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Abstract—In this paper we will propose a method to evaluate
the performance of a certain ultra-wide band fixed anchor
configuration in complex indoor environments by making use of
the mutual information as the performance metric. Furthermore
we will introduce an incremental algorithm that will determine an
optimized anchor configuration for complex indoor environments.
By making use of heuristics we are able to ensure that the time
required to complete the algorithm is feasible on commercial
grade computers, even for large-scale floor plans.

Index Terms—Information Theory, Ultra Wide Band Ranging,
Indoor Positioning Systems

I. INTRODUCTION

Ultra wide band (UWB) ranging has become a popular
technology used for indoor localization [1]–[3], due to its
precision, low power consumption and its wide availability
with products from DecaWave and UbiSense among others.
Due to the fact that the data provided by these sensors is
in the form of ranges, they can be easily transformed into a
position using trilateration. The placement of the fixed anchors
of a UWB-system has a significant impact on the achievable
accuracy of the localization system [4]. Many different tech-
niques have been proposed to determine an optimal placement
of fixed anchors. Some have employed analytical methods such
as minimizing the mean square error (MSE) by determining
the optimal distance between anchors [2]. Others have used
geometric approaches in order to minimize the geometrical
dilution of precision (GDOP) between the anchors [4]. Genetic
algorithms (GAs) have also been used to determine an optimal
anchor placement configuration [5].

In this paper, we will approach this optimization problem
by making use of the amount of mutual information as the
performance metric [6], [7] using a heuristic algorithm for
the placement of the fixed anchors. This work is based on
the mutual information model presented in [8] and which has
been applied for RSS-based localization in [9]. In this paper
we adapt the previously introduced model to a UWB-based
localization system. As we will demonstrate further in this
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paper, there is a need to optimize the computational algorithm
for large-scale optimization problems as we target industrial
applications with large floor plans and a high number of fixed
anchors. For the optimization we resort to heuristic optimiza-
tion techniques instead of meta-heuristics, as these general
techniques tend to have difficulties in efficiently solving these
large-scale non-linear problems with tight constraints [10], as
found in UWB anchor placement.

The rest of this paper is organized as follows: In Section
II we describe the mathematical model of UWB ranging
measurements using a probabilistic approach. Section III ex-
plains the real world measurements we performed to tune
our simulation parameters. In Section IV we will expand the
likelihood model of Section II to information theory. Section
V explains the algorithm we used to optimize the anchor
placement as well as the heuristics we have used to speed up
the calculations. Lastly, in Sections VI and VII we will present
the results of our optimization algorithms and our conclusions.

II. INDOOR LOCALIZATION WITH UWB RANGING

In order to evaluate the positioning of a set of anchors in a
certain environment, we start from a probabilistic approach to
localization: we calculate the posterior probability distribution
of the sensor position ~p . To achieve this, we generate mea-
surement ranges between a certain point in the environment
where a mobile node can be situated, and one or more anchors.
Figure 1 demonstrates one of these measurements. Anchors
A1, A2, A3, A5 and A6 determine their range with regard to
the measurement location ~p. The range measurement of anchor
A4 is blocked by an obstacle and provides no data for the
measurement. The mobile node’s position in the environment
can be defined by:

~p =
[
xp yp zp

]T
(1)

The anchor locations can be defined in the same way:

~ai =
[
xi yi zi

]T
(2)

A range measurement between a set of anchors and a position
is defined by the range between the position and the anchors
(~ri) with the addition of noise (η) and a certain bias (δ):
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Fig. 1. Example of a ranging measurement. A1, ..., A6 are anchor positions,
~p is the location where the measurement is being taken. A1, A2, A3, A5, A6

have line-of-sight and contribute to the result with there respective ranges ri,
while the range measurement of A4 is being blocked by an obstacle.

~m =


~r1
~r2
...
~rn

+


~η1
~η2
...
~ηn

+


~δ1
~δ2
...
~δn

 (3)

with

~ri = ‖~ai − ~p‖2 (4)

and

η ∈ N [0, σ2] (5)

We select the noise from a normal distribution with zero-
mean because we assume the bias of a range measurement
to be known and stable for relatively long time periods and
can therefore be removed for our purposes. In Section III
we will elaborate on this assumption. Based on this range
measurement, we define the likelihood that the generated
ranges ~m are measured at a certain position ~pi:

L(~m|~pi) = Γ · exp

[
−1

2
(~m− T~pi

)Σ−1
~pi

(~m− T~pi
)
T

]
, (6)

with Γ the Gaussian normalization factor:

