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Abstract—The public transports provide an ideal means to
enable contagious diseases transmission. This paper introduces
a novel idea to detect co-location of people in such environment
using just the ubiquitous geomagnetic field sensor on the smart
phone. Essentially, given that all passengers must share the
same journey between at least two consecutive stations, we have
a long window to match the user trajectory. Our idea was
assessed over a painstakingly survey of over 150 kilometres of
travelling distance, covering different parts of London, using the
overground trains, the underground tubes and the buses.

I. INTRODUCTION

In 2015, it was reported that over 3 millions people relied
on public transports in London every day, with an average
of 45 minutes on board per person1. Such condition is ideal
for infectious diseases to spread. For instance, an ill person’s
openly sneeze or cough may easily spread to other fellow
passengers on a poorly ventilated underground tube in a long
journey. Thus, co-location detection of people in such highly
infectious environment is critical to control or predict the
disease spreading rate in an event of epidemic.

For the past decade, the emerging of mobile devices pro-
vides a unique opportunity to tackle this challenge, since most
people carry a smart phone with them when they are out and
about. More importantly, every mobile device is equipped with
multiple sensors that are capable of passively scanning the
surroundings. However, little work was done within the health
research community to make use of these sensors’ reading. In
this paper, we propose the use of the geomagnetic field sensor
(magnetometer) to detect co-location of people on the public
transports. We assume that, when two mobile devices observe
similar time-stamped sensor’ readings, they should be nearby,
which in turns, guarantees that their respective owners should
also be close by. Critically, since every passenger must share
the same journey between at least two consecutive stations,
which may last up to 10 minutes on the trains or buses, we
have a window of opportunity to assess co-location of people.

The foremost advantage of our approach is that, at the time
of writing, Google consider magnetometer to be a low power
basic sensor, and thus, allowing it to be always-on and can
be inquired without any permission, even in flight-safe mode.

1https://www.gov.uk/government/statistics/transport-statistics-great-britain-
2015 - last accessed in Feb/2017

This is important for any passive epidemic tracking app to run
seamlessly without the hassle of asking for the user permission
(e.g. Since Android 6.0, Google demand any app that uses
WiFi or Bluetooth to ask for real-time permission to access
the user location).

Overall, the paper identifies the following contributions:
• We propose the use of magnetism to detect co-location of

people. No wireless signals (e.g. WiFi, Bluetooth, GPS,
Cellular) are needed.

• We detail our algorithm to robustly detect same-carriage
co-localisation.

• We assess our system in large scale real-world settings
which cover 150 kilometres of travelling distance in
different parts of London, on all types of public transports
(i.e. the overground trains, the underground tubes, and the
buses).

The remaining of the paper is organised into six sections.
Section II tells the story behind our ideas of using magnetism.
So that, Section III can build on to explain our concept of
magnetic based co-location, emphasising on the challenges
facing such approach. Then, Section IV details the experiments
including the test environments and the empirical results.
Section V overviews other related work. Lastly, Section VI
summaries our work and outlines further research.

II. MAGNETISM BASED CO-LOCATION OF PEOPLE

This section justifies the selection of magnetism for this
paper and compares it to other wireless based competitors.

A. An inspiration and opportunity of using magnetism for
localisation

It is well-known that animals rely on the Earth’s magnetic
field to perform route-finding in nature (e.g. the birds know
where to head North in migratory season). Regrettably, such
technique cannot be applied indoors or undergrounds, because
the natural magnetic field generated by the Earth’s core is
heavily distorted by the metal bars, steel rebars, ferrous tubes
and reinforced concrete which are commonly found within the
building structure. Additionally, an electric current that moves
in metal wires (e.g. power lines) will also alter the nearby
magnetic field. However, this challenge provides a ‘unique’
opportunity for the purpose of co-location detection. That is,
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(a) High level of magnetism distortion during a 16 minute train
journey

(b) The heatmap visualisation of the trip

Fig. 1. An inspiration for using magnetism for co-location detection on public
transports. The magnetism observed on-board of an overground train from
South-East to Central London, passing through 5 stations is heavily distorted.

the magnetic field is not uniformly perturbed, so that, different
areas experience different magnetism anomalies (see Figure 1).

