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Abstract—Mobility is evolving in urban scenarios and multi-
modality is the key to a more efficient transportation. In this
article we propose a multimodal intelligent navigation system
for urban indoor and outdoor environments. Our method is
based on wearable sensors mounted on different locations on the
human body. The algorithm based on a loose INS/GNSS fusion
with magnetometers switches intelligently and seamlessly between
the transportation modes walking and riding a bicycle. We also
propose an algorithm to cover the still unsolved issue regarding
coasting and braking periods for bicycle navigation in GNSS
denied scenarios. We have performed an extensive measurement
campaign of more than 12km to test the performance of the
proposed algorithms and we have used a Precise Point Positioning
solution as ground truth to compute the error. We prove that
our method is able to successfully estimate the forward speed
of the bicycle during coasting or braking periods. Likewise, we
prove that our navigation system switches seamlessly between
walking and riding a bicycle and is also able to bridge short
GNSS outages.

Index Terms—Magnetometer, coasting, transition, outdoors,
indoors, multimodal transportation, ubiquitous navigation.

I. INTRODUCTION

According to the European Commission, 123,000 people
were seriously injured and 25,000 people were killed in 2016
in Europe by traffic accidents. Almost 29% of the fatalities
occurred among non-motorized road users which are called
Vulnerable Road Users (VRUs).

Traditionally, the approach to protect VRUs has been relying
on detection sensors like cameras, radars and laser-scanners
mounted on the vehicles and/or embedded in the road infras-
tructure, e.g. lamp posts [1], [2]. The on-board sensors in the
vehicle detect the presence of pedestrians and bicycles and
then either warn the driver or actuate directly on the car by
braking or performing an evasive manoeuver.

The traditional approach assumes a VRU devoid of any
communication device, the so-called non-cooperative ap-
proach. Nowadays, however, the use of smartphones is
widespread. These devices provide not only communication
capabilities, but also location possibilities thanks to their
many embedded sensors, e.g. inertial sensors, barometer, mag-
netometer and Global Navigation Satellite System (GNSS)
receiver.

Therefore, a new era of VRU protection using a cooperative
approach is now open. In the cooperative approach, every
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Fig. 1. Example of urban multimodal transportation to bridge origin and
destination.

road user knows where she is and transmits her position
periodically. There are two possibilities: either the VRUs
transmit their position to the motorized vehicles, so they can
run a collision detection algorithm and act accordingly; or
all road users transmit their position to the cloud, where
the possibility of a potential collision is calculated and the
involved road users are warned.

Not only the accurate position of the VRUs is needed, but
also the mean of transport they use, i.e. walking or riding a
bicycle. We envision for the city of the future a clear trend on
ubiquitous multimodal navigation, as represented in Figure 1.
That means, in order to bridge two points, some sections will
be covered walking, indoors and outdoors, and some others
by public transport or riding a bicycle, among others.

Therefore, in this work we propose an intelligent urban
navigation system for cycling and walking in indoor and
outdoor scenarios. Additionally, we propose a novel algorithm
to compute the forward speed of the bicycle during coasting
and braking periods with non-vehicle-mounted sensors.

Due to the multimodality, our philosophy is to use sensors
embedded in smart watches, smart glasses, smart clothes and
also smartphones, rather than using vehicle-mounted sensors.
We propose a multi-sensor fusion approach based on inertial
sensors (INS), magnetometers and GNSS.

The state-of-the-art regarding pedestrian and bicycle naviga-
tion is summarized in Section II. Section III comprises a novel
algorithm to estimate the forward speed of the bicycle while
coasting and braking periods, as well as the proposed multi-
modal intelligent urban navigation system. The experimental
results are shown in Section IV, where the measurement
campaign set up is also detailed. Finally, the conclusions and
outlook are referred to Section V.
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II. STATE OF THE ART
A. Pedestrian Navigation

Pedestrian dead-reckoning (PDR) navigation systems can
make use of the inertial sensors embedded in any wearable
such as smart watches, smart glasses and smart clothing. The
step&heading algorithm can always be used independent of
the body location where the sensors are mounted or embed-
ded [3]-[7]. The reader is referred to [8] for more information
on the step&heading algorithm.

