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Abstract—1In this paper we address the problem of indoor
localization using magnetic field data in two setups, when
data is collected by (i) human-held mobile phone and (ii) by
localization robots that perturb magnetic data with their own
electromagnetic field. For the first setup, we revise the state
of the art approaches and propose a novel extended pipeline
to benefit from the presence of magnetic anomalies in indoor
environment created by different ferromagnetic objects. We
capture changes of the Earth’s magnetic field due to indoor
magnetic anomalies and transform them in multi-variate times
series. We then convert temporal patterns into visual ones. We
use methods of Recurrence Plots, Gramian Angular Fields and
Markov Transition Fields to represent magnetic field time series
as image sequences. We regress the continuous values of user
position in a deep neural network that combines convolutional
and recurrent layers. For the second setup, we analyse how
magnetic field data get perturbed by robots’ electromagnetic
field. We add an alignment step to the main pipeline, in
order to compensate the mismatch between train and test sets
obtained by different robots. We test our methods on two public
(MagPie [11] and IPIN’20 [4]) and one proprietary (Hyundai
department store) datasets. We report evaluation results and
show that our methods outperform the state of the art methods
by a large margin.

I. INTRODUCTION

Ubiquitous location-based services have recently attracted
a great deal of attention. They require reliable positioning
and tracking technology for mobile devices that works out-
doors as well as indoors. While navigation satellite systems
such as GPS (Global Positioning System) already provide
reliable positioning outdoors, a corresponding solution is yet
to be found for an indoor environment where GPS signals
cannot penetrate and provide sufficient accuracy. Over the
past few years, indoor positioning and localization have
become an area for intensive research and development,
which shows the importance of this area [23].

One important category of localization systems is in-
frastructure free [10]. This category includes positioning
systems based on inertial measurement unit (IMU) and a
magnetometer. These sensors have an additional advantage
of a low cost over WiFi or Bluetooth sensors commonly used
for localization. One known infrastructure-free example is a
Pedestrian Dead Reckoning (PDR) system that utilizes the
accelerometer and gyroscope of the smartphone to track the
user’s path; it however provides a relative position only and
always needs a starting position. The magnetic field based
approach also has a good potential to produce good results,
because elements containing iron elements (walls, pillars,
windows) often create unique magnetic anomalies [11], [20].
Recent works on localization using a magnetic field witness

the growing interest to this research area and its potential to
contribute to the localization problem in general [1], [2], [3],
[15].

Indoor magnetic signatures are disturbances of the Earth’s
magnetic field induced by various ferromagnetic objects,
such as walls, pillars, doors, elevators, etc. These anomalies
become dominant at small distances from such objects. A
large number of indoor ferromagnetic objects and the distur-
bances they induce form signatures with unique patterns; this
allows to classify these signatures based on their patterns.

In the human-held mobile phone setup (see Figure [T}left),
we build on the state-of-the-art AMID method [15] which
identifies landmarks in the magnetic map and processes the
localization task as landmark classification.
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Fig. 1: Left) human-held mobile phone, right) Naver Labs
navigation robot, with two mobile phones installed on the
front side and two ones on the back side.

We revise and extend [15] to benefit from the recent
advances in convolutional and recurrent deep networks. First,
we exploit the sequential nature of magnetic data collected
when users navigate indoor thus forming multi-variate time
series. Second, we propose new methods to convert the multi-
variate time series into visual representations. These images
aim to capture different magnetic patterns similarly to using



multiple cameras in video streams [14]. They form multi-
channel input to convolutional layers that extract position
vector embeddings which, third, we feed to fully connected
(FC) layers. The FC layers can be trained in classification
mode to predict the closest landmark [15], or in regression
mode to directly estimate the user’s position coordinates.

Evaluations show that both approaches, the regression-
based and landmark-based, fail in very similar situations.
These failures are caused by the similar magnetic signatures
the system faces in very different places. Indeed, the same
magnetic anomalies are caused by the same ferromagnetic
objects, for example, identical armature pillars placed in the
different corners of a hall.

To help the system disambiguate similar magnetic patterns,
we capture the localization context with the recurrent layers
which replace the fully connected layers in the multi-channel
deep regression. The convolutional layers extract position
embeddings while recurrent layers encode the localization
context in internal states to disambiguate similar patterns, in
the same way as RNNs use context to disambiguate word
understanding in NLP tasks [22].

