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Abstract—This paper presents a novel method for using an
ultra-wideband (UWB), super high frequency (SHF) pulse-echo
radar sensor as a biomimetic sensing mechanism to successfully
solve the Simultaneous Localization and Mapping (SLAM) prob-
lem. Due to recent advances in consumer radar technology it
has become possible to sample the received echo signals well
above their Nyquist frequency. This Nyquist-conform sampling
permits the conversion of the signal waveforms into spectrograms
which contain spatiospectral cues caused by the interactions of
the echoes with features of the environment and the antenna’s
radiation pattern. Such spectrograms can therefore serve as
distinct labels for individual locations, allowing for the identifi-
cation and recognition of these locations. By adapting an existing
acoustic SLAM system (BatSLAM) we have developed a system
that demonstrates the feasibility of our proposed method; the
results validate the potential of using pulse-echo radar as an
exteroceptive sensory modality in topological SLAM systems.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is an ap-
proach to mapping an unknown environment while at the same
time localizing the agent within this generated map, without
any prior knowledge about the environment [1], [2]. This is
accomplished by gathering information from dedicated sensors
by which the robot probes its surroundings and supplying
it to a probabilistic algorithm. This can be an (extended)
Kalman filter [3] or a particle filter [4], which then processes
this information to simultaneously determine the location of
the environmental features and the system itself. SLAM is
commonly implemented on autonomous vehicles and is mostly
employed in GPS-denied environments, highly dynamic sur-
roundings, or situations where the use of external beacon
infrastructure is too costly or infeasible.

Most vehicular SLAM systems use dead-reckoning in the
form of odometry as a basis for localization. However, this
is usually inadequate to perform reliable navigation because
wheel slippage, uneven terrain, and measurement inaccuracies
introduce errors in the pose estimate which accumulate over
the course of the trajectory, causing the estimate to drift away
from its actual value [5]. For this reason, odometry is usually
combined with one or more additional sensors, allowing the
system to achieve a much more accurate result. A wide variety
of sensors can be employed to perform SLAM, including
ultrasonic distance sensors [1], [6], laser rangefinders [7],
optical cameras [8], and ranging cameras [9]. As SLAM begins

to pervade the field of robotic localization, its implementations
and applications are being pushed to new boundaries. Early
solutions were restricted to localization in two dimensions with
three degrees of freedom (3DoF), whereas current solutions
have evolved to handle 3D localization with 6DoF [10]. Exam-
ple applications of systems which implement SLAM include
robot vacuums [11], unmanned aerial vehicles (UAVs) [12],
and the increasingly popular self-driving cars [13].

In this paper we introduce a novel approach to perform
SLAM by means of biomimetic radar. Unlike most systems
which use radio waves as their principal sensory modality, this
approach employs ultra-wideband (UWB) pulse-echo signals
instead of the more commonly used frequency-modulated
continuous-wave (FMCW) signals [2]. The pulse-echo tech-
nique is similar to echolocation as performed by most types
of bats, i.e. biological sonar. In robotics, sonar is often consid-
ered as a limited, rudimentary method of sensing. However,
bats demonstrate otherwise, as can be observed from their
maneuverability and navigational skills, which fully rely on
ultrasonic echolocation. So-called broadband bats achieve this
by making use of temporal and spectral cues present in the
echoes which are caused by the filtering effects of their
morphology [14].

This functionality was the premise for the development
of BatSLAM [15], a biologically inspired system that uses
the principle of echolocation and complementary sonar sen-
sors [16], [17] to perform SLAM. By adapting an existing
visual SLAM approach to be able to use sonar data as input,
BatSLAM shows that ultrasonic pulse-echo signals can contain
enough environmental information to successfully perform si-
multaneous localization and mapping. This is possible because
each received echo pattern serves as a distinct label for its
corresponding location, allowing the system to identify and
recognize the position of the robot. BatSLAM itself is an
extension of RatSLAM [18], a direct visual SLAM imple-
mentation inspired by the navigational processes present in the
hippocampus of rats. The mammalian hippocampus is linked
to spatial memory and navigation [19], and by modeling the
different types of neurons which correspond to these functions,
RatSLAM can perform localization in complex environments
using odometry and conventional camera images as input.