Nevertheless, the ultimate research question is: To what
extent can magnetism be used to differentiate two separate
positions? For the purpose of epidemic tracking, we are
looking at city-level operation, and it is unavoidable that
several locations may exhibit the same magnetic signature.
There are four reasons that inspire us to venture towards this
approach.

1) We are only interested in co-localisation, that is, the
exact moment two persons are close by. As such, a time
stamp constraint will get rid of most similar samples
collected at different times.

2) We focus our attention on the public transports, which
guarantee that all passengers must follow the same
trajectory for at least two consecutive stations. This
window supplies a long sequence of samples which
allows us to further differentiate non-co-located users.

3) Modern public transports are electric-based (e.g. those
used in London) which greatly alter the on-board mag-
netic field area. Additionally, other trains that run on
adjacent tracks may temporarily distort the magnetism
of the neighbourhood trains.

4) The ferrous structure from nearby buildings may have
a unique magnetic signature that all passengers on the

Fig. 2. The three axes measured by the magnetometer.

same train must observe, albeit with different time
delays (i.e. the passenger at the front of the train will
‘see’ the building a few seconds earlier than the one at
the back).

B. Pros and cons of using magnetism

For the purpose of co-location that leverages the smart
phone’s sensors, the magnetic field strength is not the only
viable option. Other popular wireless signals such as Blue-
tooth, WiFi, Cellular, GPS have their own pros and cons (see
Table I).

Coverage-wise, the magnetic field is available anywhere on
Earth, whereas, GPS, WiFi, Bluetooth and Cellular wireless
signal depend on the distance to nearby stations or satellites. In
terms of power level, five hours of magnetometer’s continuous
inquiry plus writing the results to a file consumes as little
as 7% of battery, according to the in-built Android power
measure, compared to over 45% of that using GPS, and
30% using WiFi. As a matter of fact, Android even allows
the magnetometer to function normally in both ‘Flight safe’
mode and ‘Power saving’ mode, where most other sensors
are suppressed or turned off completely. Additionally, the
magnetometer achieves a fine-grained sampling rate at about
49.65 Hz with both of our test phones (about 50 samples per
second), compared to just 3 samples per second with Bluetooth
or about 1.5 samples with WiFi. It is worth noting that since
Android offers 3 levels of magnetometer sampling - 4.96 Hz,
14.89 Hz and 49.65 Hz, we opted for the fastest one. This
is essential for the underground tube test scenario, where the
average speed of the tube is 60 kilometres per hour. Lastly,
the ease of access is probably the most overlooked strength
of the magnetometer, for which no permission whatsoever is
required from either the user or the app to inquire the sensor’s
readings, at the time of writing.

However, despite these apparent benefits, the magnetic field
strength is not spatially unique, because it contributes just 3
measures at each position, corresponding to the strength along
each of the 3 axes (see Figure 2). In contrast, WiFi or Cellular
based solutions have a much richer positioning representation,
since they obtain references from several nearby stations. More
problematically, the 3D orientation of the phone varies the
above 3 measures. As such, the 3 measures must be reduced
into one scalar magnitude, which practically means we only
have 1 magnetic field based measure for every position.



TABLE I
COMPARISON OF SMART PHONE’S SENSORS FOR CO-LOCATION PURPOSE.

Magnetometer WiFi Bluetooth Cellular GPS
Coverage Ubiquitous Mostly indoors & City centrals Indoors Urban areas Outdoors

Ease of access No permission Need user permission Need user permission Need user permission Need user permission
Power consumption Low High Low Average Very high

Sampling rate 49.65 Hz 2 Hz 1 Hz 0.1 Hz 1 Hz
Spatial uniqueness Changing Changing Changing Changing High
Temporal variation Low High High High Low

Fig. 3. The Android app used to collect the magnetic field strength.

III. ANALYSING THE SENSOR’S FOOTPRINTS FOR
CO-LOCATION DETECTION

Now we are in a good position to explain our co-location
detection idea. At the beginning, the user installs an Android
app on their device (see Figure 3). The app’s mission is to
silently collect the magnetic field strength in the background.
Each magnetic reading is accompanied by a time stamp and an
activity recognition parameter, which will be discussed shortly.
In an event of epidemic, the user submits his personal sensor
data to a central server, which also manages other users’ data.
The process of co-location detection will be performed by
comparing each pair of user data as follows.