Γ = (2π)−l/2|Σ~pi
|−1/2 (7)

l the number of anchors, T~pi
the calculated, noise-free ex-

pected ranges to the anchors from position ~pi and Σ~pi
a

constant covariance matrix. In the computational implemen-
tations we have foreseen that the covariance matrix Σ can
be a function of the pose ~p, which allows to model parts of
the environment with a lower signal-to-noise ratio (e.g. due

to the presence of electromagnetic interference from rotating
machinery). Figure 2 shows the likelihood distribution for a
single position in the center of a room with one, two, three and
four anchors respectively, providing the measurement ranges.
For each position, the entirety of the discretized environment
has to be evaluated with the generated ranges. In our simu-
lation model, we have to discretize the environment using a
selectable grid size. This gives us a series of 2D-voxels that
correspond to the mobile node positions in the environment.
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Fig. 2. Influence of anchor configurations on the likelihood distribution for a
single measurement location. The white squares represent the anchors while
the black cross is the measurement location.

Using the likelihood distribution of (6), we can calculate
the probability density function (PDF) of a certain 2D-voxel
being occupied by the mobile node as:

P(~pk|~m) =
L(~m|~pk) · P(~pk)∑
~pk
L(~m|~pk)· P(~pk)

, (8)

with P(~pk) being the prior distribution for the mobile node.
Using this prior distribution, we introduce a-priori information
about the mobile node position such as sections that cannot
be occupied by the mobile node (due to obstacles) or the
boundaries of the environment. We can calculate the likelihood
model with different levels of a-priori information. The first
level is to use no a-priori information and only constrain the
surface area of the environment. The second level is to only
make use of the outline of the floor plan by means of a
mask. The third level can expand this mask to also contain
inaccessible areas. The fourth level can make full use of the
knowledge of the floor plan and determine LOS conditions in
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Fig. 3. Difference in the amount of a priori information used. (a) shows the likelihood distribution when no information about the environment is used in
the measurements. In (b) the measurements are limited by the outline of the floor plan. (c) adds additional floor plan information by leaving out inaccessible
areas within the floor plan. Finally in (d) the measurements are only generated for 2D-voxels that have LOS conditions.

advance. In this situation, when a position has NLOS of one or
more anchors, the likelihood for this position increases. This
happens because we then know the mobile node can not be at
a position that does have coverage of these anchors.

Figure 3 demonstrates the influence of using different types
of a-priori information on the posterior probability distribu-
tions. Figure 3 (a) shows the situation where we do not use
any a-priori information. The likelihood distribution is also
calculated outside the floor plan, which is of no interest to us,
increasing the time required for the calculations. In figure 3
(b) the outline of the floor plan is used as a mask to limit the
likelihood distribution to our region of interest. Figure 3 (c)
has additional masking information about areas inside the floor
plan that are inaccessible, for instance a warehouse rack or a
wall. Lastly, figure 3 (d) makes full use of the knowledge of
the environment and only calculates the likelihood distribution
for those 2D-voxels that have LOS with the anchor. In the
remainder of the paper, we use situation c) for all calculations.
This way, we do not increase the likelihood at a certain mobile
node position due to certain anchors having NLOS of that
position.

III. MEASUREMENTS TO TUNE THE MODEL

The UWB anchor placement optimization relies heavily
on the sensor model introduced in Section II. Therefore,
it is crucial that this model adequately describes how the
range measurements are affected in various scenarios (i.e.
combinations of configuration and environmental conditions).
There are a number of ranging errors arising from time delays
in the hardware that are hard to physically describe in detail
(e.g. the effect of the antenna design). For this reason, we have
carried out numerous experiments to motivate the selected
model. We will first discuss the UWB setup that has been
used to gather the data, and the different scenarios that are at
play in a typical application. All data was collected in static
conditions: we assume that the UWB ranging measurements
experience little influence of the Doppler effect from the
movement of the mobile nodes at the typical low speeds in
practical applications.

A. UWB setup

The UWB system used in this work is the DecaWave
EVB1000 evaluation board, comprising of a DW1000 ra-
dio chip, a micro-controller from ST Microelectronics
(STM32F105 ARM Cortex M3) and an external UWB
antenna. The DecaWave DW1000 is a single-chip UWB
transceiver based on the 802.15.4-2011 standard. It can operate
in 6 frequency bands with a center frequency between 3.5 GHz
to 6.5 GHz and provides data communication with data rates
of 110 kbps, 850 kbps and 6.8 Mbps. The micro-controller
communicates with the radio chip via a Serial Peripheral
Interface (SPI). The evaluation board provides a micro USB
port to communicate with a PC.