The step&heading algorithm used in this article is repre-
sented in the block diagram of Figure 2.
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Fig. 2. Block diagram of the step&heading algorithm.

The step&heading algorithm is based on the following
equations:
Py =p{ "t +dy - cos(vF),

_ . 1
Pk =pb= 4 df - sin(h), D

where p¥ and p§ represent the position in the x- and y-axis at
the time k, df stands for the horizontal displacement, i.e. step
length, at the time k and /" is the heading of the pedestrian at
the time k. Therefore, in order to compute the position of the
pedestrian, two steps are necessary: the orientation estimation,
to obtain the heading angle, and the displacement estimation.

The step&heading algorithm is usually defined in 2D, as
indicated in Equation (1). However, for particular sensor
locations it is possible to solve 3D positioning. The authors
in [9] demonstrate that, if the inertial sensors are attached to
the lower limb of the pedestrian, it is possible to differentiate
between walking horizontally and climbing stairs by means of
the orientation of the leg of the pedestrian. The information on
the walking surface allows deriving the vertical displacement
d¥, where d* represents the vertical displacement from the
time k — 1 to the time k. In that case the position in the z-axis
is as follows:

pr=p 4y 2

The displacement estimation, i.e. the step length and the
vertical displacement, is triggered every time a new step
is detected. The step detection as well as the displacement
estimation are derived using the pitch angle estimation, as
detailed in [9], [10].

The heading angle as well as the pitch angle are esti-
mated by the orientation estimator. The estimation of the
orientation using only inertial sensors is explained in detail
in [8]. Additionally, PDR navigation systems are usually
complemented with GNSS. The heading angle extracted from

the GNSS measurements ¥gyss is applied as an update in
the orientation estimation filter.

B. Bicycle Navigation

Cyclist dead-reckoning (CDR) navigation systems [11],
[12] can also make use of the inertial sensors embedded
in any wearable such as smart watches, smart glasses and
smart clothing. The algorithm used namely speed&heading is
represented in the block diagram of Figure 3 for a fixed gear:
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Fig. 3. Block diagram of the speed&heading algorithm for a fixed gear.
The speed&heading algorithm is based on the following
equations (assuming a bidimensional movement model):

Pl =pk=l 4 5% . At - cos(yF),

Pl = ph 4 s% - At - sin(yb), ®)

where p¥ and p§ represent the position in the x- and y-axis at
the time k, At is the time elapsed between k — 1 and k, and
¥ is the heading of the bicycle at the time k. The parameter
s" stands for the forward speed of the bicycle at the time F,
which is equal to (27 -7 - f¥), being  the radius of the wheel
and f* the instantaneous wheel frequency.

Therefore, in order to compute the position of the cyclist
given the radius of the wheel of the bicycle, two steps are
necessary: the orientation estimation, to have the heading
angle, and the wheel frequency to have the forward speed of
the bicycle.

Inertial sensors are usually combined with GNSS also for
bicycle navigation. For the orientation estimation, the heading
angle is therefore extracted from the GNSS measurements
1Yenss and applied in the navigation filter as an update.

If the user is pedaling, the frequency of the wheel f* is
related to the pedaling frequency flf through the gear g¢*.
The CDR algorithm computes the gear when GNSS signals
are available and assumes no changes during GNSS outages.
When more than four satellite signals are tracked and a
position-velocity-time (PVT) solution can be computed, f* is
derived through the forward speed extracted from the GNSS

sgnss as follows:
k

k _ SGNss
fuw = 27 - @

The pedaling frequency f;f is obtained either using measure-
ments from accelerometers or gyroscopes [11] that monitor the
movement of the lower limb of the cyclist.

The values of f% and f} during GNSS fixes are used to find
the gear g* through the predefined curves for each bicycle,
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as shown in Figure 4. Every line in the figure represents a
different gear.
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Fig. 4. The gear relates during the ride the pedaling frequency f, and the
wheel frequency fo,.

The gear and the pedaling frequency will be further used to
estimate the frequency of the wheel (Figure 4) over time in
the absence of GNSS measurements.

The forward speed from the GNSS measurements sty
as well as the GNSS position are also used to update the
estimations of the parameters of Equation (3).