Without loss of generality, let us assume the first user -
Alice submits her data in the form of (~p1, . . . , ~pN ), where ~pi =
(mi, ai, ti) is the representing vector of position ith on Alice’s
journey comprising of N positions. mi is the scalar magnitude
reported by the magnetometer and ai is the recognised activity
(to be discussed below) at time ti (1 ≤ i ≤ N). The second
user - Bob’s trajectory is in a similar format of (~p′1, . . . , ~p

′
M ).

Our objective is to verify whether Alice and Bob were co-
located, and if so, when did that happen.

Step 1: Smoothing the data
We applied a linear moving average filter on the magne-

tometer outputs to smooth out the short-term electric noises
from the sensor and to expose the true magnetic changes
generated from the vehicle and the environment (see Fig-
ure 4). An empirical window size filter of 10 was applied,

Fig. 4. A part of the magnetic samples with/without the moving average
filter. The filter reduces the overall electric noises from the magnetometer.

since we can acquire up to 50 samples per second. Without
loss of generality, given a sequence of magnetic readings
(m1, . . . ,mN )(11 ≤ i ≤ N), with N is the length of the
sequence, each magnetic sample is smoothed out as follows.

mi =

10∑
j=1

mi−j

10
(1)

Step 2: Filtering the public transport related sequences
The user’s sensor data reflects his continuous activities

through out the whole recorded period. However, we are only
interested in parts of the data where the public transports
were used. Hence, we employ the Activity Recognition API
provided by Android to extract those2. This process runs in
real-time along side with the data collection. The crux of
this algorithm is that it uses a Bayesian classifier over the
accelerometer readings to decide the likelihood of the current
activity. Eight different activities are currently supported (i.e.
Walking, Running, Still, On Foot, On Bicycle, In Vehicle,
Tilting and Unknown). For our purpose, we are only interested
in two main activities, that are, ‘In Vehicle’ and ‘On Foot’.
A magnetic sequence will be extracted if it begins with an
‘On Foot’ event, following by an ‘In Vehicle’ event, which
signals that the user is entering the train or bus, and ends with
another ‘On Foot’ event, which signals that the user is leaving
the vehicle. At the end of this step, each user’s data is split into
multiple trajectories, where each of them represents a separate
trip on a public transport.

2https://developers.google.com/android/reference/com/google/android/gms/
location/ActivityRecognitionApi - last accessed in Feb/2017.



(a) Euclidean alignment

(b) DTW alignment (c) DTW warping path

(d) Derivative DTW alignment (e) Derivative DTW warping path

Fig. 5. The justification for using Derivative DTW. Euclidean distance based matching fails to align trajectories of different lengths, while standard DTW
over-warps the X-axis to explain the variability of the Y-axis.

Step 3: Finding the pair of matched trajectories
Each of Alice’s trajectory will be compared to all of Bob’s

trajectories to determine if they were co-located. The reverse
process is unnecessary since the relationship is both-sided. We
employed Derivative Dynamic Time Warping (DDTW) [1] to
match two magnetic trajectories for four reasons.

Firstly, it stretches the shorter trajectory to match the longer
one, which is essential for our purpose because of the sensor’s
delay to always guarantee the same number of samples per
second. Secondly, it can match mis-aligned trajectories by
finding the optimal warping path which is important due to
different sensitivities from different phone’s sensor, whereas
other distance-based measures (e.g. Euclidean, Manhattan)
simply align the ith point on Alice’s time series to the same
ith point on Bob’s time series (see Figure 5a). Thirdly, DTW is
a proven technique with successfully time-tested applications
in the speech recognition research community [2], [3].

Lastly, our justification for using DDTW instead of the
standard Dynamic Time Warping (DTW) is that DTW may
suffer from incorrect alignments where a single position on
Alice’s trajectory is mapped onto a large set of positions on

Bob’s trajectory (see Figures 5b and 5c). This phenomenon
commonly happens when standard DTW tries to explain the
variability of the Y-axis by over-warping the X-axis (see
Figure 5).