B. Scenarios

The DecaWave UWB system used a time of flight based
two-way ranging (TWR) protocol to estimate the distance
between two modules, the anchor and the mobile node. The
effect of a wide range of scenarios has been analyzed, com-
prising of:

• line of sight (LOS) versus various forms of non-line of
sight (NLOS) conditions,

• the selected center frequency (channel),
• the selected preamble length,
• range distances between anchor and mobile node,
• mobile node and anchor orientations,
• mobile node and anchor height.

In this paper, we have only cropped out the effect of LOS
versus NLOS conditions, as the other effects are not yet
incorporated in the design framework. The influence of the
other scenarios will be evaluated and implemented into the
framework in the future. The other variables were set to a
center frequency of 6.5 GHz, a preamble length of 64 symbols,
a range distance of 10 m, 0 degree anchor and mobile node
orientations, and a height of 1.5 m.

The NLOS conditions were introduced by obstructing the
transfer path using sheets made of plasterboard, metal, EMF
absorbent material, and wood, in a first set of experiments
(Figure 4, left). In a second experiment a concrete wall (Figure



Fig. 4. The test setup with NLOS conditions introduced by (left) a plaster-
board sheet and (right) a concrete wall used to investigate their effect on the
UWB ranging error.

4, right) was used to obstruct the line of sight between the
anchor and the mobile node.

For each test 1000 samples were acquired. The range
error for each sample has been determined by comparing the
UWB based range with a ground truth range measurement
using a mobile laser distance measurement device. The results
obtained for the various NLOS conditions have been compared
with the results obtained for the LOS condition.

C. Results

Analysis of a wide set of test scenarios revealed that the
range errors are approximately normally distributed for both
the LOS and the NLOS conditions as shown in Figure 5 (a)
and (b). Contrary to what is sometimes found in the literature
[1], we have observed little skewness or multi modality in the
distributions of our test measurement results. The fact that we
do not observe this skewness is because we performed our
tests with a different measurement setup than in [1]. In [1]
the combined range errors of sixty one different measurement
locations are shown, resulting in the skewness due to NLOS
measurements affecting the results. Whereas our results come
from performing the same measurement 1000 times at the
same location. Figure 5 (c) and (d) shows that the NLOS
conditions mainly affect the bias, but have a minor effect on
the standard deviation of the range error. The large deviation
of the bias of the concrete wall is due to fact that this test
was performed with an actual wall, while the other tests were
performed with movable panels. The biases are positive for
the NLOS conditions, but vary significantly depending on the
specific NLOS condition.

From these results it is concluded that the NLOS conditions
result in large bias error variations, that are hard to predict in
real situations. Therefore, the bias errors for NLOS conditions
will not be taken into account in the model.

IV. INFORMATION THEORETIC MODEL

Now that we have established our likelihood model and have
determined the parameters for our simulations, we can use
them to determine the Shannon entropy in the environment.
We use the amount of entropy in the environment as the base
for our metric to determine if a measurement of a mobile
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Fig. 5. (a) Range error distributions for LOS and (b) NLOS measurements
at a range distance of 10 m showing the approximately normal distributions
for both measurements. (c) Bias and (d) standard deviation of the range error
at a range distance of 10 m, showing an increased positive bias for NLOS
conditions, whereas the standard deviation is barely affected.

node on a certain 2D-voxel will produce a reliable localization.
When a certain location ~pk has a low amount of entropy, there
exists little ambiguity on the position estimate resulting from
a measurement in this location. This will result in a higher
localization precision. We can calculate the entropy in each
possible 2D-voxel in the environment ~pk by using the result
of (8):

H(~pk|~mk) = −
n∑

i=1

P(~pi|~mk) · log2 [P(~pi|~mk)] (9)

with n the amount of 2D-voxels in the environment. Please
note that for each value of i, the PDF is calculated for each 2D-
voxel in the environment. This PDF depends on the individual
noise realization that is drawn from the noise distribution.
To take into account the full noise distribution instead of a
single noise realization, we approximate the true value of the
Shannon entropy using a Monte Carlo approximation. A new
~mk is generated M times which is then averaged in order to
obtain a single estimate for the Shannon entropy:

〈H(~pk)〉 =
1

M
·

M∑
j=1

H(~pk|~mk,j) (10)



In our model, we make use of the mutual information as the
performance metric. This can be easily determined by subtract-
ing the entropy from the maximum amount of information that
could possibly be present in the environment:

〈I(~pk; ~mk)〉 = log2(n)− 〈H(~pk)〉 (11)

