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Abstract—Fingerprinting techniques, which are a common
method for indoor localization, have been recently applied with
success into outdoor settings. Particularly, the communication
signals of Low Power Wide Area Networks (LPWAN) such as
Sigfox, have been used for localization. In this rather recent field
of study, not many publicly available datasets, which would facil-
itate the consistent comparison of different positioning systems,
exist so far. In the current study, a published dataset of RSSI
measurements on a Sigfox network deployed in Antwerp, Belgium
is used to analyse the appropriate selection of preprocessing
steps and to tune the hyperparameters of a kNN fingerprinting
method. Initially, the tuning of hyperparameter k for a variety of
distance metrics, and the selection of efficient data transformation
schemes, proposed by relevant works, is presented. In addition,
accuracy improvements are achieved in this study, by a detailed
examination of the appropriate adjustment of the parameters of
the data transformation schemes tested, and of the handling of
out of range values. With the appropriate tuning of these factors,
the achieved mean localization error was 298 meters, and the me-
dian error was 109 meters. To facilitate the reproducibility of tests
and comparability of results, the code and train/validation/test
split used in this study are available.

Keywords—IoT, Fingerprinting, Sigfox, Localization, Position-
ing, Reproducibility, Preprocessing, Machine Learning, knn

I. INTRODUCTION

The recent emergence of Internet of Things (IoT) technolo-
gies has made so that a plethora of low power devices make
their appearance worldwide, in people’s everyday life. The
concept of smart cities becomes familiar to the broad public,
and numerous applications are being proposed, implemented
and deployed in domains such as massive gathering of sensor
measurements, automatic control, asset tracking, etc. One
domain of great interest concerning the IoT technologies is
the offering of Location Based Services.

Outdoor positioning is generally considered a solved prob-
lem, as various Global Navigation Satellite Systems (GNSS),
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such as the commonly known Global Positioning System
(GPS), Galileo, GLONASS and BeiDou, have made outdoors
positioning an everyday reality for most users of smartphones
and custom positioning devices. These systems achieve an
impressive accuracy in their estimates. Nevertheless, the bat-
tery consumption of their chipsets is considerable, and when
it comes to low power IoT mobile devices, their usage is
problematic. Therefore, an alternative way of localizing such
devices is needed.

The proliferation of IoT devices has been facilitated by the
increasing marketization of different LPWAN technologies,
such as Sigfox or LoRaWAN. The localization capabilities of
these technologies have been tested in practice. The LoRa al-
liance has released a geolocalization white paper, presenting an
overview of the methods tested and used by its members [1].
Similarly, the Sigfox company is advertising the capabilities of
its localization service [2]. A detailed comparative analysis of
the most prominent LPWAN technologies can be found in [3]
and references therein.

The architecture of these networks is straightforward. Bases-
tations, which are connected to a central server, are deployed
statically in urban and rural areas. Depending on the use-case,
the low power devices might be statically deployed as, for
instance, sensors repeating measurements in fixed locations,
or might be mobile. In the latter case, they could be mounted
on vehicles so that they report sensor measurements in various
locations, or they could be used for asset tracking. The devices
transmit messages formatted according to the protocol of the
technology used, which is received by the basestations in
range. All messages are centrally gathered to a central server.

Apart from the content of the message which depends on
the use case and the task assigned to the mobile devices,
several other types of information concerning the transmission
are being reported. These types may be: the Received Signal
Strength Indicator (RSSI), the Time of Arrival (ToA), the Time
Difference of Arrival (TDoA), the Logarithmic Signal over
Noise Ratio (LSNR), etc. This information can be utilized
by ranging techniques of localization, such a multilateration,
to offer position estimates. Ranging techniques have the ad-
vantage that they do not require a surveying phase, and can
been used directly, assuming knowledge of the basestations’
locations. Nevertheless, since they do not inherently contain
information related to the particularities of the environment
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over which they are used, they have a disadvantage, in terms
of accuracy, when compared with fingerprinting methods.