The aim of RadarSLAM is to produce the same capabilities



as BatSLAM by transferring its principle workings from the
acoustic to the electromagnetic domain. Although development
is still in an early stage, we have come to a preliminary
system which demonstrates the feasibility of this approach.
By converting the signals generated by pulse-echo radar mea-
surements to spectrograms, it is possible to produce unique
fingerprints of locations in the environment, which can then
be used by RatSLAM to successfully map the surroundings
and localize the mobile agent within this map. This takes
the technique of directly using signal waveforms as labels,
as seen in [20], one step further by increasing the use of
the information contained in the frequency spectrum of the
echo. In addition to our own novel SLAM setup, we execute
an existing SLAM system in parallel which serves as ground
truth. This system is composed of a lidar sensor and a reliable
SLAM algorithm [21] and is used to benchmark our own
results.

The main motivation for developing a radar sensor which
can be used to perform SLAM is for its use in autonomous
navigation. Autonomous vehicles are starting to permeate
many aspects of both industrial and consumer domains and are
considered one of the most important emerging technologies
by the World Economic Forum [22]. SLAM allows such
vehicles to work in dynamic or even unknown environments
without the need for human operators, potentially making
them more safe and efficient. Employing radar as one of the
main sensors gives them resilience to various environmental
conditions such as rain, fog or smoke, thus further adding to
their robustness.

The rest of the paper is structured as follows: Section II
gives an overview of both the hardware and software com-
ponents which the system comprises. Section III takes an in-
depth look at the radar sensor, covering both the transceiver
and signal processing. In Section IV the overall functionality
of the system and its underlying components are explained.
Experimental results are presented and discussed in Section V.
Lastly, the conclusion on the method and its outcome is
drawn in Section VI, which also gives insight into future
improvements to the system.

II. SLAM SYSTEM SETUP

This section describes the hardware and software that
compose the system, including the ground-truth subsystem,
to give a better understanding of its workings and to allow
others to reproduce the presented results using their own
setup. Currently the system is a prototype used for research.
However, there is no major inherent cost or complexity to the
components and materials used, thus it is reasonable to assume
that it can become more affordable in the future through
further developments and large scale manufacturing.

A. Hardware

The system is created in an ad-hoc fashion by mounting the
required sensors and computational unit on a mobile robot.
This setup allows adding or removing parts as needed.
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Figure 1. The Salsa Ancho radar development kit, including sinuous anten-
nas, an X2 SoC, a BeagleBone Black, and a mounting plate in descending
order of proximity. Spatial axes (x, y, z) and spherical angles (azimuth (θ),
elevation (ϕ)) illustrate the radar’s frame of reference.

1) Mobile robot: The basis for the system is the Pioneer P3-
DX research mobile robot. It has a differential drive consisting
of two separately driven wheels, each featuring rotary encoders
which allow for the estimation of their angular motion. This
makes it possible to obtain the odometry which is required as
input for the SLAM algorithms. It is also possible to directly
access the battery of the robot, which is necessary to power
the custom peripherals.

2) Computing unit: An Intel NUC 5I7RYH serves as a
compact dedicated PC, being only 11× 11× 5 cm in size. It
features an i7-5557U processor, 16GB RAM, SSD storage
and has a reasonable peak power consumption of 65W.

3) Laser rangefinder: As mentioned in Section I, ground
truth is required to compare our own result to one which
is known to be correct. For this purpose, the sensor used
to obtain the measurements is a scanning laser rangefinder
(Hokuyo UBG-04LX-F01); it has a range of 20 to 5600mm,
an accuracy of 1%, and an angular resolution of 0.36◦,
allowing it to generate reliable scans of the surrounding area.

4) Radar sensor: The principal sensor of this setup is Flat
Earth’s Salsa Ancho X2 development kit, which combines a
BeagleBone Black with Novelda’s Xethru X2 radar system on
a chip (SoC) through the use of a custom cape. It also features
directional sinuous antennas for both the emitter and receiver,
as shown in Figure 1. The sensor has an operating bandwidth
of 3GHz which is tunable within a frequency range of 4.5
to 9.5GHz through the use of 10 separate pulse generators.
The chip has a maximum pulse repetition frequency (PRF) of
100MHz and a sampling rate of 39GS/s (gigasamples per
second), which equals a range accuracy of 4mm and allows
for Nyquist-conform sampling.
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Figure 2. A) Temporal waveform of the recorded radar signal in which two
distinct ripples, representing the emitted pulse and received echo, can be seen.
B) Corresponding spectrogram of the signal. The two blotches visualize the
same emitted pulse and echo not only in time and intensity but also frequency.