Like other models for sequential data, our models are
exposed to the bootstrapping problem; they need to accu-
mulate magnetic sensor data to produce a first prediction,
in practice such an accumulation can take 7 — 10 seconds.
The recurrent models have another constraint: they require
knowing the starting point of a trial. Our solution is to
start with an approximated location from the landmark-based
classification or CNN-based regression models, or from other
sensors, such as Wi-Fi signals. All of them being a subject
of noisy predictions, we test our system under the starting
point estimation error.

Intensive evaluations on the MagPIE dataset [11] and
IPIN’20 dataset [4] show that all these improvements con-
tribute to the robust and accurate localization pipeline. In-
deed, we are able to reduce the localization error for three
MagPie dataset buildings to 0.30 — 1.05 m, thus improving
by the large margin the baseline method with 0.95 —4.49 m
error.

Despite these good results in the human-held mobile
phone setup, its naive transfer to the robot-based setup
fails. Indeed, when robots are used to collect magnetic field
data (Figure right), Earth’s magnetic field is disturbed, in
addition to nearby ferromagnetic objects, by electromagnetic
field generated by robot’s engines, batteries, wires etc. As
result, magnetic data collected by a robot differs in both
values and scale from data collected by a user walking with
a smartphone or by another robot. To make the collected
magnetic data usable for localization tasks, we introduce
an auxiliary alignment step before pushing data in the
localization pipeline. We propose two alignment methods and
successfully test them on Hyundai department store dataset.

Main contributions of this work are the following:

1) We address the problem of magnetic field based indoor
localization and propose a unique pipeline for two
setups, when data is collected by human-held mobile
phones and by localization robots.

2) In the first setup, we replace the landmark-based clas-
sification [15] with the deep regression. We convert the
multi-variate time series into multi-channel 2D image
sequences; replacing pattern detection in time series
by pattern detection in images aim to benefit from the
recent progress in convolutional and recurrent neural
networks.

3) In the second setup, we complete the localization
pipeline with an additional alignment step aimed to
compensate the disturbances caused by robots’ elec-
tromagnetic field.

4) Evaluation on three magnetic field (MF) datasets show
that our methods report a low localization error and
outperform the state of the art methods by a large
margin. It makes the MF-based positioning competitive
and comparable to Wi-Fi, Bluetooth and PDR methods,
however requiring no infrastructure investment.

II. RELATED WORK

With the wide expansion of modern smartphones with
embedded sensors, many indoor localization solutions have
emerged, including those based on user’s activity recognition
and navigation [19]. Similarly, magnetic field-based indoor
positioning systems rely on the use of a smartphone built-in
magnetic sensor [1], [2], [3], [15], [19].

The first geomagnetic field-based indoor positioning sys-
tems use the K-Nearest Neighbor (KNN) algorithm to es-
timate the user’s position [6], [19]. Such a system gets a
number of position candidates obtained through matching the
user magnetic signature against the magnetic database and
uses these candidates to predict the user’s current location.

LocateMe [20] was the first indoor localization system
using magnetic sensors data only. It processed indoor mag-
netic signatures as a combination of the Earth’s magnetic
field and the fields generated by ferromagnetic objects. The
impact of these structures becomes dominant as the distance
to such an object decreases. Consequently, these signatures
are displaying a uniqueness in their patterns, that allows
classifying signatures based on their patterns.

AMID [15] was the first indoor positioning system that
recognizes magnetic sequence patterns using a deep neu-
ral network (DNN). Features extracted from magnetic data
sequences are fed to a DNN to classify the sequences by
patterns that are generated by nearby magnetic landmarks.

It first used the Recurrence Plots (RP) from the time
series analysis to categorize the sequence patterns. As RPs
can not distinct the sequence’s direction, additional features
of trend, sequence length, and peak values are extracted to
complete the input to DNN. Sequence length and values of
reference points are used to classify the monotonic shape
of magnetic sequences. Most of the landmark candidates
have much higher or lower values than the mean magnetic
intensity. Candidates of low interest are filtered out using
a threshold. The DNN in AMID consists of a convolution
neural network (CNN) for analyzing image features and
a multi-layer perceptron (MLP) for magnetic landmarks
classification. Every RP is converted into a 32 x 32 image as



an input to the CNN. The locations are estimated from the
locations of predicted landmarks.

