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Abstract—One of the most practical localization techniques is
WLAN-based fingerprinting for location-based services because
of the availability of WLAN Access Points (APs). This technique
measures the Received Signal Strength (RSS) from APs at
each indicated location to construct fingerprints. However, the
collection of fingerprints is notoriously laborious and needs to
be repeatedly updated due to the changes of environments. To
reduce the workload of fingerprinting, we apply Deep Belief
Networks to unlabeled RSS measurements to extract hidden
features of the fingerprints, and thereby minimize the collection
of fingerprints. These features are used as inputs for conventional
regression techniques such as Support Vector Machine and K-
Nearest Neighbors. The experiment results show that our feature
representations learned from unlabeled fingerprints provide bet-
ter performance for indoor localization than baseline approaches
with a small fraction of labeled fingerprints traditionally used. In
the experiment, our approach already improves the localization
accuracy by 1.9m when using only 10% of labeled fingerprints,
compared to the closest baseline approach which used 100% of
labeled fingerprints.

Index Terms—WLAN-fingerprint based localization, unsuper-
vised deep feature learning, indoor localization, fingerprint re-
duction, deep belief network

I. INTRODUCTION

Indoor localization is an essential task for a wide range
of mobile computing applications, such as logistics, crowd
monitoring, network allocation, and marketing. Although the
Global Positioning System (GPS) is undoubtedly the most
popular positioning technology, it commonly fails to localize
targets in indoor environments due to signal attenuation and
scattering [1], [2]. Among alternative localization technologies
for indoor environments such as acoustics, magnetic fields,
accelerometers, and Received Signal Strength (RSS), RSS is
the most popular one because of the proliferation of WiFi
WiFi Access Points (APs) and mobile devices. Therefore,
using the measurements of radio signals such as RSS between
smartphones and APs become one of the most practical
solutions for indoor localization. The same fingerprinting
techniques also can be used with Bluetooth Low Energy (BLE)
devices.

This work is partly supported by the COUNTDOWN project (Grant No.
509-21342) in the EFRO OP-OOST programme.

Accurate indoor localization using WiFi infrastructure, how-
ever, remains elusive. Although fingerprinting algorithms such
as [3]–[6] can provide acceptable localization accuracy, they
require an enormous amount of measurements, the so-called fin-
gerprints, to build a fingerprint database for an off-line training
phase before real-time position estimation. Such an essential
requirement imposes restraints on autonomous deployments
of a localization system in practice, especially for large and
complex spaces. Using fingerprinting localization systems in
large areas also requires that significantly large amounts of data
from the fingerprint database have to be acquired and stored in
the mobile device for location estimation. Even if the laborious
fingerprinting can be done, the environment may later change
frequently, and thus the accuracy of fingerprinting systems
will significantly decrease. Hence, the fingerprinting approach
needs to update the fingerprint database regularly to maintain
high accuracy. These problems severely affect the application
of indoor localization systems based on fingerprinting.

Many approaches have been proposed [7]–[9] to alleviate the
tedious collection of location-labeled signatures. However, these
approaches use dimension-reduction schemes which cannot
learn the hidden features of the localization fingerprint as well
as deep learning schemes can. The main reason is that the
proposed methods are relatively shallow as they can infer only
one-layer representations. Deep learning approaches such as
Deep Belief Network (DBN) [10], on the other hand, use a
generative probabilistic model that can represent hierarchically
hidden features at different hidden layers. Each hidden layer
unit learns a statistical relationship between the units in the
lower layer; the higher layer representations tend to become
more complex. Training a DBN consists of two phases: pre-
training and fine-tuning. We observed that the pre-training
can learn a probability distribution from unlabeled samples in
an unsupervised manner. To the best of our knowledge, deep
feature learning using the pre-training phase of DBN has not
been extensively applied to fingerprinting localization to reduce
the efforts of the location annotation of RSS fingerprints.