Figure 6 illustrates the Monte Carlo approximation to deter-
mine the amount of information at a certain 2D-voxel, as
well as the effect of having more or less anchors in LOS.
The measurement location M1 has LOS to anchor A3. The
likelihood model will be evaluated M times for this point
using the Monte Carlo approximation, which will result in
an estimate for the mutual information for this position.
The process is repeated for all other possible mobile node
positions in the environment. The measurement location M2

is in LOS of both A2 and A3, which leads to a higher
amount of information due to the posterior distribution of this
measurement being a lot more focused. Higher amounts of
information implies that more anchors have LOS to the mobile
node location. We can quantify the total amount of information
in the environment as follows:

Itot =

n∑
k=1

〈I(~pk)〉 (12)

V. OPTIMIZATION OF ANCHOR PLACEMENT USING
INFORMATION THEORY

We have established a method to evaluate a certain anchor
configuration by using mutual information. Now we want to
use this approach to optimize an anchor configuration. To
accomplish this we will use an incremental algorithm, which
makes use of the overall distribution of mutual information.
To evaluate a certain anchor configuration, we will take both
the total amount of information as well as the minimum
information amount in a floor plan into account. To be able
to optimize the placement of anchors, we start with defining
a configurable grid on which the anchors can be positioned.
Next, we iterate over these positions with the first anchor, and
eventually place it at the position where the total amount of
information in the environment is maximal (see equation (12)).
In the next step, we iterate over the remaining anchor positions,
calculating the total amount of information of the two anchors
combined. We again select the anchor that adds the highest
amount of information. Once a certain maximum threshold
value has been reached in a 2D-voxel, we will clip it to this
value when calculating the total amount of information. We do
this to limit the influence of small increases of information in
many 2D-voxels, versus larger increases in fewer 2D-voxels.
We keep repeating this process, adding one anchor at a time,
until a predefined minimal information threshold has been
reached in each mobile node location ~pk.

To determine these thresholds, we use a floor plan with the
same dimensions and grid size as the floor plan for which we
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want to perform the optimization, without any obstacles. We
place three anchors equidistantly from each other on a circle,
with the 2D-voxel we want to evaluate as the center of this
circle. Figure 7 (a) demonstrates this setup. Figure 7 (b) shows
the same setup with five anchors, which we use to determine
the information cut-off threshold. Once a 2D-voxel has reached
this amount of information, we ignore any additional increase.

Due to the large amount of calculations needed to execute
this algorithm, it is unfeasible to use it for anything but the
smallest floor plans. Our final scope is to be able to optimize
the anchor placement in environments of 100m×200m covered
by hundreds of anchors. The algorithm described above would
take months to complete. We need to calculate the likelihood
distribution of every 2D-voxel multiple times for the Monte
Carlo simulation and for each likelihood distribution of a
2D-voxel, we need to evaluate the entire floor plan. This is
unfeasible for our targeted real world industrial situations, us-
ing commercial grade computers or even modest computation
clusters. For this reason we changed the above algorithm to
reduce the number of calculations, by reducing the search
space for the placement of the next anchor, and by reducing
the amount of anchor locations we test.

We start by randomly selecting a 2D-voxel from 1% of all
the 2D-voxels with the lowest amount of information. Next, we
choose all the anchor positions that have LOS of this 2D-voxel.
From these candidate anchor locations, we randomly select
twenty. We evaluate these twenty anchor locations and add the
one that adds the most amount of information to our anchor
configuration, the same way as described in the previous
algorithm. We then evaluate the entire environment with the
current anchor configuration, and test if we have reached the
predetermined minimal information threshold. If not, we select
a new 2D-voxel from the lower 1% of information and repeat
the selection process. We decided to select from the lowest 1%
to add some amount of randomness to the algorithm while still
optimizing for areas with low amounts of information. In our
experiments we tested with different amounts of anchors to
evaluate and found that with twenty we had a good trade-
off between speed and performance. These values can change
depending on the situation of the environment.