III. MAGNETIC SENSORS DATA

The goal of any smartphone-based localization system is to
determine the user’s position by analysing the smartphone’s
sensors data. As the floor of a building is often accurately
detected from the pressure sensor data, we can reduce 3D
localization to a simpler, 2D localization problem, where
the user’s position is described by two values, pos =
(poSg, posy).

In a smartphone, accelerometer, gyroscope and magne-
tometer report their readings in the local reference frame.
Accelerometer and gyroscope data can be used to convert
magnetic sensor values from local to global reference frame
(see Figure [2). In the following we assume that the MF data
refers to the global reference frame and forms a multivariate
time series composed of three values m = (mg, m,, m,) at
timestamp ¢.

Both train and test datasets include multiple trials. Any
train trial includes MF data and ground truth positions,
Dirain = (t,m, pos), where t is the measurement timestamp.
In a testing trial, ground truth positions are unavailable,
Diest = (tvm)'

Mobile phone sensors are generally captured at different
timestamps and different frequencies. In the following, we
assume that the sensor readings are synchronised and aligned
at the same timestamps.

(a) local reference(b) global reference(c) smartphone rota-
frame used byframe tion angles
Android

Fig. 2: Smartphone reference frames and rotation angles

a) Magnetometer calibration: Build-in magnetometers
are low cost sensors and their MF measurements are often
corrupted by errors including sensor fabrication issues and
the magnetic deviations induced by the smartphone platform.
Therefore a proper calibration of the magnetometer is critical
to achieve high accuracy [8].

The phone orientation in the space is described by rotation
angles (yaw, pitch, roll), as shown in Figure [2] These
rotation angles can be obtained directly from the phone or
reconstructed from the IMU sensors [16].

While walking, the user can hold the phone in various po-
sitions (upward in front of him/her, near the ear, in a pocket,
etc.). Even during a short period of time, the position of the
phone can change significantly (see example in Figure [3).
As phone sensors generate their measurements in the local

reference frame, we constantly use rotation angles to convert
them in the global reference frame.

Rotation angles
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Fig. 3: Rotation angles for one trial.

IV. DEEP NEURAL NETWORK

The core of MF-based localization is implemented as a
deep neural network (DNN). DNN learning process consists
of the objective function optimization and multiple net-
work updates though the gradient back-propagation. All our
models follow either classification or regression approach.
Classification models are trained with the Cross Entropy
(CE) loss. Regression models are trained to minimize the
Mean Square Error (MSE), Mean Absolute Error (MAE) or
Huber loss.

A. From time series to image representation

In a single trial, MF values form a multivariate time
series where each observation consists of three values m =
(mg, my, m,) along axes z, y and z. The orthogonality of
the three axes is not obligatory. Moreover, some orientations
appear to be more important than others. We test alternative

combinations and projections, such as mg, = /m2 + mg

and mgy, = /m2+m2+m2 The choice of optimal
projections of MF values is a model hyper-parameter. In ex-
periments, using Mg, . projection improves the performance
in majority of cases.

After projections, the MF values are fed to DNN. Consider
the feature generation step for a 1D time series vV o=
{v1,va,...,v,}. The sliding window technique cuts the time
series into a sequence of overlapping segments of length
m < n. Optimal values for windows size are around 7 — 10
seconds, for the windows step of 0.2 — 1 seconds. For every
segment we apply a nonlinear transformation from 1D time
series to 2D images thus transforming MF patterns into
visual ones. AMID [15] used convolutional neural networks
to analyze time series segments represented as recurrence
plots (RPs). As RPs address one specific type of recurrence
in time series, we consider alternative methods for encoding
1D time series into 2D visual patterns, in particular Gramian
Angular Summation/Difference Fields (GASF/GADF) and
Markov Transition Fields (MTF) [21]. We describe all these
transformations below.



a) Recurrence plots: Recurrence plots (RPs) have
been widely used for time series analysis in various ap-
plications [12], [17]. For a time series segment V =

