+2

...
...

...
xK+M+N yK+M+N zK+M+N

P1,0 β1 0
P2,0 β2 0

...
...

...
PM+N,0 βM+N 0



, (3)

where {(xi, yi, zi)T , i = 1, ..,K} are coordinate vectors of K
observations and {(xi, yi, zi)T , i = K+M+1, ..,K+M+N}
are coordinate vectors of N iBeacons. {Pi,0, i = 1, ..,M} are
reference power of APs. {Pi,0, i = M + 1, ..,M + N} are
the reference power of iBeacons. {βi,0, i = 1, ..,M} are the
path-loss exponents of APs. {βi,0, i = M + 1, ..,M +N} are
the path-loss exponents of iBeacons.

B. Model optimization

We employ Levenberg-Marquardt optimization to minimize
the least-squares function described in Equation 2. All the
unknown parameters in Equation 2 including the locations
of smartphones can be estimated simultaneously. To avoid a
local minimum, which results in poor estimates, we propose
a twofold optimization process, which is executed online and
real-time.

• Phase 1: Cluster-based initial values estimation.
• Phase 2: Semi-anchored optimization.

1) Cluster-based Initial Values Estimation: To the best
of our knowledge, the initial estimates of environmental
parameters have little impact on the estimation accuracy.
Therefore, in order to obtain the initial values of environmental
parameters, we simply measure them with an AP and an
iBeacon at different distances (e.g., at 1 m and 5 m). The
most difficult part of the initial value estimation is the initial
positions, which have a significant impact on the estimation
accuracy.
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We first estimate the initial values of the observation
positions using Algorithm 1, which is the position of each
smartphone when they are measuring the RSS of radio
frequencies from surrounding APs. This estimation is done
by applying the Levenberg-Marquardt optimization on the
following cost function:

θ̂ = arg min
θ

K∑
i=1

M∑
j=1

(P̃i,j − P̄i,j)2

= arg min
θ

K∑
i=1

M∑
j=1

(
P̃i,j − Pj,d0 + 10βj log10(

di,j
d0

)

)2

(4)
where θ̂ is the estimated unknown parameter matrix including
the estimated locations of smartphones.

To provide the initial positions of observations for the
Levenberg-Marquardt optimization, we take the coordinates of
the closest APs based on the strongest WiFi RSS measurements
of the corresponding observation. It is likely that the AP
providing the strongest WiFi RSS is the closest one to the
measurement position in most cases, except when there are
outliers due to some fading channels. It is possible that at a
certain position the smartphone cannot receive WiFi signal from
any AP. If that happens, we use the central map coordinates as
conventional approach. However, this problem is not expected
in most indoor environments, where APs are deliberately placed
to cover the area as large as possible.

ALGORITHM 1: Coarse estimation of observation locations
INPUT:
{P̃ i, j}, reference coordinates A = {xi : i = K + 1, ...,K +M}
OUTPUT:
initial observation location values S(0) = {x(0)

j : j = 1, ...,K}
INITIALIZE:
for (j = 1 : K) do

x
(max)
j := argmax

xi

{P̃ i, j}, i = K + 1, ...,K +M

x
(0)
j := argmin

θ

M+N∑
j=M+1

(
P̃i,j − Pj,d0 + 10βj log10(

di,j
d0

)
)2

( Levenberg-Marquardt with x
(max)
j as initial value)

end
S(0) := {x(0)

j , j = 1, ...,K}

The initial-value estimates of the iBeacon positions are
more challenging since the iBeacons can be only linked with
smartphones that are supposed to have an unknown location.
We overcome this issue by clustering observations of iBeacon
signals based on their RSS strength. The pseudocode of cluster-
based initialization for iBeacons coordinate values is shown in
Algorithm 2.

As we want to cluster the observations into subgroups and
assign their position to a non-coordinated iBeacon, we set the
number of clusters equal to the number of non-coordinated
iBeacons. The RSS vector which consists of c values from c
surrounding iBeacons is known. Due to the limited coverage
of radio frequency, we have c 6 N . Based on those c values,
we cluster the observation to the group of the iBeacon of
which RSS is the strongest. It is likely that the position to
take the observation is closest to such iBeacon. We repeat this

ALGORITHM 2: Cluster-based estimation of iBeacon locations
INPUT:
{P̃ i, j}, initial observation values S(0) = {x(0)

i : i = 1, ...,K}
OUTPUT:
initial observation location values
B(0) = {x(0)

j : j = K +M + 1, ...,K +M +N}
INITIALIZE:
for (i = 1 : K) do

xmaxj := argmax
xj

{P̃ i, j, j = K +M + 1, ...,K +M +N}

Xcluster
j ← xmaxj

end
for (j = K +M + 1 : K +M +N) do

if Xcluster
j == ∅ then
x

(0)
j := xcenter

end
else

x
(0)
j := mean(Xcluster

j )
end

end
B(0) := {x(0)

j , j = 1, ...,M}

process for all observations to finally obtain N clusters of RSS
observations {Xcluster

j }. It is possible that some clusters do
not have any observation, albeit it rarely happens because of
the proliferation of smartphones. In any case, we deal with
such situation by assigning the central map coordinate xcenter

to the iBeacon.