B. Software

The software of the system is divided into multiple modules
which exchange data through use of the Robot Operating
System (ROS) framework [23]. ROS serves as middleware for
inter-component communication by implementing a publish-
subscribe pattern, supporting a heterogeneous network of
devices with a high degree of abstraction.

1) ROSARIA: The Advanced Robot Interface for Applica-
tions (ARIA) provides an interface to the P3-DX’s internal
operating system. ROSARIA is a wrapper interface which
exposes ARIA to the ROS network, enabling integrated control
of the robot’s functionality. This includes setting the robot’s
velocity, retrieving the odometry information, and reading the
battery voltage.

2) GMapping & AMCL: The software modules composing
the ground-truth setup; GMapping is the ROS implementation
of OpenSLAM’s GMapping [21] and generates accurate maps
based on odometry and laser scan data [24]. Once a map has
been created, the adaptive Monte Carlo localization (AMCL)
module is used to obtain reliable pose estimates [4]. The pro-
duced maps and trajectories can then be used to demonstrate
the validity and accuracy of our own experimental results.

3) RadarSLAM: The core of the system, this module is
written in MATLAB and controls the radar sensor board
through the SalsaLab toolbox, performs signal processing on
the received echoes and interfaces with the OpenRatSLAM
MATLAB implementation [25], [26]. Additionally, it is also
connected to the ROS network by means of the Robotics
System Toolbox to obtain odometry information from the
P3DX robot and pose estimates from the AMCL module.
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Figure 3. Radiation patterns of the Novelda sinuous antenna, empirically
determined using a pan-tilt system and a retroreflector. Measurements were
performed for 4.1, 4.8, 5.6, 6.5, 7.2 and 7.9GHz, and range from −90◦

to 90◦ in azimuth and −30◦ to 47◦ in elevation. As can be observed, the
antenna exhibits a moderate directionality with almost no variation in the
direction of its main lobe.

III. RADAR SENSOR

It is because of recent developments in radar technology
that we are able to present the system described in this
paper. The X2 SoC is one of the first commercially available
sensors which allows for the full wave reconstruction of
received echo signals because its sampling rate (39GS/s)
is well above 2× the signal frequency (10GHz), fulfilling
the Nyquist criterion. This is a necessity because it enables
us to convert the received echo signals into their time-
frequency representations, i.e. spectrograms, using the short-
time Fourier transform. These spectrograms are fundamental
to our application: emitted signals interact differently with the
environment at each location by means of reflection, absorp-
tion, scattering, etc. causing multiple echoes that exhibit time-
delays, attenuation, and mutual interference. A spectrogram
captures all these spatiospectral features and can therefore
serve as a unique fingerprint by which a location can be
identified and recognized. An exemplary pulse-echo signal and
its corresponding spectrogram is shown in Figure 2.

An important feature which contributes to this functionality
is the ultra-wideband aspect of the sensor. Due to the capability
of emitting UWB signals, the received echoes exhibit increased
salience from which additional information about the environ-
ment can be extracted; individual frequencies interact differ-
ently with environmental features causing distinct alterations
to the echoes, which adds to their uniqueness and thus allows
for better differentiation. To exploit this effect even further,
we perform three consecutive UWB pulse-echo measurements
at each location, using separate pulse generators with center
frequencies at 6.4GHz, 7.3GHz, and 7.8GHz.

Another property that significantly influences the salience
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Figure 4. Schematic representation of the workings of RadarSLAM. Starting top-left, pulse-echo radar measurements are acquired at multiple center
frequencies. The waveform signals are converted to spectrograms and further modified to form a local view template. Next, this template is fed into the
RatSLAM hippocampal model together with the odometry gathered from the wheel encoders. RatSLAM then tries to identify a match for the template in its
database. If one is found it will either confirm the current pose estimate or indicate a possible miscalculation. If enough evidence of a positional discrepancy
is observed, the pose estimate is corrected and the map adjusted accordingly.

of environmental features is the directivity pattern of both
the transmitting and the receiving antenna. Ideally the sensor
would scan the environment, giving information about both
distance and direction of reflectors. This would produce a
very explicit descriptor of each location, making it easy to
distinguish between them and thus facilitating localization.
Besides by a rotating antenna or phased array, scanning can
be accomplished by a frequency-scanning antenna of which
the direction of the main lobe(s) changes according to the
frequency of the emitted or received signal. An exemplary
implementation of such an antenna can be found in [27] and
[28]. There are multiple reasons for using this type of antenna
instead of the alternatives; mechanical scanning, as present
in lidar sensors for example, requires moving parts driven
by motors, which increase the complexity and weight of the
system, and can also generate gyroscopic forces that could be
undesirable on vehicles such as drones. Electronically scanned
arrays, i.e. phased arrays, on the other hand are composed of
up to thousands of individual antennas, which again raises the
complexity and adds to its size, weight, and cost. Although
frequency-scanning antennas have reduced accuracy compared
to these alternatives, they offer an inherently low complexity
of their components [16]. Additionally, processing of the
directionality of a signal occurs in the analog domain, which
reduces the requirement for computational power.

