N

N

Fast Linear Attitude Estimation and Angular Rate
Generation
Zeliang Zhang, Zebo Zhou, Jin Wu, Shuang Du, Hassen Fourati

» To cite this version:

Zeliang Zhang, Zebo Zhou, Jin Wu, Shuang Du, Hassen Fourati. Fast Linear Attitude Estimation and
Angular Rate Generation. TPIN 2018 - International Conference on Indoor Positioning and Indoor
Navigation, Sep 2018, Nantes, France. pp.1-7, 10.1109/TPIN.2018.8533736 . hal-01928684

HAL Id: hal-01928684
https://inria.hal.science/hal-01928684
Submitted on 20 Nov 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/hal-01928684
https://hal.archives-ouvertes.fr

Fast Linear Attitude Estimation and Angular Rate
Generation

Zeliang Zhang, Zebo Zhou*, Jin Wu, Shuang Du and Hassen Fourati

Abstract—This paper focuses on the design of an approach to
estimate attitude Euler angles and virtual gyroscope output based
on a linear Kalman filter and attitude information compensation.
First, the rotation transformation is built between the body
frame and the reference frame by means of an accelerometer-
magnetometer triad. The attitude quaternion is invoked for
parameterization of orientation which leads to the Kalman filter
fusing also the angular rate measurements. Furthermore, to
compute the virtual-gyro output in the case of gyroscope failures
and obtain bias-free angular rate estimates, virtual gyro Kalman
filter is that forms a novel angular rate estimation approach.
Some experiment scenarios are given to illustrate the validity and
efficiency of the proposed attitude and angular rate estimation
approaches.

Index Terms—Attitude estimation, Kalman filter, Wahba’s
problem, angular rate estimation.

I. INTRODUCTION

As attitude estimation is crucial for the dead reckoning
navigation, great endeavors have been devoted to improving
the attitude estimation accuracy and reliability. There are
mainly two categories of attitude estimation approaches. One
generates attitude estimates along with other navigation quan-
tities, e.g. position, velocity and timing information [1], [2],
[3]. The other is solving attitude solution by observation vector
pairs matching, typically magnetometers, accelerometers and
rate-gyroscopes (MARG) sensors [4], [5], [6]. In aerospace
engineering and related geodetic applications, the latter is
much more preferred avoiding the strong state parameters cou-
pling existing in the former one [7]. For an attitude measuring
system with MARG sensors, the sensor outputs usually contain
the system noises due to internal and external factors [4],
[5], [8], [9]. Therefore, an efficient fusion method is essen-
tial for integrating those complementary sensors. A common
approach to multi-sensor data fusion is complementary filters
[51, [10], [11]. The frequency domain based filter structure
allows for a straightforward implementation without requiring
high performance signal processing units [12]. Alternatively,
Kalman filtering methods (KF) are intensively used for attitude
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estimation [29]. It involves a set of mathematical equations that
produce an optimal recursive solution in the sense of minimum
mean square estimation [13]. For nonlinear dynamic systems,
the extended Kalman filter (EKF) and unscented Kalman filter
(UKF) were developed for achieving the suboptimal solution
of nonlinear system models [14], [15]. For those non-Gaussian
noise contained systems, critical issues of KF theory are
addressed and discussed in [16].

Gyroscope measures the angular rate of a moving object in
terms of inertial principles. There is an ordinary differential
equation connecting attitude quaternion and angular rate:
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where ¢, is the quaternion state at the time epoch k
and w denotes an angular rate component. Combination of
accelerometers and magnetometers is popular in compensating
for gyroscope drift [8]. Alternatively, fusing accelerometers
and magnetometers with gyroscope readings can greatly ex-
empt the noise influences from attitude solution [5]. For the
aspect of computation efficiency, many representative methods
have been developed, like Gradient Descent Algorithm (GDA)
[11], Gauss Newton Algorithm (GNA) [17], [18], Levenberg-
Marquadt Algorithm (LMA) [31], [32], etc. addressed as the
classical Wahbas problem [19]. In addition, compensation
strategies are also introduced in the fusion process in the p-
resence of magnetic distortion [20] and external accelerometer
[4].