In this paper, we aim at reducing the labeled fingerprints
while maintain the localization accuracy as high as possible
by employing the unsupervised pre-training phase of DBN.
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Our work builds on the principle that only a small number of
fingerprint measurements have known location (are labeled),
while a large number of fingerprint measurements have
unknown locations (are unlabeled). The reason is that the
unlabeled fingerprints are easier to be collected, especially with
the crowdsourcing concept, in which mobile phones simply
take a snapshot of observed RSS values. Our hypothesis is
that even though an unlabeled fingerprint measurement is less
informative than a labeled fingerprint measure, a large number
of unlabeled fingerprints may be equally informative if their
hidden representations can be effectively exploited.

We evaluate our unsupervised feature learning based ap-
proach on a real-world dataset, i.e., the UJIIndoorLoc [11],
which contains thousands of fingerprint measurements with
thousands of fingerprints. The fingerprints are collected in large
buildings by 25 of smartphones. The experimental results show
that a combination of Support Vector Regression (SVR) and
deep feature learning can estimate quite accurately unknown
locations of smartphones, even when only 1% (52 over 5249)
of the labeled fingerprints in the dataset is used. Conversely,
the baseline approach with shallow feature learning, from one-
layer of units, mostly fails under such a low number of labeled
fingerprints.

The rest of this paper is organized as follows. Section II
reviews the related techniques of WiFi-based localization,
especially for indoor environments. Section III presents a brief
of unsupervised feature learning and Deep Belief Networks,
followed by our solution based on unsupervised deep feature
learning in Section IV. The performance evaluation and
important observations presented in Section V. Finally, we
conclude our paper in Section VI.

II. RELATED WORK

Although GPS is definitely the most popular positioning
technology, it does not work well in GPS-blocked environ-
ments due to signal attenuation and scattering. As alternative
technologies, short-range radio communications such as WiFi
and BLE are widely used for indoor environments. Most WiFi-
based indoor localization systems are mainly categorized into
either location-based fingerprinting techniques or ranging based
on radio signal propagation models. When accuracy is crucial,
fingerprinting is preferred. Otherwise, range-based localization
with a multilateration method is used due to its simplicity.

For simplicity, range-based approaches with multilateration
are the most used in mobile computing [12]–[15]. Range-based
approaches demand an offline phase to calibrate the parameters
for the pass-loss model. The path-loss model typically consists
of a number of environmental parameters. For example,
the Radio Frequency (RF) signal is generally considered to
follow the Log-Normal Shadowing Model (LNSM) in indoor
environments [16], which defines the decay of the signal over
a distance. To calculate the distance using such RSS model,
the environmental parameters of the LNSM needs to be known
or calculated. There are also more complicated LNSM models
such as those presented in [17], [18] that consider the effects
of fading channels caused by obstacles such as walls and

the unpredictable multipath effects. Usually, a simple LNSM
model such as the one presented in [16] is used in many
works including [12]–[15] since it is simpler and still valid for
many indoor environments [16].

However, the majority of proposed range-based approaches
generally give a relatively poor accuracy due to the intrinsic
phenomenon of the radio signal propagation and fundamental
limit of the current estimation methods. On the other hand,
most indoor environments cause severe multipath effects that
lead to a high variability over time for the same location. Such
high variability results in a large error even for a stationary
device.

Fingerprinting techniques build a fingerprint database that
can be used to approximate a location. The database, a so-
called radio map, is constructed by measuring RSS at a number
of known locations – labeled fingerprints. The test location
is then estimated by comparing the new RSS values to the
fingerprint database.

RADAR [3], [19] is a naive fingerprinting technique that
determines smartphone’s location by finding a known signature
that is most similar to the actual RSS measurement of the
location. In RADAR, it is shown that the highest accuracy is
obtained by computing the mean coordinates of three nearest
neighboring signatures. The k-Nearest Neighbors (KNN) tech-
nique, in addition to its simplicity, turned out to be among the
most accurate ones. This technique is later improved to LWR-
WKNN [4] (a data interpolation technique). More advanced
techniques based on shallow supervised neuron networks such
as Radial Basis Function (RBF) [5] and Support Vector
Machine (SVM) [20] also have been used for fingerprinting
localization.