Without loss of generality, given Alice’s magnetic sequence
A = (m1, . . . ,mN ) and Bob’s magnetic sequence B =
(m′1, . . . ,m

′
M ), DDTW first tries to build an N-by-M matrix,

where the [ith, jth] element is the distance between the two
points mi and m′j . While standard DTW uses the Euclidean
distance, DDTW uses the square of the difference of the
derivatives of mi and m′j as follows. This distance was
empirically proven to be more robust to outliers than other
estimate using only two data points [1].

D(A) =
mi −mi−1 + ((mi+1 −mi−1)/2)

2
, (1 ≤ i ≤M)

(2)
Step 4: Validating the matching pairs of trajectory
Given one of Alice’s trajectories, DDTW will always find

a best matched trajectory from Bob’s (i.e. the one with the
smallest distance), although they may not be similar at all.
This is a typical challenge for all distance-based and similarity-



based approaches. For a highly sensitive problem such as
epidemic tracking, an administrator normally looks at the final
matching trajectories presented by the algorithm from the last
step, and manually decides whether they are indeed co-located
or not. Nevertheless, we present three heuristics to automate
this decision-making process.

1) The temporal difference of the two trajectories must be
less than 5 seconds. For a typical 8-carriage train in
London, it is unlikely that Alice and Bob are in the same
carriage if their trajectories were distanced by more than
a few seconds apart.

2) The compression rate must not exceed 1.5. This number
measures how stretched or compressed one trajectory is,
in order to match the other trajectory. Realistically, we
expect the journey of two co-located passengers to be
roughly equal in terms of length. Given the length of
Alice’s magnetic trajectory is lA (samples) and Bob’s
is lB (samples), the compression rate is calculated as
max(lA,lB)
min(lA,lB) .

3) The difference score between the two trajectories must
not exceed an empirical constant of 5. This score is
calculated by adding up the difference between every
aligned samples on the time series, divided by the total
length of the warped path.

A pair of trajectories must satisfy all three above criteria
to be declared as valid matching, and thus, signalling a co-
location detection between the two respective passengers. We
will evaluate their performances in the experimental section.

A. Challenges to our approach

Firstly, with any technique that aims to differentiate the
users’ position, the spatial uniqueness of the sensor reading is
essential. Although our approach takes into account the time
series of the sensors’ reading, if the user takes a very short trip,
it is much harder to match his trajectory to other passengers’.
We will assess this challenge in the experimental section.

Secondly, time-wise, all users’ phones must be synchronised
to correctly co-locate their owners. Since the app uses the local
time of the phone to stamp each sensor output, some mismatch
between different phones’ clock may occur. A simple solution
is to inquire an internet time service or the cellular provider
for ground-truth, whenever a connection can be made. This
ground-truth will help revealing the offset to the phone’s local
time.

Thirdly, the heterogeneous devices remain a difficult task
for any smart phone based approach. Different models may
employ non-identical chip sensors, which have different sensi-
tivities. However, our algorithm does not consider the absolute
strength value, but looks at the overall shape of the trajectories
to match them.

IV. EMPIRICAL EXPERIMENTS

This section conducts the experiments to assess the feasi-
bility and the accuracy of our approach. In doing so, it aims
to address the following research questions.

In terms of feasibility:

(a) Overground train test routes. They cover over 70
km, passing through 2 of the busiest stations in London
(London Bridge & Liverpool Street).

(b) Underground tube test routes. The routes shown here
are exactly the same as the real-life ones. Since the tubes
travel underground, some paths appear to go under-water
and through buildings.

Fig. 6. The overground and underground test environments visualised on
Google Maps.

• How much spatial variation does the on-board mag-
netism possess? High variation of magnetism amongst
places is highly desirable to generate a distinguishable
trajectory for people in different carriages.

• How identical is the magnetic field strength in the
same train carriage or bus? We hypothesise that nearby
passengers at carriage-level should observe a similar
magnetic reading at any moment.

In terms of accuracy:
• What is the precision and recall rate of our co-location

detection algorithm? We will verify the successfulness
of our detection algorithm on real-world data.

