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Abstract— This work assesses the applicability of the well-
known SAGE algorithm for time-of-arrival estimation on ultra-
wideband (UWB) measurements taken with cheap COTS hard-
ware. Performance is comparable with a simple leading-edge
detection (LDE) algorithm, establishing a general precision of
approximately 30 cm/60 cm. SAGE performance is slightly worse
in general (33 cm/71 cm), but is more stable in non-line-of-
sight (NLOS) caused by human body presence. A more detailed
breakdown of the effect of incidence angle on one-dimensional
ranging accuracy is studied in relationship to human body
shadowing effects. Within a cone of 135 degrees in front of
the UWB device (pointing away from the body), the azimuthal
incidence angle has no influence on the ranging performance of
either algorithm.

Index Terms—ultra-wideband, body shadowing, ranging,
SAGE, WBANS, DecaWave, localization

I. INTRODUCTION

Ultra-wideband (UWB) technology has the potential to pro-
vide indoor localization at cm-level accuracy with multipath
tolerance at a low power consumption.

To fully leverage the wide bandwidth, academic research
on UWB propagation characteristics and channel modeling is
performed by using a Vector Network Analyzer (VNA), on
which signals can be measured with a high sampling frequency
– both in capture rate as well as resulting sampled signal
bandwidth. The VNA, however powerful for research, is not
suited as an end-user device, because of its prohibitive cost,
size and power requirements.

Currently available commercial off-the-shelf (COTS) so-
lutions for (end-user) UWB localization don’t share the
same characteristics. Commercial devices aim for a price-
performance balance in a small, portable form-factor with low
energy consumption, but are inherently outperformed by a
VNA in terms of sampling frequency and spectral range.

Therefore it is important to not limit application of academic
research to high-quality VNA data, but also investigate its ap-
plicability on measurements performed with COTS solutions.

In 2013, the company DecaWave (DW) brought an UWB
chipset and antenna to market, the DW1000 [1], which since
has been the choice of many researchers looking for an af-
fordable and accurate localization solution [2]. In recent years,
this has enabled advancements in new ranging schemes and
algorithms, trying to squeeze as much as possible out of such
a COTS platform. Corbalan [3] and Grosswindhager [4] have
investigated concurrent ranging, side-stepping a low-resolution
transmission timer. However, the same cannot be said on
the multipath estimation side. Adaptive leading-edge detection
(LDE) [5] and superresolution algorithms like SAGE [6] and
MUSIC [7] to perform the first-path detection are almost
exclusively applied to VNA data or synthetic channels [8]–
[13]. This means that the performance gain on COTS systems
is not clear and left to the imagination of the reader. This
lack of data on lower-cost chipsets and hardware designs is
a clear shortcoming on the road to UWB for handheld end-
user devices. This paper bridges this gap by applying an LDE
and a SAGE algorithm, on measurements done with the DW
system.

Additionally, in some scenarios one part of a pair of ranging
devices can be located in the vicinity of the human body, as
part of a so-called wireless body area network (WBAN). As
the human body affects RF signal propagation, the signal can
experience attenuation and/or dispersion depending on the path
taken between sender (TX) and receiver (RX). This effect has
already been investigated in [14], [15], the latter reporting an
attenuation of up 18 dB, leading to a ranging error of up to
60 cm. This clearly has an effect on the localisation accuracy
as well, and [16] reports a 3D localisation P90 error of up to
4 m for a device attached to the chest, up from 21 cm for a
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tripod-mounted solution.
While an interesting observation, the use of 3D localisation

to report the human body shadowing effect obscures the
effect on one-dimensional (1D) ranging. 3D localisation is
a higher-level process using multiple signals that inherently
compensates these errors up to a certain level.

Here we therefore propose a more in-depth analysis of the
1D ranging accuracy, to chart the weaknesses of time-of-arrival
(TOA) algorithms with respect to the incidence angle.