However, building such a fingerprint database is a laborious
task as it requires to collect fingerprints from numerous
positions. The built fingerprint database generally stays valid
only for a short time as the environment may change due to
objects and human mobility, among others. And also the APs
may be changed.

To tackle the problem of labeled fingerprint collection, many
researchers have proposed techniques to reduce the required
labeled fingerprints [7]–[9]. These works aim at making use
of unlabeled data. In fact, with the abundance of smartphones
in crowds, the collection of unlabeled fingerprints is much
more convenient and less privacy-intrusive, compared to the
labeled ones. However, the main techniques used in these
existing studies are shallow mechanisms which are either (i)
data interpolation, in which data interpolation is used to semi-
automatically label unknown fingerprints, or (ii) dimension
reduction which is used to extract the shallow hidden features
of the fingerprints in an unsupervised manner. Conversely, in
this paper we focus on deep hidden feature learning.

The work which is most related to our approach is [6]. This
work uses deep learning techniques including DBN to predict
smartphone locations. The authors use DBN as a supervised
regression for location estimation, whereas we employ DBN
as an unsupervised manner for feature learning.

In fact, DBN [10] has been subsumed in deep learning
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Fig. 1: Unsupervised feature training architecture with autoen-
coder.

approaches, and excelled in pushing the state-of-the-art all
relevant benchmark tasks in machine learning and computer
visions. Much of these works have been motivated by the
human neural networks of cortexs hierarchical organization and
indeed many researchers frequently compared their algorithm
results to the receptive fields of oriented nerve cells found
in frontal cortex. Despite the success of deep learning on
efficient performance of unsupervised layer-by-layer, super-
vised learning and inference [21] in many applications, the
typical problems of overfitting and premature convergence
within error backpropagation have not been completely feasible
yet in traditional deep networks. Therefore, DBN was becoming
significantly increase for computing power of numbers of big
data applications proved by the success of works in computer
vision [22], [23], machine transcription and translation [24],
classification tasks [25], [26] and voice recognition [27].

To the best of our knowledge, deep feature learning using the
pre-training phase of DBN has not been extensively applied to
fingerprinting localization to reduce the efforts of the location
annotation of RSS fingerprints.

III. PRELIMINARY BACKGROUND

In this section, we will introduce briefly the concept
of unsupervised feature learning and the DBN architecture.
Through this section, we clarify between shallow feature
learning and deep feature learing.

A. Unsupervised Feature Learning

Suppose we have unlabeled training data x. The key idea
of unsupervised feature learning is applying backpropagation.
In other words, input x can be used as both the input and
the output of a training network as illustrated in Fig. 1, so-
called an autoencoder neural network. By doing so, we can
train the network to obtain a function hW,b(x) ≈ x, so as to
approximate output x̂ that is similar to x.

Having trained the parameters W of this model, given any
new example of input x, we can compute the corresponding
unsupervised features which are the activations a of the hidden
units as illustrated in Fig. 2.

Conventionally, Principal Component Analysis (PCA) [28]
with the core is Singular Value Decomposition (SVD) [29] is
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Fig. 2: Unsupervised feature transforming with learned activa-
tions.

used to generate the unsupervised features as studied in [9].
PCA is a linear feature learning approach since it rotates the
original axes to a new coordinate system aligning with the
orientation of maximum variability in the input. Rotation is a
linear transformation. Hence, PCA is considered as a shallow
feature learing since it exploits only the shallow representation
of the data, the first-order and the second-order moments of
the input data. Moreover, PCA can only reduce but extend the
dimension. In other words, the number of the learned features
(activations) cannot be greater than the dimension of the input.
These limitations make PCA may not well characterize the
hidden features of complex and unstructured data such as the
radio map.

B. Deep Belief Networks

In [10], Hinton et. al. showed that DBNs can be built by
stacking Restricted Boltzmann Machiness (RBMs) [10]. Such
RBMs-stacked model can be trained in a greedy manner to
extract a deep hierarchical representation of the training data.
The joint distribution between the vector x of observations and
the l hidden layers hk is modeled as follows.