For the ease of assessment, the experiments were separated
into three categories - overground train, underground tube and
the bus, which cover diverse landscapes of London. Different
types of vehicles were also tested (i.e. London trains are
operated by 22 different companies3). Two Android phones
were used in this research, namely the Google Nexus 5
(released in 2013, running Android Lollipop), and Lenovo
Phab 2 Pro (released in 2016, running Android Marshmallow).
Through-out the following experiments, these devices were

3http://www.londontravelwatch.org.uk/links/train operating companies -
last accessed in Feb/2017



(a) East Dulwich - Peckham Rye route. (b) Peckham Rye - Queens Road route. (c) Queens Road - South Bermondsey route.

(d) Covent Garden - Holborn route. (e) Old Street - Angel route. (f) Waterloo - Southwark route.

Fig. 7. The autocorrelation plot of the six test trajectories. We omit the remaining trajectories which exhibits a similar trend for page limit. The majority of
autocorrelations are non zero, which confirms the non-stationary property of these magnetic time series.

held naturally in the surveyor’ hands, or left in the pocket.
Their local clocks are also synchronised.

A. Overground train and underground tube test environments

As the overground trains and underground tubes share
similar aspects (i.e. both have multiple carriages, are electric-
based), we combined both test environments for more concise
analysis.

Our overground test environment is made of 5 separate
routes, which traverses 31 different stations, and covers over
70 kilometres of travelling distance in the South-East and East-
Central of London (East Dulwich - London Bridge - Camden
- Liverpool Street - Stratford - Manor Park) (see Figure 6a).
Our underground tube test scenario examines 5 main lines
of the London underground network, namely the Northern,
Central, Jubilee, Piccadilly and District line, covering over 57
kilometres (see Figure 6b). For both test environments, each
route was visited twice with the surveyors in different seats
and carriages. We used 4 different train companies to add more
diversities to the dataset.

The first experiment assesses the spatial variation of the
on-board magnetism. A surveyor sat in the same place and
travelled through all of the above test routes. We then examine
the resulting magnetic trajectory between every 2 consecutive
stations on his journey. Our hypothesis is that all trajectories
are non-stochastic or non-stationary (i.e. we want the magnetic
field strengths within a trajectory to change significantly).
Visually speaking, an autocorrelation plot of each trajectory
time series has significant non-zero lags, which confirms the
trajectory is non-stochastic. Additionally, the line segment’s
length gradually decreases below zero, which indicates a non-
stationary time series (see Figure 7).

What surprised us the most when carrying out this experi-
ment was that often when the train waited at the station, the
magnetometer reported high measures without any movement

(a) Waiting at Startford (overground)
on Carriage #1.

(b) Waiting at Startford (overground)
on Carriage #4.

(c) Waiting at Holborn (underground)
on Carriage #1.

(d) Waiting at Holborn (underground)
on Carriage #3.

Fig. 8. The on-board magnetism readings from 2 different carriages on a
static train. No movement from either surveyor or nearby passengers existed.
This experiment proved the strong non-uniform impact of the electric current
from the railway structure on different train carriages.

from both the user and the train. This phenomenon happened
even at relatively quiet stations without much movements from
other passengers on the platform. This ascertains our afore-
mentioned assumption that electric-based trains greatly distort
the on-board magnetic field. However, we discovered that not
all carriages experienced the same effect (see Figure 8). This
is a significant attribute for our purpose, since it combines
with the natural magnetism distortion from nearby building
structure to make the magnetic observations more unique.

The second experiment assesses the magnetic field strength
observed by people on the same carriage. Our hypothesis is
that their mobile devices should capture similar magnetism
readings. For each trip, two surveyors sat on the same carriage,



(a) East Dulwich - London Bridge route (b) Camden - Stratford route (c) Shoreditch - Dalston Junction route

(d) Shadwell - Mudchute route (e) Liverpool Street - Manor Park route

Fig. 9. The magnetic field observed by two mobile devices on the same carriage. All test trips exhibit a remarkably similar shape. The gap in the magnitude
was caused by slightly different sensitivities from different phone models.