Currently, we are using the standard antennas supplied
with the Salsa Ancho development kit. These are directional
sinuous antennas with a reported opening angle of 65◦ in

azimuth and 85◦ in elevation, and frequency range of 6.0 to
8.5GHz with a typical gain of 6.0 dBi [29]. As illustrated in
Figure 3, these antennas are moderately directional and do
not exhibit any notable variation in their radiation pattern.
Consequently, they embed little to none information about
the location of reflectors in the signal through modulation
of the spatiospectral characteristics and thus are not optimal
for our needs. Regardless, the system can still successfully
perform SLAM using them, as is shown in Section V, and
we presume performance will increase considerably when
utilizing specialized custom antennas.

A last aspect of the sensor which adds to the overall
functionality of the system is its frequency range, which covers
the radar C-band and lower part of the X-band (IEEE radar-
frequency band designations). These frequencies are reflected
by most materials which are common in man-made structures
and objects, such as brick and concrete, metal, glass, and wood
to a lesser extent. Opposed to lidar, which uses electromagnetic
frequencies near the visible spectrum, these radar frequencies
are not strongly hampered by airborne particles such as smoke,
rain, and dust, or by temperature and pressure, which is useful
in a variety of circumstances; a radar sensor can ensure that
an autonomous vehicle remains functional even when exposed
to adverse environmental conditions, adding to its operational
safety and efficiency. Examples include navigating in low-
visibility weather, or firefighters sending an exploration robot
into a burning building, filled with smoke and hot air, to map
the internal structure [30].



IV. RADARSLAM
RadarSLAM is in effect an adaptation of a preexisting

SLAM system, namely BatSLAM, which in itself is an
adaptation of RatSLAM. To fully understand the workings of
RadarSLAM it is necessary to have an insight in the workings
of these two systems as well.

A. RatSLAM

RatSLAM is a vision based SLAM implementation inspired
by the navigational processes which occur in the hippocampal
regions of a rat’s brain. It models certain types of cells,
i.e. neurons, to achieve its mapping and localization func-
tionality; in biology, positional information is represented by
place cells [31], which activate at specific locations due to
estimation of self-motion or recognition of visual scenes,
and head direction cells [32], which activate when facing in
a specific absolute direction. In RatSLAM these two cells
are combined into a single digital counterpart, pose cells
(PC) [33], which encode both location and orientation. Visual
recognition is delegated to local view cells (LV), which are
associated with distinct visual scenes and become active when
their corresponding local view template is observed. In the
case or RatSLAM, self-motion information takes the form of
odometry, while observations of visual scenes are represented
by digital camera images.

Experiences link pose cells and local views cells together,
storing at which location each visual scene was observed, as
well as the positional relationship between these locations,
which is represented by the experience map. Additionally, pose
cells and local views cells are connected by a continuous
attractor network (CAN) [34]; shortly summarized, this is a
network of neurons with excitatory and inhibitory intercon-
nections in which activity is injected by external stimuli, after
which it converges to a stable pattern representing a specific
outcome.

Because the experience map is actually a graph in which
locations are represented by nodes, it is not strictly metric
by nature, but instead it is topological. A metric map has a
direct geometrical correlation with the physical world, whereas
a topological map only retains adjacency of locations but does
not inherently depict distance or absolute direction correctly.
However, because RatSLAM takes odometry as input, it can
adequately estimate the positional relation between experi-
ences and so the output still resembles a metric map. It is
worth to note that because SLAM only uses on-board sensors,
the obtained positions are always relative to a local reference
frame, instead of absolute in a global reference frame as is the
case in solutions which use external beacon infrastructure.