Concretely the novelty of this paper is twofold: i) perfor-
mance comparison of SAGE and LDE algorithms on COTS
hardware; ii) quantification of human body shadowing effect
on COTS measurements with detailed incidence angle break-
down.

The remainder of this paper presents the measurement setup
used to obtain the data (section II), a short description on
the algorithms used to obtain a ranging estimate (section III),
followed by a discussion of the results (section IV) and
conclusions, including ideas for future research (section V).

II. MEASUREMENT SETUP

This section describes the measurement equipment and
environment used to obtain the data.

A. Hardware

The DecaWave DW1000 platform is chosen as COTS
transceiver solution. This IEEE802.15.4-2011 compliant
chipset has a chipping rate of 499.2 MHz and supports six
radiofrequency (RF) bands (UWB band 1–5, 7), spanning from
3.5 GHz to 6.5 GHz. With a sampling clock of 63.8976 GHz,
the message timestamp resolution1 is about 15.65 ps.

The DW chip performs a 1D ranging estimate using a
leading-edge detection (LDE) algorithm (see subsection III-A)
on the channel impulse response (CIR) [17]. Ranging errors
of under 10 cm have been reported [2]. The implementation
details of the LDE algorithm on the chip have not been
published. The measured CIR is stored as a series of complex
values in one of the registers. Each point in time represents a
time-sample of about 1.0016 ns.

The measurement data are taken from a specialized anchor-
tag solution, developed in [18]. The DW transceiver is placed
on a custom UWB add-on board and combined with a sub-
GHz IoT platform, the Zolertia Re-Mote. An SMA connector
attaches a planar dipole antenna.

A two-way ranging (TWR) scheme is used to force com-
munication of a tag (representing an end-user) and an anchor
(the fixed infrastructure). The tag initializes the TWR distance
estimate and both the estimate and the CIR – as well as some
diagnostic information – are retrieved through a wired USB
connection from the tag.

1For scheduled sending, there is up to 8 ns timing jitter. The timestamp
itself is still accurate.

B. Environment

Figure 1 shows the open indoor area measurement con-
sidered here [19]. The rectangular windowless room with
concrete walls measures 50 m-by-11 m and features an open
central area with three rows of metal shelves in the back. The
ceiling is approximately 2.5 m high with metal rails to support
electrical cabling and lights.

The room has motion capture system, which uses ten
infra-red cameras and reflective tracker spheres, to construct
the ground truth of object locations and orientations in six
dimensions. The expected accuracy of this system is well
below centimetre-level for the performed measurements.

Figure 1. Ground plan of the IIoT lab, measurements take place in the area
designated as ‘MoCap area’.

The measurements are done in the rectangular central area
of 6 m by 11 m with the specialized DW device (as described
in subsection II-A). In each of the corners two DW anchors
are placed at different heights, defining a cube of roughly 6
m-by-11-by-2.5 m with eight anchors in total. To stay within
range of all infrared cameras, the extremes of this cube are
avoided.

For the first dataset, the receiving device (tag) is placed
on a camera mounting pole, at average male chest height
(1.5 m). A set of reflective markers on the antenna enable
the ground truth position acquisition. Measurements are taken
at three different locations, with rotation changing in 45°
increments. Per position/rotation pair, two sets of data are
retrieved: a ‘baseline CIR’ and an ‘body CIR’. The former
consists of the mounted tag, with nothing in the central area.
The latter emulates a user-wearable tag, with a human male
standing next to the pole-mounted tag. The user-tag distance
therefore fluctuates slightly across measurements. This is the
case as well for real-world applications, thus not a threat to
the research outcomes of this paper. Per configuration (loca-
tion/rotation/human presence) multiple points are obtained.

The second dataset focuses on the effect of incidence angle,
with locations spread across the room. The tag is now fixed to a
cardboard mounting solution placed at pelvis height on a male
researcher (the user) of average build and height. Reflective
markers are added to the cardboard pane to ensure good
visibility for the infrared tracking. Placement of the solution
on both the front and back side is considered, to simulate
placement of an UWB solution in the front or back pocket.