(a) London Bridge - Camden (Northern line) (b) St. James’ Park - Whitechapel (District
line)

(c) Green Park - Canada Water (Jubilee line)

(d) Piccadilly - King’s Cross (Piccadilly line).
The flat line was caused by non-moving tube
because of congestion near Leicester Square
station. It was interesting to observe that the
magnetic reading stays relatively stable during
this period

(e) Bond Street- Bank (Central line)

Fig. 10. Comparison of the underground trips observed by two mobile device on the same carriage. All test trips exhibit a remarkably similar shape. The
gap in the magnitude was caused by slightly different sensitivities from different phone models.

albeit in different seats. The maximum distance between them
was up to 7 metres. Figures 9 and 10 display a remarkably
similar shape of the two magnetic trajectories. The oscillation
happened noticeably more often on the underground trips than
the overground ones.

Thus far, we have used visual cues to reinforce the feasi-
bility of using magnetism for co-location detection. The last
experiment will inspect the accuracy of our automatic detec-
tion algorithm outlined in Section III. There are 26 overground
test trajectories and 34 underground ones that connects two

consecutive stations for each surveyor. For the sake of testing,
we ignore the time-stamp so that our algorithm must only work
with the magnetic readings. For each of Alice’s trajectories,
we compare it to all of Bob’s. Our hypothesis is that our
algorithm should only accept one of Bob’s trajectory - the
one that co-locates with Alice’s. Out of a total of 676 pairs of
overground trajectories between Alice and Bob, our algorithm
correctly identifies all 26 pairs that are indeed co-located.
With these co-located pairs, the maximum DDTW score was
only 3.8 and the maximum compressed rate was only 1.2.



(a) The DDTW scores heuristic comfortably rejected all non co-
located pairs with fine margins.

(b) The compress rate heuristic is based on the trajectory length
only, hence allowed some false positives.

Fig. 11. Validating the 676 matching pairs of overground trajectories and
1,156 pairs of underground trajectories. The compress rate heuristic responses
much faster than the DDTW score heuristic, albeit allowing some false
positives. Thus, we should apply it first to get rid of the majority of the
true negatives, then use the DDTW score to get rid of the remaining false
positives.

Recalling the heuristics that we defined earlier, these pairs of
trajectories satisfied them with wide margins (see Figure 11).
For the remaining 650 pairs of non-co-located trajectories,
our algorithm comfortably rejected them based on just the
DDTW distance and the compressed rate criteria. With these
pairs, the minimum DDTW score was 8.2 and the maximum
compressed rate was 9.4. A similar result was observed with
the underground trajectories. Hence, our hypothesis holds for
this experiment. It is worth noting that we deliberately ignored
the time stamp constraint for this experiment. Realistically, this
essential information will help getting rid of many trajectories
which start at different times in the real-world.

B. Bus test environment

Our bus test scenario composes of 3 separate routes, which
traverse 22 kilometres of travelling distance in the South-East
and Central London (London Bridge - Old Street, Waterloo
- Oxford Circus, Regent’s Park - Angel), using 4 different
buses (see Figure 12). On top of that, each bus may have an
upper deck and a lower deck, which are equivalent to two train
carriages. Through-out the experiment, two surveyors sat on
different seats on the bus in both decks.

Regrettably, a plot of the magnetism from all routes reveals
little to no spatial variation. For instance, a 7 minute ride
from Lancaster Place stop to Charing Cross stop, passing by
3 different stops had almost zero variation (see Figure 13).

Fig. 12. The heatmap of the bus test environment visualised on Google Maps.
Regrettably, the magnetic distortion is almost non-existent.

The highest magnetic distortion was just 80 µT which was
observed right in front of Cannon Street station, compared to
that of 350 µT for the underground test scenario and 210 µT
for the overground test scenario.

These results draw up a conclusions that it was not feasible
to detect co-location of people on the London buses using
magnetism. An empirical explanation is that London buses are
hybrid diesel-electric vehicles. They use a diesel engine with
electric storage through a lithium ion battery pack. As such,
the vehicle itself does not alter the on-board magnetic field
much. Additionally, the roads and pavements are a concrete
mix of cement and sand which have almost zero impact on
magnetism.