Apart from pedaling, there are other actions performed when
riding a bicycle, such as coasting and braking. Generally
speaking for any kind of vehicle, coasting is performing a
natural deceleration of a motor when the power is removed.
When riding a bicycle, coasting refers to keep moving forward
without pedaling. This happens usually when riding down a
hill or at corners to slightly decrease the speed, among others.

When coasting, the bicycle keeps moving forward and the
pedaling frequency is zero. The same happens when braking.
Coasting and braking periods are still an open issue for CDR
navigation systems, since using the aforementioned method
(see Figure 4), no pedaling implies a frequency of the wheel
equal to zero. Without vehicle-mounted sensors, coasting and
braking periods can only be solved so far using GNSS.

We propose in this article a novel algorithm to compute
the forward speed of the bicycle using only magnetometers
embedded in the cyclist’s shoe.

III. PROPOSED METHOD

The proposed algorithm aims at achieving an intelligent
urban mobility based on ubiquitous and multimodal naviga-
tion. Unlike the vast majority of the literature that is based on
vehicle-mounted sensors, we use only body-mounted sensors
to navigate in GNSS denied scenarios covering also coasting
periods. Our multi-sensor approach is based on the loose
fusion INS/GNSS and magnetometers.

A. Coasting for Bicycle Navigation

In this article we propose an algorithm (patent filed at the
German Patent Office) to compute the frequency of the wheel
for GNSS denied scenarios, such as urban, without using
vehicle-mounted devices.

In our approach, the pedaling and the coasting periods are
detected through the amplitude of the pitch angle estimation.
The pedaling frequency fz’f is obtained through inertial sensors

mounted or embedded in clothes of the lower limb of the
cyclist. Figure 5(a) shows the pitch angle estimated when
cycling for a sensor introduced in the front pocket of the
trousers of the user. The pedaling frequency is the inverse
of the time elapsed between pedal turns. The local maxima of
the pitch angle estimation corresponds to the highest position
of the pedal on the side where the sensor is mounted as shown
in Figure 5(b).
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Fig. 5. Pitch angle estimation when riding a bicycle for the sensors introduced
in the front pocket of the trousers and schema of the movement of the legs
while cycling.

Figure 6 shows the pitch angle estimation resulting when
the user alternates between pedaling and coasting periods.
Coasting is highlighted in red.
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Fig. 6. Pitch angle estimation during pedaling and coasting periods. Coasting
is highlighted in red.

Both, pedaling and coasting periods, are detected using
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the pitch angle estimation, which is constantly stored in a
FIFO buffer of 1s length. If the value of the variance of
the measurements stored in the buffer does not exceed an
empirically-determined threshold, it is considered that the
user’s leg does not move. This indication is consequently used
to detect coasting periods.

The proposed algorithm to estimate the frequency of the
wheel while coasting and braking requires one magnetometer
embedded in the shoe. We prove that the wheels’ rotation can
be detected using magnetometers thanks to the metallic parts
of the bicycle, such as rim, hub, spokes and gears.

When the bicycle wheel rotates, these metallic parts cause
variations in the measurements of the Earth magnetic field.
In our case we analyze the variations of the norm of three
mutually orthogonal magnetometers. The frequency of these
variations can be computed using the Fourier transform (FFT).

Figure 7 shows the measurements of the magnetometer
in frequency domain. This experiment has been performed
placing the bicycle upside down and moving manually only the
front wheel. The sensor embedding three mutually orthogonal
magnetometers has been placed approximately 3cm away
from the front wheel.

0.03 1
0.74 Hz
0.02
0.01
O L L
0 2 4 6 8 10

Wheel frequeny [Hz]

Fig. 7. The figure shows the magnetometers’ measurements in frequency
domain caused by the metallic parts of the bicycle.

Therefore, the highest peak of the FFT of the norm of
the three mutually orthogonal magnetometers when the wheel
moves at constant angular velocity, represents directly the
frequency of the wheel. This can be applied during coasting
or braking periods to deduce the forward speed without using
GNSS or vehicle-mounted sensors, such odometers.

B. Multimodal Intelligent Urban Navigation

In order to achieve ubiquitous navigation, the proposed
system integrates a multisensor approach based on pocket-
mounted inertial sensors, GNSS and shoe-mounted magne-
tometers. Additionally, the seamless detection of different
means of transportation, in this case walking and cycling, is
integrated in our approach.