P (x, h1, . . . , hk) =

(
l−2∏
k=1

P (hk|hk+1)

)
P (hl−1, hl), (1)

where x = h0, P (hk−1|hk) is a conditional distribution for the
visible units conditioned on the hidden units of the RBM at
level k, and P (hl−1, hl) is the visible-hidden joint distribution
in the top-level RBM. The DBN can be visualized as in Fig. 3
as a stack of RBMs.

To train a DBN network we first pre-train the network
with unlabeled data. The dash arrows in Fig. 3 indicate the
pre-training path. Similar to the autoencoder described in
Section III-A, we feed unlabeled examples of x as the inputs
of the pre-training DBN to approximate the outputs which are
the approximation x̂. By doing so, we obtain the corresponding
trained RBM model which can be used to compute the feature
vector. Since this autoencoder comprises stacks of deep learning
models, RBMs, it may provide better insights into hidden
features. This RBM-based approach is so-called deep feature
learning.

IV. UNSUPERVISED FEATURE LEARNING BASED APPROACH

We assume that we can obtain limited labeled fingerprints
and abundant unlabeled fingerprints. We will present our
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Fig. 3: The network architecture of Deep Belief Network. Dash
arrows illustrate pre-training with unlabeled data. Solic arrows
illustrate fine-tuning with labeled data.

fingerprinting localization using unsupervised feature learning
with DBN through two phases: the offline phase and the online
phase.

In the offline phase, firstly, both labeled and unlabeled
fingerprints are used for unsupervised shallow feature learning,
and then the trained shallow feature learning model is used
to transform the fingerprints to shallow features. Secondly,
the shallow features are used for unsupervised deep feature
learning. Finally, both the shallow and deep feature learning
models are used to transform the labeled fingerprints into
labeled deep features, and then these deep features, together
with their location labels, are used to train a supervised location
estimation model.

In the online phase, the fingerprints of unknown/test locations
will first be transformed to the deep features using the trained
unsupervised feature learning models in the offline phase.
Then the deep features of the test data will be used to infer
the unknown location using the trained supervised location
estimation model.

The above steps are presented in more details in the following
subsections.

A. Shallow Feature Learning (Offline)

In large buildings there are typically numerous APs; however,
not all of them can be scanned by a smartphone from a specific
location due to the limits of WiFi’s communication range. For
example, Fig. 4 shows the histogram of the APs scanned by
smartphones according to the UJIIndoorLoc dataset [11]. The
average number of APs each smartphone could scan was 18,
whereas, there are 520 APs in total. The dataset was collected
by means of more than 20 different users and 25 different
Android devices.

Since the number of APs scanned in each measurement is
too small compared to the number of available APs, a lot of the
RSS values of the measurements will not be available. Thus,
the input will be somewhat redundant. Moreover, the adjacent
APs are highly correlated since they would give very similar
RSS values. Because of the redundancy and correlation, we use
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Fig. 4: The histogram of APs scanned by smartphones in the
first building of the UJIIndoorLoc dataset [11].

PCA [28] with the core is SVD [29] to reduce effectively the
dimension. Note that PCA and SVD also allow us to extract the
shallow hidden features in an unsupervised manner as studied
in [9].

In addition, the WiFi radio signal is extremely sensitive to
objects and environments, especially the human body. In other
words, the RSS measurements are noisy. Hence, we use PCA
whitening to reduce the noise effects.

These shallow features, which are processed by noise
whitening and dimension reduction, will be used as the input for
deep feature learning in the next step. Note that such shallow
features also can be used as input to train fingerprinting models
as studied in previous works.

B. Deep Feature Learning (Offline)

In highly dynamic indoor environments, localization systems
using only the shallow features learned in the previous steps
cannot maintain their high performance for a long time due to
the poor level of generalization of the shallow architectures.
However deep architectures such as DBN can learn high levels
of features that represent the dynamic indoor environment.

In this work, we employ the pre-train phase of DBN for
unsupervised training of the DBN model, using the shallow
features of the unlabeled RSS measurements of the training set.
The hidden layers are pre-trained using the Greedy Layer-wise
algorithm, which ensures a fast way to performing approximate
inference training each RBM bottom up.