Fingerprinting methods rely on datasets that are collected
throughout the area of interest. These datasets contain mea-
surements of signal reception values characterizing known
locations. These datasets of fingerprints recorded in known
locations are used in order to build models which predict the
unknown location of new signal receptions. A disadvantage of
fingerprinting techniques is that the creation and maintenance
of an up-to-date fingerprint database requires considerable
effort and cost. One practical way to record such a dataset
outdoors is presented in the work of Aernouts et al. [3].
In that work, a dataset is made publicly available and its
collection methodology is presented. A total of 20 cars of the
Belgian postal services were equipped with low power devices
communicating via Sigfox and LoRaWAN with a central
server. At the same time, the location of the car, as estimated
by a GPS device, was also reported. In these datasets, the
GPS estimates are considered as the spatial ground truth of
the location of the message transmission.

Recent works in the field of indoor and outdoor positioning
[3], [4], [5] have underlined the fact that it is indispensable
for the publications of the field to favour the reproducibility
of the experiments and the comparability of the results. In
this spirit, we utilize a publicly available Sigfox dataset [3],
and we share with the community the code of the experi-
ments of the current study (DOI:10.5281/zenodo.3228752),
and the train/validation/test set split used in said dataset (DOI:
10.5281/zenodo.3228744), to facilitate a consistent compari-
son of results in future works.

In the current study, we present a detailed examination of
the hyperparameter tuning and of the process of selecting
the most appropriate preprocessing methodologies for RSSI
fingerprinting on an urban Sigfox setting. A systematic exami-
nation of the data preprocessing and the hyperparameter tuning
steps can optimize the performance of a localization system.
Consequently, it may offer an evaluation of the capabilities
of the technology used. This work aims to exemplify such
a process, and to characterize and report the capabilities of
a Sigfox-based localization system on a well defined urban
setting.

The rest of this paper is organized as follows. In Section II,
the work relevant to this subject is discussed. Section III
presents in detail the dataset used in this work. In Section IV
the preprocessing steps analysed in this work are presented.
After a concise presentation of the experimental setup in
Section V, an extensive presentation and discussion of the
results is developed in Section VI. Finally, conclusions drawn
and ideas for future work are presented in Section VII.

II. RELATED WORK

Fingerprinting techniques have been common ground for
the indoor positioning community for the last two decades [6].
Particularly, RSSI has been the main measurement type that
is used [6]. Wi-Fi and Bluetooth have been some of the most
commonly used technologies for indoor fingerprinting [7].

Indoor localization using smartphones has been a main field of
application of fingerprinting techniques, in which context fin-
gerprinting is either used as a standalone method or combined
with other methodologies in hybrid systems [7].

The proliferation of Low Power Wide Area Networks (LP-
WAN), such as Sigfox and LoRaWAN, has brought a new
domain of application of the fingerprinting methods. A recent
study [8] has experimentally verified the intuitive assumption
that fingerprinting methods outperform, in terms of accuracy,
proximity or ranging positioning methods, in a Sigfox setting.

Several works have studied localization methods using
LPWAN technologies. Plets et al. [9], have evaluated experi-
mentally RRS and TDoA ranging positioning methods using a
LoRaWAN network, reporting median errors of 1250 and 200
meters for RRS and TDoA respectively. Similarly, Podevinj et
al. [10] present a tracking algorithm which uses a TDoA rang-
ing method for its initial raw estimates that feed the tracking
module, reporting a similar median performance (200m) on
the raw localization estimates. The two aforementioned works
however do not report the mean error of their systems. Other
works [11],[12], have focused on rather specific settings over
which they evaluate positioning methods. The first work [11]
evaluates an RSSI fingerprinting algorithm in the confined area
of a parking lot, with four basestations installed in this area,
reporting a mean error of 24 meters. It is noteworthy that since
knn fingerprinting methods cannot predict a location outside
the area of the fingerprints of the training set, a very limited
area of fingerprint collection will drastically affect the error
statistics. The later work [12], also deals with the subject of
car parking, but with a different approach, as in this case the
cars were equipped with tags that exchanged messages among
them, only later reporting the RSS to a server. In a small-scale
test presented, a maximal error of 8 meters is claimed.