We propose a cascaded Kalman filter, as shown in Figure 8§,
in which the orientation is computed first, and then the position
and forward speed of the user.

For this paper, a loose INS/GNSS fusion is foreseen. The
GNSS pseudoranges are processed by a proprietary software
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Fig. 8.
navigation.

Cascaded filter approach used for ubiquitous and multimodal

and the latitude, longitude, height and velocity are generated as
output. Then, we decompose the velocity vector into forward
speed and heading angle and use these parameters to update
our proposed cascade filter.

The orientation is computed in our approach the same way
independent of the mean of transportation, i.e. walking or
cycling. The orientation estimation filter uses inertial mea-
surements from the pocket-mounted sensor for the prediction
stage as explained in [8]. Apart from the updates mentioned
in [8], the estimated heading angle will be updated with the
heading 1YgNss extracted from the GNSS velocity vector when
available.

The detection of walking and cycling, based on thresholds
on the pitch angle estimation 6, is seamless to the user. There-
fore, the proposed algorithm switches automatically between
walking and cycling depending on the user’s actions. Figure 9
shows the pitch angle estimation of walking and cycling,
where walking is highlighted in red and cycling is highlighted
in green.
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Fig. 9. Pitch angle estimation during walking and cycling periods. Cycling
is highlighted in green and walking in red.

The state vector of the position filter is xz* =

[pE, p&, pt, s¥]T, where (pg,pn,pu) are the East, North and
Up components, respectively, of the user’s position represented
in the East North Up (ENU) navigation frame. The prediction
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stage is defined as follows:

1 0 0 At-cos(v)
|01 0 At-sin(w)
F= 0 0 1 0 ' ©)
0 0 0 1

If the user is walking, the pitch angle 6 is used to detect
steps and compute the displacement estimation d, namely step
length and vertical displacement (see [9], [10]). Then, the
forward speed sins derived with the displacement and the time
elapsed between steps At, is used as update.

If the user is cycling, the forward speed (sins = fu - 27 -
r) is also estimated and applied as update. The frequency of
the wheel f,, is found when pedaling using the gear g and
the pedaling frequency f, and when coasting analyzing the
magnetometers’ measurements as previously explained.

Independently of the mean of transportation, i.e. walking
or cycling, the GNSS measurements are applied to the update
stage. Latitude and longitude are converted from the Earth
Center Earth Fix (ECEF) frame to ENU navigation frame.
Additionally, height as well as forward speed sgnss are also
used as update.

IV. EXPERIMENTAL RESULTS

In order to test the above explained ubiquitous and multi-
modal navigation system, we have carried out a measurement
campaign. In the following, we describe the measurement cam-
paign and discuss the performance evaluation of the proposed
method.

A. Measurement Campaign

The measurement campaign has been carried out at the
Oberpfaffenhofen airport (Germany). This venue has been
selected to have continuous ground truth in an open sky
environment (see Figure 10). To that end, we have used a dual-
frequency navigation-grade Legacy-E+ GPS/Glonass receiver
from Topcon connected to a dual-frequency GNSS antenna
fixed onto a helmet worn on the user’s head. The recorded
raw GNSS measurements have been post-mission processed
with Novatel’s Grafnav software. The obtained precision with
Precise Point Positioning (PPP) processing was around 3 cm
and 6cm in East and North direction (1o), respectively.
This highly accurate position has not been integrated in our
proposed filter, but used exclusively as a reference to compute
the error of our results.

We have tested the means of transportation walking and
cycling. For cycling, the activities pedaling, coasting, break-
ing, speed changes and switching gears were continuously
performed.

The volunteers worn a GNSS receiver and inertial and
magnetic sensors in four different locations on the body,
namely pocket, shoe, wrist and glasses. In this work we will
only use the GNSS measurements as well as the accelerometer
and turn rate measurements from the pocket-mounted sensor,
and the magnetometers’ measurements from the shoe-mounted
Sensors.

Fig. 10. Bird view of the airport’s area where our measurement campaign
took place.