{v1,v2,...,vn}, RP is calculated for the Euclidean metric
as follow:
dij = ||lvi —v;|| Vi, j€l.m,
RP. =1— % _ (D
v max(d) *

The method can be extended to any pairwise distance
metric. We tested twelve metrics available in Python’s scipy
package and detected canberra distance as performing the
best over all evaluation settings.

b) Gramian Angular Fields: In the Gramian Angular
Field (GAF), a time series segment V is represented in a
polar coordinate system. Values in the segment are re-scaled
so that all values fall in the interval [—1,1] in order to
be represented as polar coordinates achieved by applying
angular cosine,

(vi—max(V))+ (v, —min(V))

max(V)—min(V) > )

0; = arccos(ﬁi), —-1<9v; <1, v; €V.

G =

The polar-encoded segment of length m is then transformed
into a m X m matrix. We include in our pipeline two
variants of Gramian Angular Field, Gramian Angular Sum-
mation Field (GASF) and Gramian Angular Difference Field
(GADF), defined as follows

GASF;; = cos(6; + 6,), (3)

GADFU = sin(@i — Gj)

c) Markov Transition Field: The Markov Transition
Field (MTF) considers time series as a outcome of Markov
process. The method builds the Markov matrix of quantile
bins after discretization and encodes the dynamic transition
probability in a quasi-Gramian matrix [21].

For a time series segment V, we identify its () quantile
bins and assign each v; to the corresponding bins ¢;,j €
[1, Q). Thus we construct a @ x ) weighted adjacency matrix
W by counting transitions among quantile bins in the manner
of a first-order Markov chain along the time axis, as follows:

Wijlvi€q;,v1€q; Wijlvy €qs,vn Eq;

MTF =

Wijlvy€qi,v1€q; Wijlvy€qi,vn€q;

Wij|vn €qs,v1€q; Wijlv, €qi,vnEq;

We visualize all 1D-to-2D transformations for one trial
from the MagPIE dataset [11] with the window size of 7 s,
step of 1 s, image size 100 and canberra distance. Figure [
shows the MF time series for the selected trial; this trial was
also used for angle rotations in Figure [3]

Figures E}a,b,o,d show the results of transforming the time
series in image sequences using RP, GASF, GADF and MTF
methods presented above. Images are generated for three
values (mg,m,, m) separately.

Magnetometer values
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Fig. 4: Three magnetometer values for one trial.

B. Landmark identification and deep classification

We start by extending the AMID [15] baseline which
constructs magnetic maps, detects magnetic landmarks and
trains a model to classify a correct position in one of the
landmarks. Landmark detection consists of the three steps
described below:

e Local Minima/Maxima Detection: Magnetic landmarks
are ferromagnetic objects having larger or smaller
magnetic intensities than their surroundings. Therefore,
magnetic landmark candidates can be identified by
finding the local minima/maxima in a magnetic map.

o Magnetic Landmark Candidate Refinement: Not all lo-
cal minima/maxima points can be used as magnetic
landmarks. Multiple outliers may exist, this depends
on the indoor environment and magnetic landmark
characteristics. In some areas, magnetic intensity rarely
changes; in other magnetic landmarks, magnetic intensi-
ties fluctuate over time. Such fluctuations generate clus-
ters of local minima/maxima. Magnetic landmark candi-
date refinement helps to solve the problem. AMID [15]
uses a distance-based hierarchical tree is used to group
these points as one magnetic landmark candidate.

o Magnetic Landmark Selection: Most of the landmark
candidates have much higher or lower values than
the mean magnetic intensity. However, the magnetic
intensity of some candidates is too close to the average
intensities. To filter these candidates out, manually
selected thresholds are applied.

Once the magnetic landmarks are selected, the localization
task is reduced to identifying the closest landmark and
therefore can be solved as a classification problem.

Our first extension of the AMID baseline is to replace
one RP channel with N channels, where N=12 include 3
channels for each of RP, GASF, GADF, and MTF. The clas-
sification architecture consists of two convolutional layers
that extract position embeddings, and two fully connected
layers for classification (Figure[6). Loss function is the cross-
entropy loss.