In a series of studies [3], [8], [13], the authors of the
IDLab of the University of Antwerp have presented a publicly
available Sigfox dataset and have elaborated on the proper
configuration of a kNN fingerprinting algorithm. In the publi-
cation in which the dataset used in this study was presented to
the research community [3], the authors exemplified the usage
of the dataset, reporting a 689 meter mean error in this first
approach of utilizing the dataset. In a following publication of
the IDLab by Janssen et al. [13], the authors present a detailed
study of numerous distance metrics and data preprocessing
(or data representation) methods, using the same dataset and
achieving a mean error of 340 meters. The current study builds
on top of the ground these works have set, further examining
certain parameters of the preprocessing steps and presenting
the impact that an appropriate tuning of these parameters can
have in the reduction of the positioning error.

III. THE DATASET USED

Aenrouts et al. [3] have made publicly available 3 finger-
printing datasets of Low Power Wide Area Networks. Two of
these datasets were collected in the urban area of Antwerp,
one using Sigfox and another using LoRaWAN. The third
dataset was collected in the rural area between the towns



of Antwerp and Ghent, using Sigfox. The authors underline
their motivation by mentioning in their work that: ‘With these
datasets, we intend to provide the global research community
with a benchmark tool to evaluate fingerprinting algorithms
for LPWAN standards.’

Fig. 1. The histogram of RSSI values of all signal receptions.

In this work, we have used the first dataset, containing Sig-
fox messages in the urban area of Antwerp. The fingerprints
are collected in an area of approximately 53 square kilometers,
though the majority of them lay in the central area of Antwerp
which is approximately half the size of the full area. A total
number of 14378 messages are reported in the dataset. Each
message contains the following information: the RSSI value
of the transmitted signal by each of the 84 base stations, and
the spatial ground truth of the signal’s transmission location,
as estimated by a GPS device, alongside the Sigfox devices.
Undeniably, the fact that an estimate which is subject to error
is used as ground truth introduces bias. Nevertheless, the error
of GPS is at the order of a few tens of meters while the
localization accuracy ranges at the order of several hundreds
of meters.

In order to obtain a feeling of the distribution of the RSSI
values of the dataset, the histogram of all 317126 RSSI values
that are present in the dataset is plotted in Figure 1. A big part
of the distribution (more that 60% of the data) is concentrated
in the [−140,−120] range, having almost 10% of the data in
the value range above −100. In cases where a basestation did
not receive a message, an out of range RSSI value of −200
was inserted, in order not to leave an empty value and also
for differentiating this entry from the minimum RSSI values
actually received (−156). The out of range values of −200
were not included in the histogram’s creation.

For the purposes of our study, we have split the dataset into
a training, a validation and a test set containing 70%, 15%,
and 15% of the sample respectively (10063, 2157 and 2157
entries, in absolute numbers). The spatial distribution of the
ground truth locations of the three aforementioned sets can be
seen in Figure 2.

In the spirit of verifiability, reproducibility and comparabil-
ity of results, it is important not only to report performance
metrics over a publicly available dataset, but to also report the
specific way the dataset is split into a training, a validation
and a test set. In this way, researchers will be able to train
models on the same training set, make decisions over the
optimal tuning at the same validation set, and most importantly
report unbiased performance results on the same test set. The
three subsets that are used in the current study are made
available to the research community for future reference. For
the cases that a different training and validation strategy is
desired, or an entirely different dataset is to be used, the full
code implementation is available so that the same tests can be
reproduced in these different settings.

IV. DATA PREPROCESSING

In a highly cited work, Torres-Sospedra et al. [14] have
presented a systematic study of data preprocessing methods,
and of distance and similarity metrics for Wi-Fi fingerprinting
in indoor positioning systems. In that work, the authors have
shown the great significance of an appropriate data prepro-
cessing step, and have presented four alternative methods of
preprocessing the fingerprint data. These four data represen-
tation methods are the following:

As defined in [14], positive values data representation
subtracts the minimum RSSI value from all the entries.

Positivei(x) =

 (RSSi −min)
if basestation i re-
ceived the message
and RSSi ≥ τ

0 otherwise
(1)

where RSSi is the RSS from the ith basetation, min is
the lowest RSS value minus 1 among all RSS values of
the database [14]. Also, τ is a threshold value, used so that
basetations with intensities lower than τ are considered as not-
detected, and the lowest possible value is assigned to them.