The sensors used are the MTw from Xsens, which include
inertial and magnetic sensors. In the pocket, though, we have
used a MTi sensor, as well from Xsens, because it has also
a GNSS receiver embedded. The MTi GNSS receiver was
connected to the GNSS antenna on the helmet through a radio
frequency splitter. Figure 11 shows the location of the different
devices on the test person.
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wrist-mounted
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inertial sensors
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shoe-mounted
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& magnetometer

Fig. 11. This picture highlights the sensor’s placement on the volunteers
during the measurement campaign.

Both, inertial and magnetic measurements are recorded at a
rate of 100 Hz. The GNSS solution used in our proposed filter
is outputted by the proprietary software from Xsens at a rate of
4 Hz. We have recorded all data using this proprietary software
running in a notebook stored in the backpack of the user. All
mentioned sensors are connected via cable to the notebook
and the provided measurements are internally synchronized.

We have recorded data from three different bicycles and
three different volunteers. In total, we own a more than 12 km
length data base that is available under [13].

B. Evaluation

In this section we present and analyze the results of the
aforementioned measurement campaign. First, we test the pro-
posed coasting algorithm using only inertial sensors mounted
in the pocket and the magnetometer mounted in the shoe.
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Second, we show the performance of our proposed multimodal
intelligent urban navigation system based on the loose fusion
INS/GNSS and magnetometers.

1) Coasting for Bicycle Navigation: As previously ex-
plained, the coasting is still an open issue for bicycle navi-
gation systems in GNSS denied scenarios and without using
vehicle-mounted sensors.

In the following, we show two examples of rides including
pedaling, braking and coasting. Braking and coasting are
not differentiated, since both are treated using the proposed
algorithm.

Figure 12 shows two repetitions of the proposed trajectory
for one of the volunteers. The experiment is performed entirely
riding a bicycle and starts at (0,0). All detected coasting
periods are highlighted in red. As expected, coasting occurs
naturally in long straight parts and when approaching a turn.

——cycling
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B
(0] 0 I
o
C
S
3 50f
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50 0 -50 -100  -150 -200

Distance [m]

Fig. 12. The blue curve shows the trajectory described for this experiment,
while the coasting periods are highlighted in red.

The heading angle is estimated by the INS mounted in
the pocket. The accumulated drift that can be appreciated in
the figure, arises from the lack of corrections from GNSS
measurements, which are not used for this experiment.

Table I summarizes the results for this experiment. The
distance estimated while coasting is in total 99 m. During
these periods, the proposed coasting algorithm has been used
to derive the forward speed of the bicycle. The computed
travelled distance during both, pedaling and coasting, differs
only 1.2% from the ground truth travelled distance extracted
from the ground truth system. Without using the proposed
algorithm, the coasting periods would have been computed as
zero forward speed, since the pedaling frequency is zero.

TABLE I
VALUES FOR VOLUNTEER 1

Total travelled distance 940 m
Detected & estimated distance coasting 99 m
Distance error without proposed coasting algorithm | 10.7%
Distance error with proposed coasting algorithm 1.2%

Figure 13 shows the same experiment performed by a dif-
ferent volunteer. The detected coasting periods are highlighted

in red. In this case, the obtained results are very similar to the
previous realization.
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Fig. 13. The blue curve shows the trajectory described for this experiment,

while the coasting periods are highlighted in red.

The total estimated travelled distance while cycling and
coasting differs 2% from the ground truth travelled distance
measured by the ground truth system. The results are summa-
rized in Table II.

TABLE 11
VALUES FOR VOLUNTEER 2

Total travelled distance 940 m
Detected & estimated distance coasting 140 m
Distance error without proposed coasting algorithm 17%
Distance error with proposed coasting algorithm 2%

We conclude that our proposed method based on the pitch
angle is able to seamlessly detect coasting or braking periods
during a cycling ride. Further than detecting, it also computes
the forward speed of the bicycle, or the travelled distance,
using magnetometers’ measurements of the sensor mounted
in the shoe providing errors below 2% of the true travelled
distance for approximately 15% of coasting during the ride.

2) Multimodal Intelligent Urban Navigation: In this section
we test the performance of our proposed multimodal intelligent
urban navigation system. Therefore, experiments including
walking and multi-gear cycling will be analyzed. The targeted
GNSS-denied scenarios, e.g. urban tunnel, will be simulated
by disconnecting the GNSS updates.