Both measurements are performed in a static way, i.e. both
the environment and the tag remain immobile, small move-
ments of the human body notwithstanding. The tag initiates a
TWR conversation between all eight anchors consecutively.

Table I lists the UWB device settings for the different
datasets used in section IV.

Table I
MEASUREMENT SETTINGS

Data- Settings
set nr. Channel PRF (MHz) Bitrate (kb/s) Preamble length

1 3 64 850 512
2 5 64 850 1024

C. Signal pre-processing

To apply different algorithms and compare them to the
COTS hard- and software platform, the channel impulse re-
sponse (CIR) needs to be extracted from the DW1000.

The channel measurement takes place between two inde-
pendent devices. Even though the sub-GHz backbone takes
care of clock synchronisation, the phase is incoherent, i.e. it
can not be used for absolute time-of-arrival estimation.

Additional caveat is the CIR itself, which consists of 1016
complex samples in the time domain with step size of ∆t ≈
1.0016 ns.

To start the accumulation of the message pre-amble, the
chipset makes an initial guess of what part of the signal
constitutes the direct path using signal intensity. This first
direct path estimate is likely to be an overestimation: when
the direct path is attenuated because of obstacles, there can be
reflected multipath components – with a longer travel time –
which have a higher signal intensity. This is accounted for by
the chipset.

The DecaWave chipset subsequently performs a ranging
estimation. It identifies the CIR bin (and fractional part)
corresponding to the direct path and connects this with the
UWB message, timestamped for calculation of the time of
flight. From this, a range estimate is given.

Because of this behaviour, it is impossible to directly run a
TOA algorithm on the CIR data to compare ranging results.
Therefore, a time series t is generated using (1), based on the
first path bin index iFP and time of flight calculated from the
TWR distance estimate dFP . Here, ∆t = 1/(2 · 499.2 MHz)
is defined by the chipping rate, with i = 1 . . . 1016 the index
of the timeseries and c the speed of light (in air).

t(i) = ∆t · (i− iFP ) +
dFP
c

(1)

Since no additional information on possible clock drift is
available to algorithms run externally, they are at a (minor)
disadvantage. TWR schemes apply corrections to account for
the processing time on the anchor, which contributes to the
round trip time for a message, but is not part of the time
of flight. With this approach, there is the implicit expectation
that this contribution is already filtered out and the algorithm

can work as it would for a completely synchronised one-way
ranging scheme.

III. TIME OF ARRIVAL ALGORITHMS

A. LDE

The leading-edge detection (LDE) algorithm makes use of
window functions to filter the signal and construct a more
dynamic threshold detector. This paper follows a partial im-
plementation details of [20], leaving out the adaptive portion of
the algorithm. This corresponds, according to [20], to the max-
ratio LDE algorithm of [21]. For clarity, a different notation
is used for the functions.

The CIR is represented by h(t), with t sampled at discrete,
fixed-interval points in time. As a first step, the CIR h is
upsampled using the built-in MATLAB function interp with
an upsampling factor of 20.

y(t) = waverage (|h(t)| , Naverage) (2)

Equation (2) applies an averaging window to the absolute
value of the CIR, using a window size of Naverage points.
Though seemingly working against the initial upsampling of
the CIR, the combination of averaging on top of upsampling
has proven beneficial.

u(t)= wmax (y(t), Nmax1) (3)
v(t)= wmax (y(t), Nmax2) (4)

Equations (3) and (4) apply a max-window function to the
averaged CIR data y, using a window size of Nmax1 and
Nmax2 points, respectively.

r(t) = (α · u(t) > v(t)) ∧ (v(t) > Θthr) (5)

Θthr = β · µnoise + γ · σnoise (6)

A binary ratio check is performed using (5), where the
logical value r indicates the presence of a leading edge, with
α a fixed multiplier. The threshold value Θthr is defined by
(6), using the noise statistics from the CIR, the mean µnoise
and the standard deviation σnoise, multiplied by fixed factors
β and γ, respectively. This differs slightly from [20], as the
threshold here is completely determined by the noise, without
the proposed additional, manually-set threshold. Note that the
noise statistics are calculated from a truncated set of CIR
points. Because of the limited size of the extracted CIR, only
the first 15 ns worth of signal are considered as noise.