It is worth emphasizing here that, since utilizing in the
training set’s preprocessing any kind of information coming
from the validation or the test set would introduce information
leakage, the min should only be calculated by the training set
data. Calculating the min, or normalizing according to the
data of the full dataset, would imply a breach of protocol of
the train/validation/testing scheme, where the validation and
testing sets are supposed to be completely unknown during
the preprocessing phase.

• Replace all values RSSI < τ with τ , where τ ≥ min
• Define Positivei(x) as:

Positivei(x) = RSSI − τ (2)

The normalized data representation, normalizes the positive
values data representation into the [0,1] range. (To be noted
that the RSSI values are negative)

Normalizedi(x) = Positivei(x)/(−min) (3)



Fig. 2. The spatial distribution of the data points of the dataset, as reported by the GPS devices used to establish the ground truth. The train, validation and
tests sets that were created in this work are depicted in red, black and blue respectively.

The exponential and powed representations are the result of
the intention to go beyond the linear handling of the RSSI val-
ues, since the RSSI values correspond to a logarithmic scale.
More particularly, the exponential and powed representations
are defined as follows:

Exponentiali(x) =
exp(Positivei(x)α )

exp(−minα )
(4)

Powedi(x) =
(Positivei(x))

β

(−min)β)
(5)

The proposed default values for the parameters α and β
are α = 24 and β = e, where e is the mathematical
constant. Nevertheless, since these parameters were selected
upon testing with Wi-Fi signals in an indoor setting, which has
a different range and distribution of RSSI values, it is a good
advice to adjust them in accordance with a new setting. This
ground setting analysis of data processioning presented in [14],
has been used as a reference in the work by Janssen et al. [13],
and is studied in further detail in the current work. The impact
of these preprocessing steps and of the appropriate tuning
of their parameters on the achieved positioning accuracy is
extensively discussed in Section VI, along with all results of
this study.

V. EXPERIMENTAL SETUP

In this study, a detailed examination of various prepos-
sessing methods is presented, along with a hyperparameter
tuning of the k-nearest neighbours (kNN) method. For the
experiments presented in this study the free machine learn-
ing library for the Python language, scikit-learn, was used.
Particularly, scikit-learn version 0.19.1 and Python 3.5.5 were
used. The Haversine formula has been used for measuring
distances on the reported experiments. Upon completion of the
experiments, the Vincenty formula, which gives the shortest

geodesic distance on an ellipsoid modeled earth, was also
tested. It is straightforward that the comparisons among the
performance of models remain consistent if either of the two
formulas is used. The absolute distances measured with the
two formulas differ by less than 0.5%.

The common train/validation/test set division methodology
is used on the analyses presented in this work. The train set is
used to train the model. In the case of knn, no training process
needs to take place per se, thus the training set practically cre-
ates the space of neighbors among which each new fingerprint
is compared against. The validation set is used for evaluating
different candidate models and checking the appropriateness
of the selected hyperparameter values and preprocessing steps.
Based on the performance on the validation set, the optimal
model configuration is chosen. As both train and validation
sets have participated in the configuration of the final model,
an unbiased final evaluation of the model’s performance needs
to take place using a third set, containing previously unseen
data: the test set. Therefore, during all preprocessing, training
and tuning steps, the test set is inaccessible, and no information
stemming from it is to be used.

Initially, similarly to the work by Janssen et al. [13], we
examine various distance metrics (the full list of the Distance
Metrics class of scikit-learn) and tune the hyperparameter k
for each distance metric. We perform this analysis twice: once
using the dataset as it is with the out-of-range −200 value
unchanged, and then again, replacing it with the experimen-
tally found minimum of actually received RSSI values in the
training set minus one (−157). Moreover, we examine the
performance of a wide range of candidate values of threshold
value τ of Equation 2. Lastly, concerning the parametric
preprocessing representations, exponential and powed, a tuning
of their respective parameters (α and β) is performed.