C. Summary

We have presented our empirical experiments to co-locate
people on the London public transports. Table II summaries the
key highlights of our test environments. The clear differences
of the underground test environment over the overground one
is that the tubes run much faster at almost double the speed.
Much more importantly, the level of underground magnetism
distortion was much higher than that from the overground
trains, which compensates for the short trip length between two
consecutive stations. Our approach was very much feasible for
the overground trains and the underground tubes, for which the
supported railway structures contributed immensely to the high
variation of the magnetic field. In contrast, the experiments on
the London buses which run on hybrid diesel-electric engine
showed little to no magnetic distortion through-out many
London routes.

V. RELATED WORK

Since the essence of our paper is co-location detection for
epidemic tracking, we will only overview other related work
in the same area.



(a) London Bridge - Old Street.

(b) Waterloo - Oxford Circus.

(c) Regent’s Park - Angel.

Fig. 13. The magnetic field strength between consecutive bus stops. The
magnetism variation was considerably less than the previous two train test
scenarios. A relatively flat line was observed for multiple trajectories, which
denied the chance to co-locate people on the buses.

Kuk et al detect carriage level co-location of people using
just the accelerometer on the smart phone [4]. Their assump-
tion is when the train starts moving, its coaches accelerate
differently, which indicates whether two persons are in the
same carriage. This is an interesting solution. However, there
are two minor impracticalities. Firstly, many people rushes
onto the train at the beginning of the trip, and often pro-
actively moves to the door before the train reaches its des-
tination. These unexpected movements add a lot of biases
to the accelerometer readings, which were not considered in
their paper. Secondly, certain trains are pre-programmed so
that they accelerate and de-accelerate automatically, which
makes it harder to differentiate amongst passengers travelling
simultaneously on different trains.

Some of the earliest work in epidemic tracking was from
Eiko et al, for which a flu detection system was developed

TABLE II
KEY HIGHLIGHTS OF OUR TEST ENVIRONMENTS.

Overground Underground Bus
train tube

Average speed 30 km/h 60 km/h 20 km/h
Carriage length 20.4 m 16.1 m 11.1 m
Carriage width 2.8 m 2.6 m 2.5 m
Distance coverage 70 km 57 km 22 km
Max coaches 8 7 2
Magnetism
variation Moderate High Low

Power Electricity Electricity Diesel-electric
Shortest trip 5 minutes 1 minute 1 minute
Total stations 31 39 42

based on GPS and Bluetooth proximity detection [5]. This
type of system actively monitors the user positions in real
time, which may be a bit intrusive. Our approach are off-line
based monitoring, where the users have completely control
to decide whether to upload their personal data for analysis.
Additionally, we used low power sensors where Eiko et al
used high power sensors. Similarly, Liu et al proposed the
same idea using Bluetooth on the smart phones [6], Farrahi et
al used Cellular mobile signal [7], whereas Nguyen et al used
the WiFi signals [8].

A complete non-physical epidemic prediction approach was
introduced by Coviello et al and Lopes et al [9], [10]. They
relied on the friendship and family ties reported through the
social networking databases to predict the spreading rate of a
disease. Similarly, Huang et al experiments the flu outbreak us-
ing social networking sites in China, using Dynamic Bayesian
Network as the underlying algorithm [11].

VI. CONCLUSION AND FURTHER WORK

Verifying if and when two persons are on the same public
transport is of paramount importance to contain a disease in an
event of epidemic. We have presented an approach to detect
co-location of people on the London public transports. The
novelty of our work is the use of just low power magnetometer
of the smart phone. No GPS, WiFi, Bluetooth or Cellular
wireless signals is needed. We have assessed our proposal on
the overground trains, the underground tubes and the buses
to confirm the feasibility of co-location detection on the trains
and the tubes. The buses, on the other hand, did not yield much
magnetism variation. To automate the matching process of the
user’s trajectories, we outlined 4 steps to smooth the raw data,
extract the public transport related trajectories, highlight the
pair of matched trajectories across different users, and validate
the matching pairs. The empirical results displayed a 100%
successful detection ratio on our test environments.

Knowing whether two persons are co-located is not the end
story. The longer they stay together, the more chance of being
infectious the victim will be. Our next work shall incorporate
this information to greatly enhance the usefulness of epidemic
tracking. At the end of the day, the users will be happy to
engage and contribute to the system if it can be shown to
benefit their healthcare.
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