C. Deep Regression

Experiments with the extended landmark-based classifica-
tion model shows that its performance depends on the quality
of magnetic map, a good coverage of the indoor space and a
manual tuning of the critical pre-processing thresholds which
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Fig. 5: Visualization for four 1D-to-2D transformation meth-
ods: a) RP, b) GASF, ¢) GADF, d) MTF.
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Fig. 6: N-channel CNN+FN landmark classification network.

are not a part of the training process. In the following we
replace the landmark-based classification with direct user’s
position regression.

The first, CNN+FN regression model replicates the land-
mark classification architecture but the output layer has only
2 variables, pos, and pos,. It uses MSE, MAE or Huber
loss as the objective minimization function.

The CNN+FN regression makes the system independent of
the MF map quality and the selected landmarks. But evalua-
tions show that both landmark-based an CNN-based regres-
sion fail when facing similar magnetic patterns in different
locations. To help disambiguate them we take the navigation
context into account and replace FN layers with recurrent
layers. Recurrent neural networks (RNNs) are widely used
when working with sequential, regular timestamp-based data.

However, they require to change the training protocol and
process data trial-by-trail and not point-by-point manner. For
each track, the position estimations are generated sequen-
tially, where the previous estimations (pos,,posy)i.; are
used to predict the next position, (pos, posy)i+1.

The multi-channel CNN+RNN deep regression preserves
convolutional layers to extract position embeddings but
replaces FC layers with recurrent layers. Figure [7] shows
the architecture which completes CNNs with 2-layer one-
directional RNN on GRU cells [7]. During evaluation phase,
we also tested other configurations, such as 3 and more
layers, bi-directional layers, but a small improvement was
obtained for the price of more computationally intensive
training.
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Fig. 7: N-channel CNN+RNN deep regression network.

To bootstrap, we make RNNs accept input sequences of
varying lengths. At the start where only the first point is
available, it uses only this point to make the prediction. Then
it predicts the third point based on 2 previous points, etc.
thus increasing the window length to a predefined maximum
size. As a result, the system can use the sequence of all
the previous points. As evaluations show, the best results are
obtained with the maximum window size of 10-20 points.

There is another issue in RNN-based localization, namely,
the approach assumes knowing the first ground truth point.
In real life, this information is usually unavailable. Instead,
alternative sensors and localization components can be used
to get the first point position, for example from Wi-Fi or
Bluetooth signals. As the average distance error of Wi-Fi-
based localization [5] is 2-3 meters, we simulate this error
in both train and test phase, by adding a random noise to the
starting point position.

Training recurrent neural networks is a time- and resource-
consuming process. To speed up RNN training, we reused
some techniques developed for NLP tasks. In particular, we
used the teacher forcing which, at the training phase, replaces
the prediction by the ground truth with a probability pieqch-

V. ROBOT MAGNETIC FIELD AND LOCALIZATION

The localization pipeline presented in Sections [[II] and
addresses the human-held mobile phone setup. In this sec-
tion, we address some challenges on the robot-based setup.

Figure [§] illustrates the mismatch caused by difference
in two robot magnetic footprints we observed in Hyundai
store dataset. Figure [8]a plots the projections of train set Dy
collected by robot R (in orange) and test set Do collected
by robot R, (in blue) in the same corridor, projected in 2D



dimensions z-y, x-z and y-z. This mismatch has dramatic
consequences; every localization model trained on R; data
totally fails on Ry data (see Table [III] in Section [VI-C). We
therefore introduce an additional alignment step to compen-
sate the mismatch. Figure [8]b shows the result of successful
alignment after applying one of the methods presented in
the following section. Once aligned, R; data and aligned R»
data represent very similar 3D curves of nearby magnetic
anomalies; this allows R; model to work well on aligned
R, data, despite a multitude of small differences in their
physical trajectories in the same corridor.

Fig. 8: Example of magnetic data projections of train and
test sets at the same track; a) before alignment and b) after
alignment.

We use a common segment in the train and test tracks.
Since the magnetic data along this track is expected to be
very similar, we us the common segment to find an alignment
transformation from the test set to the train set.

We adopt the following alignment principle. Assume that
“clean” MF data (collected by a human-hand mobile phone)
is are represented as (m,pos) where m is a 3D vector
(Mg, my,m.) am pos = (poss,posy). We then represent
MF data collected by Ry and Ry as (fi(m1),posi) and
(f2(mz2), posz), respectively, where f; and f> are perturba-
tion functions that the electromagnetic field of R; and Ro
exercises on vectors m, respectively. In other words, f; is an
individual magnetic footprint of robot R;, i = 1, 2.