Table II contains the LDE algorithm parameters, as used for
the different ranging error datasets presented in this paper.

Table II
LDE ALGORITHM PARAMETERS

Data- Parameters
set nr. Naverage Nmax1 Nmax2 α β γ

1 16 16 256 8.0 4.0 4.4
2 16 16 256 8.0 4.0 4.4



As mentioned before, the algorithm is applied to an up-
sampled CIR, with factor 20. This leads to a lowest possible
precision of approximately 1.5 cm.

B. SAGE

The Space Alternating Generalised Expectation Maximi-
sation (SAGE) algorithm is an extension of the Expecta-
tion Maximisation (EM) algorithm, which uses maximum-
likelihood estimation (MLE) to obtain a signal reconstruction.
From the individual paths that are reconstructed, information
on the signal propagation can be extracted, and with it, the
first path immediately leads to an estimate of the TOA and
therefore the distance. The algorithm has been extensively
studied in literature [6], [8], [14], [22]–[24]. Additionally,
[12] has already studied the influence of the human body
and a mitigation technique using a modified signal model.
This paper follows the implementation details and notation
of [9], though with a sole focus on TOA estimation, rather
than joint TOA/AOA estimation. With this simplification, the
lack of additional dimensions reduces the SAGE algorithm in
essence to the EM algorithm it is based on.

Equation (7) describes the received signal Y (t) as a finite
collection of L plane waves impinging on the antenna. This
superposition of waves is corrupted by white Gaussian noise
N(t). N0 is a positive constant. One wave or multipath
component (MPC) l is defined by its parameters θl, such that
all wave parameters are contained within θ

∆
= [θ1, . . . , θL].

For a single-antenna system, an MPC is only defined by a
relative delay τl and a complex amplitude αl. This information
is represented by θl = [τl, αl].

Y (t)=

L∑
l=1

s(t; θl) +

√
N0

2
N(t)

= s(t; θ) +

√
N0

2
N(t) (7)

Equation (8) gives the l-th wave’s contribution con-
tained within s(t; θl). The function p(t) represents a single
UWB pulse in the baseband.

s(t; θl) = αl p(t− τl) (8)

Equation (9) introduces the complete but unobservable data
Xl(t), for each wave, from which the observable (but incom-
plete) data Y (t) is constructed. From this follows (10).

Xl(t) = s(t; θl) +

√
N0

2
Nl(t) (9)

Y (t) =

L∑
l=1

Xl(t) (10)

The goal of the algorithm is to provide an estimate x̂l of
Xl(t) given an observation y(t) and a previous estimate of
the parameter vector θ̂′. The conditional expectation in (11)

lends its name to this part of the algorithm: the Expectation
(E) step.

x̂l(t; θ̂
′)

∆
= Eθ̂′ {Xl(t) | y(t)} (11)

Equation (12) estimates the complete data for the l-th
MPC using the observation y by subtracting all other wave
contributions from it.

x̂l(t; θ̂
′) = y(t)−

L∑
l′=1,l′ 6=l

s(t; θ̂′l′) (12)

Next, the Maximisation (M) step is performed. A new
estimate of the delay time is obtained using (13), while (14)
computes a new complex amplitude. The cost function z is
given by (15).

τ̂l
′′= arg max

τ

{∣∣∣z (τ ; x̂l(t; θ̂
′)
)∣∣∣} (13)

α̂l
′′=

z
(
τ̂ ′′; x̂l(t; θ̂

′)
)

∫ T
0
|p(t− τ̂l′′)|2 dt

(14)

z (τ ;xl)
∆
=

∫ T

0

pH(t′ − τ)xl(t
′) dt′ (15)

Algorithm success largely depends on the chosen param-
eters: the search space (and resolution) of the M step for
each parameter (τi), the number of MPCs L to decompose
the signal into, as well as the number of iterations to try to
achieve convergence.