Unlike most visual SLAM systems, RatSLAM takes a direct
approach instead of the more common feature-based approach.
In the latter, each incoming image is analyzed to detect
and extract visually salient features which act as descriptors
for the image and thus for the position at which it was
taken [35]. Such features include edges, corners and regions
of similar appearance. A direct visual approach on the other
hand does not perform any interpretation on the image, but

instead uses the image in its entirety to serve as a descriptor
for the location, where each pixel counts as an individual
feature [36]. This makes a direct approach more robust to
situations where conventional features are scarce, and has the
additional advantage that it can make use of images that do
not originate from optical cameras and thus do not necessarily
contain any visual salience in the classical sense. This last
property permits RatSLAM to be used for a wide variety of
applications with diverse types of input. Non-visual sensory
modalities that have been used in combination with RatSLAM
include Wi-Fi signals [37], sense of touch [38], and in-air
ultrasonic waves [15], the latter of which will be detailed in
Section IV-B.

B. BatSLAM

As mentioned before, BatSLAM is a SLAM system which
uses ultrasonic echolocation, i.e. sonar, to perform its place
recognition. It does this by emitting an ultrasonic hyperbolic
chirp which ranges from 20 to 100 kHz and then recording the
resulting echoes, which are received by two separate micro-
phones encased in plastic replicas of bat pinnae. Because these
echoes are created by complex interactions with structures
and objects in the environment, they are well suited to serve
as unique descriptors for locations. The goal of the plastic
pinnae is, just as their biological counterparts, to introduce
even more environmental information in the echoes by filtering
frequencies according to their angle of incidence [14], which
adds cues about the location of reflectors. Furthermore, the
use of two microphones introduces additional cues because an
incident echo coming from a certain direction might arrive
at a different time and with a different intensity at each
microphone, giving rise to interaural timing and intensity
differences which have been shown to be of great importance
in spatial hearing [39]. This is further enhanced by the fact
that the pinnae enclosing the microphones are pointed in
opposite directions. By converting the received echo signals
to spectrograms, it becomes possible to make use of both this
temporal and spectral information which is embedded in them.

In BatSLAM, the spectrograms generated from each micro-
phone signal are concatenated to form a single image, which
is further subsampled and smoothed to serve as a local view
template. By tweaking the CAN parameters and implementing
a custom comparison algorithm which can determine the
similarity between these local views, the system is then able
to perform SLAM by means of echolocation.

C. RadarSLAM

Using the expertise gained from BatSLAM, the goal of
RadarSLAM is to transfer the principles of sonar to the domain
of radar. In addition to the advantages of radar mentioned
in Section III, there are several others associated with using
it instead of sonar. Firstly, its signal travels at the speed of
light rather than the speed of sound and can therefore cover
distances more rapidly, which causes echoes to return faster,
resulting in a much higher PRF. Secondly, ultrasonic sound
waves attenuate at around 1 dB/m due to atmospheric effects,
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Figure 5. Comparison of the results obtained from a single run in an industrial
lab setting. Top: ground-truth trajectory generated by the AMCL module
based on laser rangefinder scans. Middle: odometry trajectory generated by
dead-reckoning based on rotary encoder readings. Bottom: experience map
generated by RadarSLAM based on the combination of odometry with pulse-
echo radar measurements.

whereas electromagnetic waves only attenuate in the order of
0.01 dB/km at the frequencies used, which results in stronger
echoes and a higher signal to noise ratio. Lastly, radar is
not as greatly affected by air conditions such as temperature,
humidity and pressure as sonar, making it more viable in a
wider range of situations.

A full overview of the workings of RadarSLAM is given
in Figure 4. Shown in the top left, the radar sensor is used to
obtain three consecutive pulse-echo readings at 6.4, 7.3 and
7.8GHz for a single position. Each of these echo waveforms is
converted to a spectrogram, which are then cropped to a fixed
time and frequency range that is of interest to our application.
These separate frames are combined into a single image which
serves as the local view template for that specific position.
Each cycle of the algorithm, the current local view template is
fed into the hippocampal model of RatSLAM which retains a
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Table I
METRICS PERTAINING TO THE TRAJECTORY SHOWN IN FIGURE 5.