The trained deep feature learning model is then used to
transform shallow features into deep features, when using the
validation set and test set.

C. Fingerprinting Model Training (Offline)

To train the fingerprinting model that can be used in
the online phase for location estimation, we use shallow
supervised regression/classification algorithms such as SVM.
Regression is used when we want to estimate the location at the
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coordinate level, whereas, classification is used when we want
to estimate the location at the room and floor level. We train the
supervised fingerprinting model with the labeled fingerprints.
In particular, the labeled fingerprints are first transformed to
shallow features. The shallow features are then transformed to
the deep features. These deep features are used as the input of
the regression/classification algorithms.

The trained regression/classification model is stored at the
server for location estimation in the online phase.

D. Location Estimation (Online)

New locations of users’ smartphones are estimated using the
models trained during the offline phase: the shallow feature
learning, the deep feature learning, and the location regression
or classification. The raw RSS values from the APs measured
by the smartphones at unknown locations will be used to extract
first the shallow features and then the deep features. These
deep-learned features of the unknown locations will be used
as the input for the regression/classification model to estimate
the unknown locations.

V. EXPERIMENT

A. Dataset

To verify our approach, we use the UJIIndoorLoc
dataset [11], which has been considered as a benchmark for
indoor localization. The dataset was collected in 3 buildings
with a total surface of 108 703m2. The dataset consists of
19937 training measurements and 1111 test measurements.
The test set was taken 4 months after the training one to assure
the independence of the dataset. In the dataset, there are 520
APs which are scanned by smartphones. The experiments were
done by more than 20 users carrying 25 different smartphones
with different models.

In this paper, we will present only the localization results
in the first building from the dataset since the results of the
two other buildings are similar. For the first building, there are
5249 measurements in the training set and 536 measurements
in the test set. Each measurement comprises 520 RSS values
corresponding to the 520 APs. In other words, the input
examples have 520 dimensions. All of them were labeled
with the actual location. In order to validate the unsupervised
feature learning approaches, we split randomly the training set
into two parts. One part is considered as labeled dataset, and
the other part is considered as unlabeled dataset. This division
is repeated with different ratios, ranging between 1% to 99%.

B. Algorithm Setup

To investigate the performance of localization with unsuper-
vised deep feature learning, we implemented the SVM as a
regression model, the so-called SVR. Previous work such as
[20] has shown that SVM outperforms other techniques. The
implemented SVR is combined with either our deep feature
learning or the shallow feature learning. In fact, SVR with
shallow feature learning PCA is one of the best approaches
for the conventional fingerprinting.

Given the UJIIndoorLoc dataset, we first set up parameters
for the shallow feature learning based on PCA with the SVD
solver. Since the average number of APs scanned by each
smartphone was 16 in the training set of the building, we set
the number of lower dimension is 2 × 16 = 32 to assure it
covers sufficiently the informative channels. Setting with a
value higher than 32 would result in redundant dimensions and
increasing computation.

For the deep feature learning based on the pre-training phase
of DBN, we set the network architecture as 2 hidden layers of
260 nodes. The number of epoch for RBM is set to 300. The
learning rate of RBM is set to 0.01. The Rectified Linear Unit
(ReLU) is used to speed up the training process. This setting is
based only our heuristic tries with various architectures of the
DBN using the training dataset, with regards to the performance
in terms of accuracy and running time.

For the location supervised training and estimation based on
SVM. The kernel of SVR is set as RBF of which coefficient
is 0.1 as default. A neuron network with RBF kernel has been
shown to be effective for location estimation in [5].

With these settings, we implemented the algorithms using
in Python with the TensorFlow framework.

C. Experimental Results

Fig. 5 shows the overall performance RMSE of the SVM
algorithm when using with the shallow feature learning and
the deep feature learning. In the figure we vary the number
of labeled measurements, from 52 (corresponding to 1% of
the measurements) to 5249 (corresponding to 100% of the
measurements). When used with deep feature learning, SVM
provides significantly better location estimation. Note that the
SVM perform poorly when paired with raw values of RSS
measurements, thus we exclude the results from the figures.