Since we focus on time of arrival estimation, a complete
channel parameter estimation is not needed. Therefore, TOA
search space can be limited to the window up to and including
the maximum power wave (i.e. highest magnitude peak in the
CIR). A limited number of MPCs (15-25) suffices then to
capture the direct path, discarding noisy paths using a power
comparison. Similarly, a low number of iterations is enough
to yield satisfactory convergence. Table III presents the values
as used on the different datasets.

Table III
SAGE ALGORITHM PARAMETERS

Data- Parameters
set nr. MPCs to estimate number of iterations

1 25 1
2 30 1

Note that because SAGE models the signal as a superpo-
sition of plane waves, upsampling the obtained CIR does not
make sense without changing the signal model. This limits the
possible precision of the implementation of the algorithm as
presented here to approximately 30 cm, in line with the CIR
time bin width. Despite this disadvantage, it is still possible
to draw conclusions in terms of relative performance, keeping
this limitation in mind.



IV. RESULTS

A. Algorithm ranging performance comparison

Dataset 1 contains 5945 data points, with a ground truth
(section II). Both algorithms provide a ranging estimate, which
is compared to this ground truth. Figure 2 shows the error
using a cumulative distribution function (CDF). The limited
precision possible with SAGE algorithm (lack of subsampling)
explains the flatter slope around 0 m, and is indeed around
30 cm wide.

The shoulder, where the vertical slope tapers off to a more
horizontal line on the right half of the graph, is bit higher
for the SAGE curve (at the 92th percentile) than for the
LDE curve (at the 85th percentile). This indicate a slightly
better performance of the SAGE algorithm. Inversely, this
is compensated by its tendency to underestimate the range
in some cases (i.e. identify noise as a MPC, as seen in
the tail towards the left side of the graph). Both algorithm
behave similarly in terms of over significant overestimation
(more or less same sloping behavior for ranging errors higher
than 0.5 m). Maximum errors are the same for both, at
around 2 m (not shown on graph).
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Figure 2. CDF of the ranging error for LDE and SAGE algorithm on dataset 1.

Since dataset 1 consists of both measurements in the ab-
sence and presence of the human body, Figure 3 shows the
ranging error CDF for both cases separately. This dataset
contains 5130 data points. As the body measurements contain
datapoints corrupted by signal attenuation of through-body
propagation (or creeping waves around the body), it is evident,
that the presented algorithms perform better on the baseline
measurement. It must be noted that for the baseline measure-
ments, the LDE algorithm barely has an edge over the SAGE
algorithm, keeping again in mind the inherent lower precision
of SAGE. The graph of the body measurements shows the
origin of the higher shoulder for SAGE that is also present
when looking at the total performance in Figure 2.

Figure 4 shows the CDF for dataset 2, in which the tag is
always attached to the human user, and therefore more likely
to experience the influence of its body influence. The shoulder
for both algorithms is significantly lower than for dataset 1,
even when looking only at body measurements. The difference
in slope angle between LDE and SAGE remains similar, and
again, the SAGE shoulder starts slightly higher than of its
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Figure 3. CDF of the ranging error for LDE and SAGE algorithm on dataset 1,
evaluating baseline and body measurements separately.

competitor. It is however lower than before, and therefore does
not indicate better performance as earlier, giving the edge to
the LDE algorithm.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Ranging error (m)

0

0.2

0.4

0.6

0.8

1

C
D

F
 (

-)

LDE

SAGE

Figure 4. CDF of the ranging error for LDE and SAGE algorithm on dataset 2,
in presence of human body.