Beside attitude determination, angular rate also plays an
important role ensuring the flight safety of aero-vehicles,
particularly the stabilization system and flight control systems
[21]. However, gyroscope may do not work properly under
some circumstances, where the output data will be totally
erroneous or unavailable. This leads to the divergence for a
traditional complementary filter. The observer cannot work
properly either. To continuous produce angular rates, virtual
gyro is feasible by using accelerometers and magnetometers
[22]. However, conventional methods making use of (2) to
approximately compute the derivative quantity will inevitably
cause large error,

q= -~ 6)
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Fig. 1: Attitude calculation and angular rate estimation

This is due to the quaternion estimate derived from ac-
celerometers and magnetometers contains noises which greatly
degrade angular rate estimation accuracy.

The paper aims to design an efficient KF structure to
accommodate MARG sensors for reliable and accurate attitude
as well as angular rate estimation in the scenario of gyroscope
failure. Subsequently, the solved attitude quaternion is utilized
as the observation model which will be further implement-
ed in KF with the angular rate state model established by
gyroscope readings. Conversely, when the gyroscope failure
occurs, the attitude information derived from accelerometers
and magnetometers will be applied to recover the angular
rate information through a dedicated KF. The rest of paper is
organized as follows: Section II depicts the principle of attitude
determination with MARG sensors. Angular rate estimation
strategy is proposed in the case of gyroscope failure in Section
III. Section IV presents the experiments and analysis. Finally,
conclusions Section V.

II. ATTITUDE ESTIMATION WITH MARG SENSORS

In this section, the structure of attitude is constructed based
on KF with the Wahba’s solution through the combination of
tri-axial accelerometers and magnetometers and angular rate
from Fig.1.

Estimating relations between body frame (denoted as b-
frame, right-front-up) and reference frame (denoted as r-frame,
east-north-up, i.e. ENU) using accelerometers and magnetome-
ters yields attitude information, which is self-contained in
transition matrix. Two sets of vector observation pairs related
to the transformation between b and r frames are established
as follows:

a® = Cla’ 3)
a® = CPa’
where a® = (ag,ay,a.)Y, m® = (mg,m,,m,)T, a¥ =
(0,0,—¢)T, m* = (0,my,my)T denote the normalized

observation vectors of accelerometers and magnetometers in
b and r frames, respectively. C? is the direction cosine matrix
(DCM) (simplified as C). The superscript T denotes the
transpose operation.

To find the optimal attitude matrix from multiple vector
observations, great deals of efforts are made and most of them
can be traced back to the Wahba’s problem [19], which aims
to minimize the loss function defined by

1< 2
L(C) = 5; ai[b; — Cry| “4)
where C denotes the optimal DCM and || - || stands for the

Euclidean norm. b; and r; denote the normalized observation
vectors in body frame b and reference frame r, respectively.
a; is the weight of the i—th vector observation pair satisfying

zn: a; =1 (5)
=1

To solve Wahba’s problem and improve the computation
efficiency, various of methods have been developed such as
Davenport’s g-method [23], Markley’s fast optimal attitude
matrix (FOAM) method [24], Shuster and Oh’s quaternion
estimator (QUEST) algorithm [25] etc. In this contribution,
we introduce the fast linear attitude estimation method (FLAE)
to estimate the attitude by using accelerometer/magnetometer
vector pairs [27]. It is faster than existing representative algo-
rithms. The conventional Wahba’s problem is then converted
to the following equations with respect to quaternions as

V/a:D} = \/a;CD}

in which D; = (D;z, Dsy, D;>)(i = 1,2) are the observa-
tion vectors. Obviously, (3) is equivalent to (6). Converting
Wahba’s problem to an eigenvalue problem as [27]

Wq=(1+e)q )

where q = (¢0, q1, ¢2, ¢3)T denotes attitude quaternion vector
and ¢ denotes the error factor. W is a matrix related to
observer vectors and its relevant definition and derivations can
be found in [27], [28]. Apparently, as 1 + ¢ is an eigenvalue
of W | the problem is shifted to finding the eigenvalue that
is closest to 1. To calculate the eigenvalue of the matrix W,
the characteristic polynomial of W is defined as

F(N) 2 det(W — Miya). ®)

det(-) represents the determinant. Thus it can be further derived
to

FO) =M+ N A +73 9)



and its symbolic solution is calculated by

1 12
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where the parameter 71, 7o, 73 and 75 are all detailed in [27].
A is chosen nearest to 1. In this way, the solving process of
is significantly shortened.