Total distance traveled 599.8m
Average speed 0.5m/s
Number of sampled locations 1730
Cumulative odometry error 3441.9m
Cumulative RadarSLAM error 749.3m
Average odometry error 1.99m
Average RadarSLAM error 0.43m
Maximum odometry error 4.82m
Maximum RadarSLAM error 1.36m

database of all previously perceived local views. This template
is then compared to the entries in the database to determine a
match, using the same method as described in [15]. If one is
found, the local view cell which corresponds to the matched
template is activated, else a new local view cell is created for
this template and added to the database. This local view cell
will in turn activate its associated pose cell. In the case that this
is the pose cell which already represents the system’s current
pose estimate, it will be reinforced. Else, the system will enter
a state in which multiple possibilities are maintained. If the
observed visual evidence causes another pose cell to dominate
the network activity, this cell will represent the system’s new
pose estimate from then on and a loop closure will occur; the
robot’s position is updated and the map adjusts for the error
in the trajectory through graph relaxation. This results in a
more exact localization of the robot and a map which is more
accurate.

V. EXPERIMENTAL RESULTS

The validity and accuracy of the system were determined by
performing multiple mappings of a feature-rich environment,
in this case an industrial lab. The results exhibit a notable
improvement over the use of odometry by itself, as shown in
Figure 5. It can clearly be observed that the map produced
by RadarSLAM has a higher similarity to the ground truth
than the map generated solely based on odometry. Additional
metrics for the trajectory, presented in Table I, support this ob-
servation, showing that RadarSLAM outperforms odometry by
a factor of 4. The cumulative, average and maximum distance
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error between the resulting trajectories and the ground truth
are determined by first aligning the trajectories using a rigid
iterative closest point (ICP) algorithm and then calculating the
pointwise euclidean distance between each corresponding lo-
cation. Six additional runs of varying lengths were completed
in the same environment and produced comparable results.
Furthermore, the system was also tested in a smaller-scale
office environment where a similar degree of performance
was achieved, as can be seen in Figure 6. It should be noted
that these results concern comparisons between metric and
topological maps, which one should take into account when
interpreting them.

Further analysis of the system is shown in Figure 7, which
deals with the information content and ambiguity of the
local view templates created from the radar measurements.
Figure 7A shows a map illustrating the measure in which
templates are shared between experiences. This can occur
both because repeatedly visited locations are recognized or
because separate locations are very similar to each other in
terms of their radar echo. Sharing of local view templates
between separate locations is not a problem as long as these
are singular events and the locations at which it occurs are
spatially detached. However, it can become a problem if this
is not the case; if sequences of measurements taken at different
locations appear alike and are incorrectly identified as such,
this results in false-positive positional matches and erroneous
loop closures. To achieve optimal performance, a balance must
be found; too much sharing means templates contain a high
amount of ambiguity and thus do not represent their associated
position conclusively, whereas too little sharing means that the
templates have a very high uniqueness, causing any noise or
deviation in position to hinder a correct match.

The same concept is illustrated in Figure 7B, where it
can be seen that 80% of local view templates are linked
to a distinct experience, while the remaining 20% are being
shared between experiences, with fewer occurrences as sharing
increases. Samples of such templates are shown in Figure 7C-
E, where we haven taken those with the least, mean, and
maximum amount of sharing respectively. As can be observed,
the template for LV 2 is very distinct with many features plus
some added noise and thus only perceived at a single location,
whereas LV 39 does not contain a lot remarkable elements
such as multiple echoes or frequency cues, which seems to be
a common occurrence for quite a number of locations.

VI. CONCLUSION & FUTURE WORK

This paper presents a prototype for a novel approach to
perform SLAM using radar. The system’s workings and advan-
tages have been explained and the feasibility of the employed
technique has been validated using experimental results. As far
as the authors of this paper know, no other systems use radar
in a direct SLAM approach by converting the electromagnetic
signal waveforms to spectrograms.

Using BatSLAM as a basis while moving from the acoustic
to the electromagnetic domain, we have demonstrated that
UWB pulse-echo radar, without feature detection or interpre-
tation, can be successfully used as a primary sensory modality
to uniquely identify and recognize distinct locations, allowing
SLAM to be performed. This is possible even though only
a single sensor without a specialized antenna is used, which
allows room for improvement of the information content of
the local view templates (as established for acoustic sensing
in [40]) and thus warrants further exploration of the approach.

In future research, we plan on employing dual radar sensors
with custom antennas, which will introduce both new binaural



cues in the form of interaural differences and additional
monaural cues in the form of spatiospectral cues in the echoes.
This increases the amount of contained information and thus
allow for better localization. This improved system is to be
tested in more varying environments and conditions to fully
determine its capabilities. Furthermore, we intend to insert
artificial drift in the odometry to establish the limit of error
RadarSLAM can compensate for. An additional long-term goal
is to extend the system to 3D/6-DoF SLAM which will allow
for its use on aerial vehicles such as drones.
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