2) Semi-anchored Optimization: Given the initial parameter
estimates obtained from the first phase and the RSS observations
by the smartphones, we employ the Levenberg-Marquardt
optimization to estimate the optimal values of unknown
parameters including the coordinates of observation points.

In particular, we apply the Levenberg-Marquardt optimiza-
tion in a cooperative manner. This means that all unknown
positions of all observations are optimized simultaneously.
Equation 2 can be represented as a combination of WiFi and
iBeacon channels by:

F =
K∑
t=1

(f iBeacont + fWiFi
t ). (5)

Given K RSS observations, the error function F =
(f1, f2, .., fK)T is a vector of K error functions,

ft =
M∑
j=1

(P̃WiFi
t,j −P̄WiFi

t,j )2+
M+N∑
i=M+1

(P̃ iBeacont,i −P̄ iBeacont,i )2,

(6)

The optimization starts with initial guess θ(0) which is
estimated in the first phase. The estimated coordinates θ̂ are
adjusted by the step h only for downhill steps. The iterative
loop stops when the residual 1

2 ||f(θ(k))||2 is smaller than a
predefined ε or it reaches the maximum iteration kmax. The
pseudocode for the semi-anchored optimization based on the
Levenberg-Marquardt algorithm is summarized in Algorithm 3.
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ALGORITHM 3: Iterative Semi-anchored Optimization
INPUT:
{P̃i,j}, S(0), B(0) , and A
damping λ, λup, λdown, accuracy ε, maximum iteration kmax
OUTPUT:
θ̂ minimizing F = f(θ) expressed by (5)
INITIALIZE:
k := 0; θ̂ = θ(0);
f(θ(k)) := f(θ̂);
while ( 1

2
||f(θ(k))||2 > ε)&(k < kmax) do

g(θ) := J(θ)T f(θ);
h := −(J(θ)TJ(θ) + λI)−1g(θ);
θ(k+1) := θ(k) + h;
if 1

2
||f(θ(k+1))||2 < 1

2
||f(θ(k))||2 then

k := k + 1;
λ := λ/λdown;

end
else

λ := λ× λup;
end

end
θ̂ := θ(k)

V. EMPIRICAL RESULTS

In this section, we describe a real world experiment and
its results when applying our self-organizing approach. Other
popular extant localization approaches are also implemented
for comparison.

A. Experimental setup

Figure 2 illustrates the real world area for our experiment,
which is a laboratory with a quite large and complex structure.
In the figure we can observe that the already existing APs are
gathered in the middle. Due to the complex architecture and
the restriction of the area, iBeacons were already deployed at
certain places on the ceiling, along with the beams at about
4 m high (see Figure 3).

The area size is approximate 38 m× 50 m and has various
rooms and sections that are separated by walls made of different
materials such as glass, concrete, wood, plastic, steel. We used
the i3 Robust Beacon made by MINEWTECH (see Figure 3).
The transmitting power of iBeacons was set to −59 dBm to
save power consumption. There are 11 Cisco APs in the area,
deployed previously by the venue owner. To have the highest
coverage, the venue owner had mainly placed the APs in the
middle of the area. One should note that placement of the WiFi
APs to provide the best coverage is not necessarily optimal
for WiFi-based localization accuracy. The true location of the
iBeacons and the APs were manually measured with a with an
error of about ±0.25 m due to the complexity of the building.

For WiFi and iBeacon scanning, we developed a smartphone
application that can scan and record RSS emitted from both
iBeacons and APs simultaneously. We set the smartphones
scan frequency periodically with an interval of 1 second. This
small interval makes it possible for the systems to localize a
smartphone moving at a walking speed of approximate 1 m/s.
We ignore RSS measurements while moving faster than 1 m/s,
which can be detected by the off-the-shelf accelerometers. We
do this because the RSS measurements from different APs and
iBeacons will not be synchronized in the spatial domain (not
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Fig. 2: Deployment area and placement of 46 iBeacons (marked
as �) and 11 APs (marked as ♦). Most iBeacons and APs
have to be placed between the roof and ceiling due to the
constructive constraints.

at one location) at high mobility. For the evaluation purposes,
a person carried the smartphone and walked through 603 grid-
based locations. When walking through a marked location, the
person pressed the corresponding number to entry the ground
truth of the observation locations. For each location, there were
roughly 10 measurements.

To investigate the performance of SoLoc, we compare it
with four alternative approaches as well as a Cramer-Rao Bound
(CRB)-like error bound of our approach. CRB [25] has been
widely used for localization.

1) RADAR [2]: The well-known naive fingerprinting tech-
nique that is based on k-nearest neighbors. We set k to 3
since it was shown to provide the highest accuracy in [2].

2) LWR-WKNN [3]: The well-known fingerprinting technique
that combines radio-map interpolation and weighted k-
nearest neighbor. In [3], the best performance is when k
is set to 2.