Defining N and transforming N to N’ via elementary row
operations, we obtain

1 0 0 X

_ _ ’_ 0 1 0 P
N=W -\l >N = 0 0 1 v (1n

0 0 0 ¢

Thereby, the fundamental solution system is given by:

q0 X
~ q1 P
q o v (12)
qs3 -1
with its norm of
lall = Vx> + p® + 0% + 1. (13)

With the attitude quaternion solution calculated from (12),
the linear observation model at epoch k can be established as:

Iy = Hypxp + e (14)

where 1; is the observation vector obtained from the (14);
Xy, denotes the quaternion state to be estimated; the design
matrix Hy connecting the state vector to the observation vector
becomes unit identity matrix I with dimensions of 4x4; ¢, is
Gaussian distributed with the variance of Q., .

A tri-axial gyroscope senses the 3D angular rate of a certain
object with outputs in its body frame as w = (wy,wy,w,)".
For a rigid body, its rotation can be alternatively represented
by quaternion due to its numerical computation stability.
The quaternion and the angular rate are associated with (1).
Discretized equation can be modelled as

1
Qu.k = §6t[QX]qw,k—l + qQu,k—1 (15)

where Jt denotes the sampling interval of gyroscope. Thus
(15) can be treated as a dynamic model of the KF,

X = Ppp_1Xp—1 + Wi (16)

where ®, ;1 denotes the transition matrix transferring the
previous one state information into that of the current one.
According to (15), the transition matrix is then expressed by:

1
D1 = §5t[‘1>><} + Lia (17)

wj, denotes the zero-mean process noise with variance of
Qw,.- Then the predicted state and its covariance matrix are
respectively computed by:

Xp = Pp p_1Xk—1 (18)
Qx, = ®11-1Qx, , (Prr-1)" + Qu, (19)
The time update set of KF equations are:
Xk =Xk + Kip(1g — HipXy) (20)
Qx,, = (I — Hyx)Qx, (21)
K. = Qz H{ (Hi Q< HI) ' + Q., (22)

where X, = qr and Qg, = Qg, are KF estimate and
its covariance, respectively. Ky, is the so-called gain matrix.
As time epoch increasing, the quaternion is estimated by
implementing (18)—(22).

III. ANGULAR RATE ESTIMATION WITH VIRTUAL
GYROSCOPE

A. Virtual gyroscope based Kalman Filter

When the gyroscope works improperly, angular rate in-
formation may be incorrect. Attitude quaternion can still be
acquired with the solution to (3), as if accelerometer and
magnetometer runs consistently and normally. To smooth the
calculated quaternion, a virtual gyroscope based KF is es-
tablished. Supposing that consecutive first-order derivative of
quaternion keeps invariant, the state equation can be modelled

()= (8

o]
qk k-1

where the state matrix is chosen with X; = (4 q})7. In
order to distinguish it from the previous KF state in Section
II, we denote the x with the superscript ~ as the state
vector consisting of quaternion and its derivative. Thereby, the
corresponding transition matrix is
Lixa 0O4x4 >
I4><4

L1 = ( 0tLyxa

and Wy, denotes the zero-mean process noise with covariance
matrix of Qw,.

The quaternion vector obtained from the (12) is still used
as observation vector, thus linear observation model at epoch
k is established as:

O4x4
Lixa

|

5L ) +Wi (23)

(24)

L, = HyXy, + & (25)
where the design matrix H,, becomes such as:
Hj, = (044 Lixa) (26)

and £, denotes the zero-mean observation noise with variance
of Qz, . The new Kalman filter’s implementation process is
similar to (18)—(22).