VI. RESULTS

A. Distance Metrics, Data Preprocessing and k

In this test, we examine various distance metrics and tune
the hyperparameter k for each distance metric. In the ex-
periments of the current study, all four data representations
defined in Equations 2-5 were tested as a preprocessing step.
The results of these tests, presented in Tables I and II, have
verified a fact that was observed in previous works as well
([14], [13]): the exponential and powed representations clearly
outperform the positive and normalized data representations,
for all distance metrics used. For simplicity, in Tables I and II
we only report the results of the two most performant methods,
exponential and powed. It should be underlined that selection
of the optimal hypermarameter value k and the localization
error statistics reported in Tables I and II are calculated on
the validation set. Moreover, in the context of this test, the
default values of the parameters (α = 24 and β = e) of the
exponential and powed representations are used.

Concerning the distance metrics, apart from those reported
in Tables I and II, another family of distance metrics available
in scikit-learn was evaluated, but proven to be entirely unsuit-
able. That family of metrics such as the Jaccard, Matching,
Dice or Kulsinski distance, are intended for boolean-valued
vector spaces, setting as True any non-zero entry. Conse-
quently, those representations utilize a binary type of infor-
mation stating if each basestation has received the message
or not. Overall, the results show that, in accordance with
the previous works, the Bray-Curtis metric (equivalent to the
Sørensen metric mentioned in previous works [14], [13] offers
the best results in terms of accuracy.

Comparing the results of Tables I and II, the following
conclusions can be drown. In Table I, exponential representa-
tion is more performant than powed, for all distance metrics
except for the Canberra distance. On the contrary, in Table II
it is powed representation that offers better results, for all
but one distance metrics. In Table I the best performance
is achieved by the Bray-Curtis metric and the exponential
data representation, with a mean and median error of 344
and 148 meters respectively. For the results of Table II, the
best performance is achieved by the Bray-Curtis metric and
the powed data representation, with 319 and 123 meters of
mean and median error respectively. The corresponding mean
and median values of error on the test set are, 301 and 109
respectively.

While the results obtained by the positive and normalized
representation were not reported in Tables I and II, it is worth
to briefly discuss the performance they achieve. The Bray-
Curtis distance metric remains the best performing one for
both data representations. Since the normalized representation
is just a rescaled version of the positive data representation,
both methods achieve identical results in this setting. When the
dataset is used as is, meaning with τ = −200, the mean error
on the validation set is 552 meters, while for τ = −157, the
error is 400 meters. A first observation is that an appropriate
transformation of the RSS values may change entirely the level

TABLE I
LOCALIZATION ERROR ANALYSIS ON THE VALIDATION SET, REPORTING

THE OPTIMAL K VALUE OF ALL DISTANCE METRICS AND TWO
PREPOSSESSING STRATEGIES, WITH THE DEFAULT REPLACEMENT OF THE

MISSING VALUES WITH THE τ = −200 VALUE

DistanceMetric Exponential RSS Powed RSS
k mean median k mean median

euclidean 9 355 155 8 387 182
manhattan 5 360 145 6 389 183
chebyshev 7 428 222 3 506 285
hamming 10 1100 950 7 1058 906
canberra 6 516 316 11 572 368

braycurtis 8 344 148 6 364 168

TABLE II
LOCALIZATION ERROR ANALYSIS ON THE VALIDATION SET, REPORTING

THE OPTIMAL K VALUE OF ALL DISTANCE METRICS AND TWO
PREPOSSESSING STRATEGIES, HAVING ADJUSTED THE MISSING VALUES

TO THE EXPERIMENTAL MINIMUM RSSI VALUE, MINUS 1 (τ = −157)

DistanceMetric Exponential RSS Powed RSS
k mean median k mean median

euclidean 8 345 148 8 343 141
manhattan 7 348 138 6 343 136
chebyshev 4 409 191 4 399 175
hamming 10 1100 950 7 1065 912
canberra 6 420 205 8 470 275

braycurtis 5 341 126 6 319 123

of accuracy, leading from an initial error of 552 meters in
the linear handling of the RSS values, to a 344 meters error.
Furthermore, adjusting the τ value, and therefore, the way out-
of-range values are set, may further improve the performance,
thus the 319 meters mean error observed in Table II.