Some ranging algorithms introduce a bias to the estimation
they provide (e.g. identifying slope rather than peak of a wave).
This reduces the accuracy and can hinder a neutral comparison
between results. Therefore, using the error of the Xth per-
centile PX would not be a good figure of merit. Even more
so since the error can become negative when an algorithm
underestimates the distance. Therefore, by subtracting the 10th
percentile P10 from the 90th P90, we obtain the difference in
ranging error percentiles ∆P = P90 − P10, which provides a
better metric to compare performance than isolated percentile
values.

Another metric that can be used is the Cramer-Rao lower
bound (CRLB). First, the CDF of the ranging error is approx-
imated by a Gaussian mixture model. From this, the CRLB
is calculated based on a theoretical model. This metric is
similarly not affected by bias.

Table IV presents both metrics for the different datasets.
The ∆P shows that both algorithms have a precision of around
30 cm (dataset 1) up to 71 cm (dataset 2). The LDE algorithm
establishes a slightly better result overall, in both ∆P and
CRLB. Interestingly enough, comparing baseline versus body
measurements, LDE suffers a increase in spread of 313%,
whereas SAGE’s spread increases by approximately half that,
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Figure 5. Ranging errors for dataset 1, grouped by perceived incidence angle (expressed in cardinal and ordinal compass directions). The box plots are created
using the 25th and 75th percentile. The incidence angle is taken from the relative coordinate system of the tag, where North (N) points away from the user
(where applicable). Looking down from the ceiling determines the counter-clockwise compass layout. For South (S) incidence, the signal has to travel through
or around the body.

-1

-0.5

0

0.5

1

1.5

2

R
a

n
g

in
g

 e
rr

o
r 

(m
)

N NW W SW S SE E NE

LDE

SAGE

Outlier

(a) Ranging statistics

0

5

10

N

595

0

5

10

NW

730

0

5

10

W

498

0

5

10

SW

771

0

5

10

S

573

0

5

10

SE

759

0

5

10

E

492

0

5

10

NE

712

(b) Measurement data point amount and distribution; radial axis in (m)
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using the 25th and 75th percentile. The incidence angle is taken from the relative coordinate system of the tag, where North (N) points away from the user.
Looking down from the ceiling determines the counter-clockwise compass layout. For South (S) incidence, the signal has to travel through or around the
body.



at 152%. CRLB figures are up by 43% for both algorithms.

Table IV
ALGORITHM PERFORMANCE METRICS OF DIFFERENT DATASETS

Data- LDE SAGE
set nr. ∆P (m) CRLB (cm) ∆P (m) CRLB (cm)

1 0.278 0.4 0.334 1.5
1 (baseline) 0.157 0.35 0.287 1.30

1 (body) 0.492 0.50 0.437 1.86
2 0.599 0.9 0.712 2.5

It should again be noted that the SAGE algorithm as
presented in the figures does not estimate smaller than the
timestep, and is as such restricted to a precision of approxi-
mately 30 cm (distance traveled by light in the ∆t of 1 ns).
Therefore, the spread of approximately 33 cm is not surprising
and close to the lower error limit.

As it stands, the LDE algorithm is better suited for the
COTS measurements of lower resolution. Both performance
(and execution time, not further discussed here) are better than
with the SAGE algorithm. There is potential for SAGE when
adjusted to the coarser sampling of COTS hardware. Using a
signal model that models the complete data as an UWB pulse
rather than a Dirac pulse can help. This has been performed
successfully in a different context (not using SAGE) in [25].

B. Human body influence

It is obvious that the human body can contribute to poor
signal quality, by deforming and attenuating the electromag-
netic fields. This in turn lowers the possible ranging accuracy
for any algorithm.