Figure 14 shows seven repetitions of the proposed trajectory
for one of the volunteers. Unlike the previous section, these
results are estimated using the loose fusion INS/GNSS, thus
the heading angle is corrected using GNSS measurements. The
coasting periods are highlighted in red. In this case, a GNSS
outage of 20s has been simulated when the volunteer was
riding on a straight path. The outage starts approximately at
(-10,50).

Table III summarizes the results for this experiment. The
distance estimated during the 20s GNSS outage is 73 m. The
absence of GNSS measurements has been bridged with the
proposed INS and magnetometer based algorithm obtaining



2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 September 2018, Nantes, France

| | —cycling
80 ——coasting
_ 60 | ——outage
E
o 40f
[&]
5
E 20 [
a

0 50 100 150
Distance [m]

Fig. 14. The blue curve shows the trajectory described for this experiment.
The coasting periods are highlighted in red and the path travelled during the
GNSS outage is shown in black.

a position error of 2.5m. This error has been computed as
the straight line joining the last estimated position during the
GNSS outage and the first corrected position.

TABLE III
VALUES FOR 20s OUTAGE

Total travelled distance 2857 m
Estimated distance travelled during outage 73m
Position error with proposed intelligent algorithm 2.5m

Figure 15 shows the same experiment. The GNSS outage,
though, has been simulated over 40s during a curved part of
the trajectory. The coasting periods are highlighted in red and
the trajectory travelled during the GNSS outage is shown in
black. The outage starts approximately at (-5,75).
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Fig. 15. The blue curve shows the trajectory described for this experiment.
The coasting periods are highlighted in red and the path travelled during the
GNSS outage is shown in black.

Table IV summarizes the results for this experiment. In this
case the position error accumulated during the GNSS outage
rises up to 9.5m. The period during the GNSS outage is
mostly covered coasting and braking, because it occurs in two

consecutive curves. Therefore, it is more challenging than a
pedaling situation on a straight trajectory and, additionally, the
outage is twice as long as the previous GNSS outage.

TABLE IV
VALUES FOR 40s OUTAGE

Total travelled distance 2857 m
Estimated distance travelled during outage 134 m
Position error with proposed intelligent algorithm 9.5m

We conclude that the proposed algorithm successfully
bridges the distance between GNSS fixes including changes
of speed and different activities such as pedaling, braking and
coasting.

For the next experiment, different means of transportation,
e.g. walking and cycling, will be tested. This experiment
shown in Figure 16, also covers seven repetitions of the pro-
posed trajectory, where the last 320 m are performed walking.
The GNSS outage of 40s duration is simulated when the user
walks. The figure does not highlight the outage for clarity.
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Fig. 16. The blue curve shows the trajectory described for this experiment.
The coasting periods are highlighted in red and the path covered walking is
shown in yellow.

Table V summarizes the results for this experiment. In this
case the position error accumulated during the GNSS outage is
1m. Since the outage has been simulated during walking, the
travelled distance is estimated using the INS mounted in the
pocket. The accumulated error is due to the heading estimation
that was not updated with GNSS measurements over 56 m.

TABLE V
VALUES FOR 40 s OUTAGE WALKING
Total travelled distance 2857 m
Estimated distance travelled during outage 56 m
Estimated distance travelled walking 320m
Position error with proposed intelligent algorithm 1m

We conclude that the proposed intelligent multimodal nav-
igation system for urban environments is able to cope with
the modes of transportation walking and riding a bicycle and
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successfully bridges short periods of GNSS measurements ab-
sence or periods where the quality of the GNSS measurements
makes them not to be taken into account.

V. CONCLUSIONS AND OUTLOOK

We proposed a multimodal intelligent navigation system
for urban environments based on wearable sensors. We also
proposed a novel algorithm to compute the forward speed of
the bicycle during coasting and braking periods in GNSS-
denied scenarios.

We have performed an extensive measurement campaign
and we have used post-processed GNSS Precise Point Po-
sitioning (PPP) as reference system to compute the error.
We prove that our method is able to successfully estimate
the forward speed of the bicycle during coasting or brak-
ing periods. Likewise, we prove that our navigation system
switches seamlessly between walking and riding a bicycle
and is also able to bridge short periods of absence of GNSS
measurements.

Our next step will consist of integrating the GNSS and INS
measurements in a tightly fashion and include other means of
transportation.
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