In an attempt of an interpretation of this difference in per-
formance among the two different threshold values used, the
following arguments are presented. It appears that the selection
of an out-of-range value may drastically affect the performance
of the positioning method. In the studied dataset, the−200 out-
of-range value is quite distinct to the experimental minimum
RSSI found in the dataset (−156). This artificial gap between
these two values may assign a significant importance to the
distinction between a very distant gateway receiving the signal
and a non-receiving one. On the other hand, bridging this
gap may treat these two cases as more similar, and favor the
distinction of RSSI values among closer detected basestations,
improving the distance measurement between fingerprints, and
consequently the efficient selection of the closest neighbours.

B. Threshold Value τ

In this test, the impact of the value of the τ threshold on the
localization performance is examined. The best configuration
found so far is used (k = 6, with a powed data representation),
for examining all τ values in the range [−200,−130]. Setting τ
with a value higher than the experimental minimum of −156,
will replace all values in the range [−156, τ ] with τ . Out-of-
range values that are lower that the experimental minimum,
are simply set to τ .



Fig. 3. The mean error on the validation set for different values of the
threshold τ of Equation 2.

The results of this analysis are reported in Figure 3. It is
evident that the best performance comes from values around
the experimental minimum. In particular, the lowest mean error
in the validation set was 317 meters, and it was given by τ =
−159. The corresponding performance in the test set was 298
meters mean error and 109 meters median error. The optimal
value τ = −159 is just below the experimental minimum of
received RSSI values, which suggests that putting the out-of-
range value just below the experimental minimum is the best
option, according to this test.

C. Parameters a and b of the Exponential and Eowed Data
Representations

As presented in Section IV, the exponential and powed data
representations rely on a parameter (α and β respectively). The
study that introduced these two representations [14] recom-
mends default values for these parameters, upon experimenta-
tion with data coming from indoor WiFi measurements. The
range and distribution of those values are different than those
of the dataset used in this work. Therefore, an appropriate
adjustment of the values of parameters α and β would adapt
these data transformations to optimally fit this different setting.

1) Parameter α of the Exponential Data Representation:
Regarding the parameter α of the exponential data representa-
tion, a range of candidate values has been tested. It is reminded
that the default value of α is 24. Integer values in the range
[10,40] have been evaluated in the best configuration found so
far, concerning the exponential data representation. Thus, the
Bray-Curtis distance has been used with k = 5 and τ = −157.
The results are presented in the plot of Figure 4.

The value α = 19 provides the lowest mean validation
error of 339 meters. The corresponding test set performance
is characterized by a mean error of 318 meters and a median
of 117 meters. In the plot of Figure 4 it can be observed that
there is a significant difference in performance comparing to
the default value (α = 24).

In Figure 5, the results of a similar examination are depicted.
This time, the test spans the space of candidate values of both

Fig. 4. The mean error on the validation set for different values of the
parameter α of the exponential data representation.

Fig. 5. The mean error on the validation set for different values of the pa-
rameter α of the exponential data representation and of the k hyperparameter
of kNN.

the parameter α of the exponential data representation and of
the k hyperparameter of kNN. The minimum mean validation
error is provided by α = 18 and k = 4, and is equal to 336
meters. The corresponding performance in the test set shows
a mean error of 322 meters and a median error of 110 meters.
There are several tuples of values of α and k in the proximity
of the ones reported above that provide very similar results.

2) Parameter β of the Exponential Data Representation:
An analysis similar to the previous one is performed for the
parameter β of the powed data representation. The range [2,3]
has been spanned with a granularity of 0.02. The default value
of β is the constant e, which is equal to 2.718. The best
configuration found concerning the powed data representation
has been used. Thus, the Bray-Curtis distance has been used
with k = 6. The results are presented in the plot of Figure 6.

The value β = 2.6 provides the lowest mean validation



Fig. 6. The mean error on the validation set for different values of the
parameter β of the powed data representation.

error of 318 meters. The mean error on the test set is 298
meters and the median 108 meters. In this case that parameter
β is studied, the difference of performance of the best β value
compared to the one of the default value, is less significant
than in the relevant analysis of α that preceded. Indicatively,
it is noted that the default value of β gave a mean error of
319 meters.

In Figure 7, the results for combinations of candidates
values of both the parameter β of the powed data represen-
tation and of the k hyperparameter of kNN are reported. The
minimum mean validation error is provided by β = 2.6 and
k = 6, same as in the previous analysis of Figure 6. The
convex form surface of Figure 7 reveals that the lowest values
of the mean error appear in a close proximity , since there
are several tuples of values α and k in the proximity of the
optimal ones reported above that provide very similar results.