Fig. 5(a) shows an indication of the precision and accuracy
of the ranging accuracy in function of the angle for dataset 1.
For statistical reasons, each measurement point is assigned
to an octant area (spanning 45 degrees), depending on the
angle of incidence. This angle is measured relative to the
tag mounted on the user. 0 degrees (North) points away from
the user, meaning that the signal can reach the receiver with
a direct line-of-sight (LOS) (since no other obstacles can
block the signal in the measurement environment). 180 degrees
(South) points towards the user, such that the signal must
travel through (or around) the body to reach the receiver. This
situation is called non-line-of-sight (NLOS). Four graphs show
the relationship between the algorithm performance and the
presence of the human body. Unsurprisingly for the baseline
measurement, there is no real impact with changing incidence
octant. For the body measurements, both the precision and
accuracy worsen.

The LDE algorithm median increases by 42 cm from best
case (N) to worst case (S), indicating a much higher tendency
to overestimate the time of flight, when the signal traverses
the human body. Its inter-percentile distance between P75 and
P25 increases similarly from 8 cm up to 1.21 m.

The SAGE algorithm seems more robust towards this
change in incidence angle, with the median increasing

only 25 cm. Its inter-percentile distance increases from 18 cm
to 51 cm, which is a modest increase of 183% when compared
to the 1413% increase of the LDE algorithm.

Fig. 5(b) shows the corresponding measurements of
dataset 1 in the local coordinate system of the tag.

Figure 6 shows similar statistics for dataset 2, where the
human body is always present. Here both algorithms perform
worse, but the decrease in both accuracy and precision with in-
creased body traversal is less outspoken. This can be explained
by a more uniform distribution of distance and incidence angle,
whereas dataset 1 might unintentionally emphasize situations
in which LDE generally performs worse than SAGE.

For dataset 2, LDE’s median increases by 54 cm, while
its inter-percentile distance increases from 10 cm to 70 cm
(+600%). SAGE’s median increases by 55 cm, while its inter-
percentile distance increases from 17 cm to 61 cm (+259%).
Again, SAGE is modestly better suited for NLOS conditions.

Both figures 5(a) and 6(a) establish a ‘cone of ignorance’,
as the ranging performance barely changes across octants
E, NE, N and NW. As such, this cone has an angle of
135 to 180 degrees. The cone is slightly wider for dataset 1,
the distance between the user and UWB is a bit larger. This
allows more waves to come in from the sides of the user
without hindrance.

According to literature [12], it is possible to simulate the
resulting field deformation near the human. A modified signal
model based on the simulated field deformations can be used
to improve the SAGE algorithm. This is not yet attempted in
this work. If applied in conjunction with the UWB pulse shape
for signal decomposition, SAGE might be worth the additional
calculation time.

V. CONCLUSIONS AND FUTURE WORK

The SAGE algorithm, while a good choice for high-
resolution data obtained with a VNA, has only average per-
formance on COTS hardware like the DW1000 transceiver. In
general it is outperformed by the much simpler LDE algo-
rithm, in both speed and performance (90-10th percentile pre-
cision of 28/60 cm vs 33/71 cm; dataset 1/2, LDE vs SAGE).
A redeeming factor is its better behavior in NLOS situations,
suffering only a 259% increase in ranging error spread, as
opposed to the 600% of the LDE algorithm (75-25th percentile
precision of 121/70 cm vs 51/61 cm; dataset 1/2, LDE vs
SAGE). There still exists an opportunity for increased accuracy
by combining a modified signal model [12], [25] into SAGE
that more accurate simulates the UWB pulse as captured by
COTS hardware. Additionally, dynamical modifications with
changing on-body position and incidence angle should also be
possible.

The attenuation of the signal in vicinity of a human body
and its effect on ranging accuracy lie in line with other
research. The more detailed breakdown of the human body
effect described here does add opportunities for more fine-
tuned mitigation techniques. This can be achieved on either
the ranging level (e.g. SAGE with modified signal model)



or higher-level localisation techniques (e.g. anchor selection,
ranging error weighting).

Future work will consist of optimising the SAGE algorithm
for ranging instead of channel characterisation, with a focus
on near-body scenarios. While normally used for offline eval-
uation, we hope to implement enough modifications to run the
algorithm in real-time to enable its use in embedded solutions.
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