This optimized, greedy algorithm reduced the computation
time by a factor of fifteen, with only a very small trade-off
in the quality of the end result. We can see a slightly slower
increase in the amount of information with each additional
anchor. To further reduce the computation time, we added
another optimization while calculating the mutual information.
Instead of discretizing the floor plan with a small grid size,
we make use of two different grid sizes: a course (1m)
and a fine grid size (5mm). When we want to calculate the
mutual information for a large-sized 2D-voxel, we perform the
calculations on the finer, local grid. We do this only locally,
in the area of the large-sized 2D-voxel, always with the same
amount of 2D-voxels. We demonstrate this method in figure 8
which equates to setting a circular Bernoulli prior in equation
(8). Therefore we possibly lose the multi modal character of
the likelihood function. However, in most applications there

will be some form of sensor fusion or recursive tracking and
by varying the radius of the finer, local grid we are able to
account for the effectiveness of the sensor fusion algorithm.
This method of calculating will not have a large impact on our
result, since the exact value of information is less important
to us: we are more interested in the relative increase of the
mutual information. The required run-time for an optimization
problem is reduced greatly (by a factor greater than 3500 for
a floor plan of 20m×20m with a grid size of 5mm) by using
this method, as we will demonstrate in the following section.
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VI. RESULTS

In all of the subsequent simulations, we have used the
following parameters: a large grid size of 1m, a small grid
size of 5mm, a spacing of 0.5m between the anchor locations,
a standard deviation on the generated measurement ranges of
20mm and five Monte Carlo samples. The anchor locations
were limited to be placed alongside a wall to reduce com-
plexity. We used a mask of the inaccessible areas of the floor
plan as a priori information as explained in figure 3 (c). The
calculations were performed on a workstation with an Intel
I9 7960X CPU with 128GB of RAM in MATLAB R2017b,
parallelized to use 16 cores.

To determine the performance of our algorithm, we created a
floor plan of 20m × 20m. In the floor plan we placed multiple
obstructions to add to the complexity of the environment.
Figure 9 shows the layout of our test environment. We used
our incremental algorithm with variable grid size to be used as
a benchmark for our speed optimization with a sub selection of
anchors. We did not evaluate this problem with the absence of
the variable grid size heuristic, as this approach would have
taken over a month to complete. Figure 9 shows the result
of the incremental algorithm, after placing fifteen anchors.
It took approximately thirty hours to reach this result. The
resulting information amounts can be seen in table I. To
compare the performance of our optimized algorithm with
the benchmark, we ran our optimized algorithm twenty times,
with the same parameters as the benchmark. The result can
be seen in figure 10. Figure (a) compares the total amount
of information present in the environment with an increasing
number of anchors. The blue line represents the results of
the benchmark algorithm while the red dashed line is the
mean of the results of the twenty optimized runs, with the
error bar the standard deviation of these twenty runs. Figure
(b) shows the minimum amount of information present in the
environment for increasing numbers of anchors. The blue line
is the minimal value with the benchmark algorithm while the
red line is the mean of minimal values of the twenty optimized
runs, with the error bar the standard deviation between these
twenty runs. From these graphs we can conclude that our
optimized algorithm performs very well as shown by the data
in table I. We do notice in our results that it is difficult to obtain
high information levels in narrow spaces, e.g. at the bottom
right of Figure 9. This occurs due to GDOP since there is no
room for the anchors to be far enough apart.

Benchmark (bits) Optimized (bits)
(avg of 20 runs)

Max. info 16.19 16.13
Min. info 13.03 13.25
Mean info 15.40 15.33
Total info 4342.64 4323.69

TABLE I
COMPARISON OF THE INFORMATION AMOUNTS BETWEEN THE TWO

ALGORITHMS AFTER PLACING FIFTEEN ANCHORS

As an additional test, we asked ten colleagues to place
fifteen anchors to the best of their abilities in the same
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Fig. 9. Result of the incremental algorithm with variable grid size after placing
fifteen anchors. The minimal information value is 13.03 bits. The maximum
amount of information is 16.19 bits. The anchor locations were limited to
be against a wall to limit the complexity. It took approximately 30 hours to
calculate. The white squares represent the anchor locations.

environment to compare their performance to our algorithm.
We compared their results with the data of the twenty runs of
our optimized algorithm by using a right-tailed Wilcoxon rank
sum test [11]. The result of this test showed that our algorithm
performed better than the test subject at a 1% significance level
for the total, mean and minimum information levels.

VII. CONCLUSION

In this paper we have introduced a method for evaluating
an anchor configuration in a UWB localization setting using
an information-theoretic framework. We also introduced a
heuristic algorithm to optimize the beacon placement, based on
the mutual information distribution in a complex environment.
To arrive at a solution that is computationally feasible, we
have optimized the algorithm from a computational point of
view, which resulted in a reduction in run-time for complex
environments from approximately thirty hours to around two
hours. In the future we will validate this approach in large-
scale (> 100m × 200m) industrial settings with many ob-
stacles. We will experiment with different approaches in our
anchor selection process to further increase the performance
of our algorithm.
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