In addition, we observed from the figure that the performance
of both approaches are improved when there are more labeled
measurements. However, the improvement only increases signif-
icantly when the number of unlabeled measurements is below
524. This means keeping increasing the labeled measurement
does not always improve the localization performance, while it
increases significantly the cost of data collection and annotation.

Furthermore, Fig. 5 shows that deep feature learning can
help the SVM algorithm maintain its localization performance
when the number of labeled measurements are low. Despite
using only 52 labeled measurements, the SVM with deep
feature learning can still provide relatively good results. This is
shown by the fact that RMSE increases only about 1.9m
(from 6.2m to 8.1m) compared with when using 5249
labeled measurements. Furthermore, our approach improves
the localization accuracy by 2.1m when using only 10% of
labeled fingerprints, compared to the most closest baseline
approach which used 100% of labeled fingerprints.

Since Fig. 5 only shows the overall performance in terms
of RMSE, we investigate the performance in detail using the
Cumulative Distribution Function (CDF) plot as shown in Fig. 6
and Fig. 7. In particular, Fig. 6 and Fig. 7 show the distribution
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Fig. 5: The Root Mean Square Error (RMSE) when varying the number of labeled fingerprints.
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Fig. 6: The Cumulative Distribution Function (CDF) of smart-
phone localization errors when using 52 labeled fingerprints.

of localization errors when 52 and 5249 labeled measurements
are used, respectively.

As it can be seen from Fig. 6, using only 52 labeled,
SVM combined with deep feature learning still performs very
well, where 90% of test positions have an error smaller than
18.0m. It can also been seen from Fig. 6 that performance
of SVM combined with shallow feature learning performs are
significantly affected by the lack of labeled measurements,
where 90% of test positions have an error smaller than 28.0m

The above difference of localization performance between
the shallow feature learning and deep feature learning is much
less when the labeled measurements are abundant as shown in
Fig. 7, which is the case of using 100% of labeled fingerprints.
In this case, the performance of SVM when combined with
the shallow feature learning and deep feature learning are both
better and quite similar. The performance of SVM combined
with the shallow feature learning is closely behind that of SVM
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Fig. 7: The Cumulative Distribution Function (CDF) of smart-
phone localization errors when using 5249 labeled fingerprints.

combined with the deep feature learning.

VI. CONCLUSION

In this paper we have presented a new fingerprint localization
approach that can perform well even with a limited number
of labeled fingerprints. The bottom line of our approach is
the Greedy-wise pre-training phase of Deep Belief Network
(DBN) which is typically used to pre-train data for a supervised
classification or regression problem. However, in this paper,
we employed the pre-training phase to train an unsupervised
deep feature learning model. The model is then used to extract
the deep features of the labeled fingerprints for localization
estimation. By doing so, we can take the advantage of unlabeled
data which are much more convenient to be collected since they
do not require location annotation and are less sensitive to users’
privacy. Moreover, deep feature learning from large numbers of
unlabeled fingerprints even provide better localization accuracy
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than traditional approaches with labeled fingerprints such as
using raw Received Signal Strength (RSS) values and shallow
features.

We validated our approach using Support Vector Regression
(SVR) and one of the most popular real-world datasets which
contains thousands of examples. The validation results show
that the new approach based on Support Vector Machine (SVM)
combined with deep feature learning surpassed the conventional
approaches SVM combined with shallow feature learning or raw
data. Furthermore, even when using our deep feature learning
with only 1% of the available labeled fingerprints, the Root
Mean Square Error (RMSE) is still as good as when using
conventional shallow feature learning with 100% of available
labeled fingerprints. We hope that our work will inspire more
research on indoor localization to exploit unsupervised feature
learning for fingerprint reduction and mapping.

In our future work, we will verify our approach with more
WLAN-based fingerprint data sets and develop deep transfer
feature learning techniques to extract hidden features from
different data domains. Concretely, the hidden features of an
indoor environment can be extracted from unlabeled fingerprints
collected in other different indoor environments. If we can get
our algorithm to perform the transfer feature learning, it will
be much more practical as it reduces significantly the cost of
fingerprint collection.
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