B. Angular rate estimation

With quaternion and its first derivative obtained from new
KF, the angular rate can be estimated according to the arith-
metic of quaternion as follows:

Qp, =24, @ d;_, 27)

where ® represents the quaternion product, and the superscript
* stands for the conjugate of quaternion. It can also be solved
by means of Euler Angles according to the relation between
quaternion and Euler Angles as follows:

5 2(G243 + God1)

¢ = arctan— - P = (28)
@ — 47 — 45 + 43
0 = arcsin(2(doGz — G143)) (29)
R 2(q1G Goq
b = arttan— 20142 & doda) (30)

@ +a— @@
qg,é and 1& denote roll, pitch and yaw estimated angles,

respectively. Then the angular rate is acquired by differential
operation of Euler angles referring to its definition that:

L dd =k
RS w Tt G
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IV. EXPERIMENTS AND RESULTS

An experimental platform is designed to conduct various
experiments. Uranus2 produced by Beijing Beyond Core Elec-
tronic Technology Co., Ltd. provides the output of tri-axial
gyroscope, accelerometer and magnetometer. TTL to USB
module is applied so that the sensor data from Uranus2 can
be saved into computer. MATLAB 12016 is used for data
processing and analysis. We put the MARG element at rest
for a while, then we rotate it, trying to keep around the center
of the mass. The samples are collected by using the above
equipment and the raw data is drawn in Fig. 2.

Figure 3 shows the solution to attitude quaternion obtained
with acceleration and magnetometer, which is very noisy. Time
consumption of QUEST and FLAE is presented in Table
I. Obviously, Quaternion gets more smooth and has better
precision after MARG-KF, when gyroscope measurements are
fused. The corresponding Euler angles are presented in Fig. 4.
Three methods are employed to estimate angular rate in the
case of absent gyroscope readings for comparison purpose:

1) Non-filtered quaternion (NFQ) with (2) and (27);

2) Non-filtered Euler angles (NFEA) with (28)—(33);

3) Our Proposed virtual gyroscope KF (VGKF).

Figure 5 shows the derivative of quaternion in (2) and the
result of NFQ is shown in Fig. 6. The estimated quaternion
derivatives are too noisy thus cover the true signals. Therefore,
it is not suitable for calculating angular rate.

Seen from Fig. 7, NFEA is also unreliable to convert the
quaternions directly to Euler angles without filtering. The

Output of Accelerometer

,__\.‘.)_,.r'-"' \‘.,/ '\__.\_.‘_;': \_:‘,ﬁf“ \U,.f’\__/;f“ o

o 2 4 <] 8 10 12 14 16 18

time(s
Output of Gyroscope

rad /s
=

o 2 4 18
time(s)
Output of Magnetometer
1
30 S AR S ANy
o
-1
o 2 4 6 8 10 12 14 16 18

time(s)

Fig. 2: Raw data from Uranus2.

TABLE I: Time consumption of QUEST and FLAE

Time Consumpution (x10~%s)
QUEST FLAE
1 0.67 0.54
2 0.79 0.49
3 0.92 0.47
4 0.88 0.54
5 0.72 0.46
6 0.73 0.55
7 0.60 0.34
8 0.74 0.42
9 0.80 0.39
10 0.63 0.21
11 0.79 0.44
12 1.43 0.77
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Fig. 3: Quaternion of Wahba’s solution calculated with ac-
celerometer and magnatometer (blue line) and MARG-KF (red
line)
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(red line)

results and reasons are very similar to NFQ. The reason
why angular rate cannot be directly calculated is that the
two consecutive quaternions and their first derivations are
very sensitive to the quaternion errors which will further
be significantly augmented thus analytically propagate into
the estimated results. The proposed VGKF is designed to
solve such problem. Figure 8 shows the quaternion solution
of the proposed VGKF. Though it is not as good as the
original gyroscope readouts, its uncertainty has been exten-
sively minimized. Likewise, as shown in Fig. 9, the accuracy
of its derivative has been significantly improved as well. It
should also be noted that VGKF is effective and reaches a
good consistency with the actual angular rate from gyroscope
readings as shown in Fig. 10.
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V. CONCLUSION

The state model of attitude is constructed based on Kalman
Filter theory. Two different structures of Kalman filtering are
designed to obtain accurate attitude estimates as well as the
angular rates that significantly determines the robustness of
the system in case of failures and faults in rate-gyroscope
i.e. the solution to the angular rate estimation is also put
forward for the absence of gyroscope data. Experimental
results show that the proposed solution is effective. In the
future, fault detection, isolation and error compensation will
be comprehensively investigated and applied to make MARG
sensor’s fusion results more accurate and reliable.
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