3) RBF: [4] This approach uses a neural network as a
regression with a radial function based on Euclidean
distance. The network is used to learn the weight of
the regression model, which then be used to predict the
unknown locations.

4) DNN [5] This is an advanced approach that use deep
learning as a regression model for node localization. For a
fair comparison, we set the network parameters as in [5],
which has 9 hidden layers of which the number of neurons
decreases over layers from 450 to 50. The rectified linear
unit (ReLU) is used.

5) Error Bound: According to the optimization theory, when
our approach use the Levenberg-Marquardt method with
the actual location of observations (smartphones) for
initialization and the actual location of iBeacons for
references, the estimated locations have the lowest errors.
This approach is also considered as the optimal solution
for propagation-based localization, of which performance
is very close to the lower bound [12].



2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 18-21 September 2017, Sapporo, Japan

!"#

$%&'()*#

Fig. 3: The IDEATE sub area of our laboratory (see Figure 2). The laboratory has various rooms and sections that are separated
by walls made of diverse materials such as glasses, concrete, woods, plastics, steel. Most iBeacons and APs can only placed near
the walls and beams, right under the roofs of which heights are about 4 m.
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Fig. 4: Signatures (marked as �) and test points (marked as
4) for evaluation with fingerprinting techniques.

For the above fingerprinting techniques, we selected 128
locations among 603 locations as signatures to build the
fingerprint databases. The remaining 475 observations are for
testing. Figure 4 show the distribution of the signatures and
test points for fingerprinting approaches in our experiments.

We implemented SoLoc and compared algorithms except
DNN in Matlab using the fsolve function with the Levenberg-
Marquardt optimization. DNN-based localization is imple-
mented with the RapidMiner machine learning toolbox. Since
our scenario does not have fully-pairwise RSS measurements
among pairwise devices, the common CRB [25] is not applica-
ble to compute the lower error bound. That is why we come
up with the Error Bound defined above as a benchmark to
compare localization accuracy.

B. Experimental Results

Figure 5 shows the localization results of SoLoc as well
as the extant algorithms for both cases: when using only
APs’ measurements and when adding iBeacons’ measurements.
Overall, SoLoc performs significantly better than others. For
example, SoLoc has a Mean Absolute Error (MAE) of 4.3 m
when using both APs and iBeacons to assist the localization;
whereas, the advanced fingerprinting technique DNN has a
median of 6.6 m. In other words, SoLoc performs 35 % better

than DNN. Moreover, the performance of SoLoc in terms of
accuracy is very close to the lower error bound, of which
the median error is also 3.9 m. RBF performs poorly due to
insufficient training data.

It is also interesting to observer that the simple RADAR
technique performs much better than the complex RBF when
using such a coarse fingerprint database in our study. RADAR
also performs slightly better than LWR-WKNN. The reason
is that the environment is extremely complex, with a lot of
different types of walls. Therefore, the interpolation of radio
propagation is incorrect and results in higher localization errors.
DNN scores best among fingerprinting techniques; however, it
is still far from SoLoc.

Figure 5 also shows the improvement in terms of accuracy
when adding the RSS measurements of already existing
iBeacons. Overall, all localization techniques can provide a
better accuracy (smaller error). We observe that DNN could
exploit the additional measurement very well. When using
only APs for localization, DNN performs worst than RADAR.
However, it outperforms RADAR when using both APs and
iBeacons. This implies that the DNN technique is promising
in environments with high density of iBeacons.

Besides having lower performance than SoLoc, the extant
fingerprinting approaches demand an offline laborious cali-
bration phase while SoLoc does not. For example, in [2] it
requires 30 observations per location and per direction. The
data needs to be measured with 4 directions (West, East, South,
and North). Thus when applying the same calibration process
for our experiment space with 128 signature location, it will
consume at least 4 hrs and 16 min (1 s per observation), which
still does not take the time for walking among the calibration
points and fixing mistakes.

VI. CONCLUSION

In this paper we propose a novel self-organizing approach
for smartphone localization in extreme environments, which
are large, unstructured, complex, and dynamic. The proposed
approach, named SoLoc, use the already-deployed iBeacons to
enhance the localization accuracy. We employ the Levenberg-
Marquardt algorithm to estimate the location of smartphones
without requiring any knowledge of environment parameters,
calibration, and the location information of iBeacons. Real-
world experimental results show that SoLoc outperforms at



2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 18-21 September 2017, Sapporo, Japan

RADAR LWR-WKNN RBF DNN SoLoc Error Bound

L
o
c
a
liz

a
ti
o
n
 E

rr
o
r 

(m
)

0

2

4

6

8

10

12

14

16
APs only
APs and iBeacons

Fig. 5: Boxplot of smartphone localization experiment results: with only already existing APs; with all already existing APs and
iBeacons.

least 35 % the compared approaches that including the advanced
Deep Neural Network. This work shows that SoLoc not only
effortlessly estimates the position of mobile devices but also
provides a higher localization accuracy.
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