Fig. 7. The mean error on the validation set for different values of the
parameter β of the powed data representation and of the k hyperparameter of
kNN.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we presented a detailed study of the process
of selecting the most appropriate preprocessing methodologies
and performing hyperparameter tuning for RSSI fingerprinting
in an urban Sigfox setting. We have discussed the ways of
appropriately preprocessing of the RSSI data, so as to improve
the accuracy of the studied fingerprinting localization method.
Moreover, identifying the limits of the achievable accuracy of
a Sigfox-based positioning system deployed in an urban area
has a been a main motivation of this work.

The examination of the results of this study may offer
several take-away messages. A linear handling of the RSSI
values, with the positive and normalized data representations,
achieved an above 500-meter mean error on the validation
set. Introducing non-linear transformations, proposed by the
relevant literature as more appropriate for the handling of RSSI
values which correspond to a logarithmic scale, reduced the
error to the level of 344 meters. To the best of our knowledge,
this study is the first go beyond these steps and further opti-
mize the handling of out-of-range values and the tuning of the
parameters α and β of the preprocessing data transformation,
so as to match the particularities of this outdoors setting, which
does not utilize a Wi-Fi system as the original paper [14],
but another technology, namely Sigfox. The best performing
setting proposed in this work achieves a mean error of 317
meters on the validation set. This setting achieves a 298-meter
error on the test set, with the corresponding median error being
109 meters.

A comparison with the performance of previous works
would not be strictly consistent, even if the same dataset
has been used, since the validation and test sets are not the
same. Nevertheless, we could discuss the order of magnitude
of the error achieved. In the initial work where the used
dataset became available [3], the linear handling of the RSSI
value resulted in a high mean error of 689 meters. A more
recent work [13], has utilized the data preprocessing methods
proposed by Torres-Sospedra et al. [14], reporting a mean val-
idation error of 340. The results of Table I of subsection VI-A,
report a similar mean error of 344 meters, for the same best
data representation found in [13], the exponential.

The aditional analysis of the threshold value τ , and the
appropriate adjustment of the preprocessing parameters α and
β proposed by this work, further improves the localization
accuracy. Moreover, it is noteworthy that the appropriate
adjustment of τ , sets a different preproseccing method as the
best performing one. While in Table I of subsection VI-A,
as well as in the work of Janssen et al. [13], the exponential
data representation is suggested by the obtained results, the
appropriate adjustment of τ sets the powed data representation
as preferable. It is these preprocessing adjustments that give a
mean error of 317 meters on the validation set and 298 meters
in the test set, with 121 and 109 meters for the corresponding
median errors.

The improvements in accuracy obtained by firstly using
and secondly tuning these preprocessing steps indicate the



significance of these steps. An appropriate preprocessing of
the data may have huge impact on the performance of the
positioning system using them, and thus it is recommended as
an indispensable step of the model selection process

A driving force of motivation of the authors has been
the intention to encourage the sharing of material among
the positioning community, which can facilitate consistent
comparisons, and accelerate the advancement of the field.
Being thankful for the public offering of the dataset to the
community by Aernouts et al. [3], we proceed in sharing the
dataset’s split into train/test/validation sets, used in this work,
as well as the code used for the tests.

As localization with LPWANs is a rather recent field of
study, there aren’t many publicly available datasets so far.
Moreover, the size of the dataset plays a crucial role, when
machine learning approaches are used for localization. A dense
spatial sampling of the area of interest can positively affect
the localization performance. Additionally, other types of
measurements, apart from the RSSI value, such as ToA, TDoA
or LSNR values, would be of great interest to be studied. The
intention of the authors is to work in the direction of creating
and sharing such datasets. We also invite the community to
embrace this effort that can accelerate the improvement of the
field.

Lastly, an interesting future direction for studies such as
the current one may be the evaluation of the computational
complexity of the machine learning methods and the distance
metrics that are tested. In the current work, the focus has
been on the performance of the positioning system in terms
of accuracy. Nevertheless, in practical settings factors such as
the computational complexity may play a crucial role in the
selection of the model used.
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