We are now looking for a transformation of fo(m) values
into f1(m) space, without knowing the exact value of “clean”
vector m. We form an alignment dataset D 4 as a set of pairs
(f1(m1), fa(ma)), (m1,posy) € D1, (ma, poss) € Da, such
that pos; = knnUnique(posa, k) and dist(pos1, posa) < e.
Here, knnUnique(-) function guarantees that pos; is among
k-neighbours of poss and, moreover, paired with poss only.
In other words, we form pairs of MF data items collected by
two robots in the nearest, close and unique neighbourhood.

To populate the alignment dataset D4 for Hyundai store,
we set the distance threshold ¢ =0.5 m. The alignment
step requires identifying a common segment in D; and Do
data sets. We therefore split Ry data in alignment and true
test parts. The alignment part (about 5%) refers a common
segment (a corridor of 10 m long) navigated by both robots
in the same directionﬂ Remaining 95% of R, dataset is used
for testing the R; model on aligned R, data.

'Our pipeline includes data augmentation component aimed at increasing
the dataset by synthesizing new tracks in direction opposite to the real ones.
But for the sake of simplicity, the alignment step assumes the same direction.

A. Data Alignment

We use the alignment dataset D4 to find an alignment
function g between the robot perturbation functions f; and
f2. A good alignment allows a model trained on train data
(f1(m1),posy) from Ry, to be applied to the aligned version
of Ry data, (g(f2(mz2)), posz).

Below we propose two approaches to find an optimal
transformation g. Formally, we are looking for a optimal
solution to the following optimization problem:

g  =argmingeg Y llg(fi(m1))—=fa(ma)ll2, (4)

(m1,m2)€EDA

where G is a class of transformation functions, G : R® — R3.
Below we consider two options to solve the problem stated
in Eq.(@).

1) We first try the class G; of linear transformations,
G = SO(3). We model g € SO(3) as a 3 x 3
matrix corresponding to rotating a 3D vector f;(m;)
into vector fy(mg), for all vector pairs in dataset D 4.
The optimal solution g* can be obtained using any
standard linear optimization package (we used Python
numpy package).

2) The class G; of linear transformations appears to be
rather limited. Indeed, a linear transformation makes an
assumption that robot footprint functions f; depend on
MF value m only. In reality, they often depend on the
robot’s position (pos) and nearby magnetic anomalies.
Our second attempt is therefore to consider the class
G, of nonlinear deep transformations. We model g €
G, as a deep network that consists of 3 three FC
layers. The network is trained to minimize the loss in
EqH] using pairs from the alignment dataset D 4. For
the common segment in the Hyundai store set (10 m
long corridor), D 4 includes 2000 pairs. We train the
network for 5000 epochs using the SGD optimizer with
a cyclic learning rate scheduler [18] (initial learning
rate le~4, maximum learning rate le™3, step size
100), the batch size is 32. In Section [VI| we test both
alignment solutions. While the linear solution can work
with a small alignment dataset, the deep solution with
a large dataset D4 requires a hyper-parameter fine-
tuning.

VI. EVALUATION RESULTS

We evaluate our models on two public datasets, Mag-
PIE [11] and IPIN’20 [4], and one proprietary dataset
collected with navigation robots in the Hyundai Department
Store shopping mall in Seoul, Korea.

A. Datasets

The MagPIE dataset was collected in three different
buildings on the UIUC campus: the Coordinated Sciences
Laboratory (CSL), Talbot Laboratory, and Loomis Labora-
tory [11]. The recorded trials cover all the buildings tightly.
For each building, 3 tracks in the train set are retained as
validation set. We use the validation tracks to evaluate the
models and fine-tune the hyperparameters.



(a) Loomis First Floor

(b) UJI Library 5th Floor

(c) Hyundai Department Store 4th Floor

Fig. 9: Floor plans of the three different datasets that were used for evaluation.

The dataset contains IMU (inertial measurement unit) and
magnetometer measurements along with ground truth posi-
tion measurements that have centimeter-level accuracy. The
mobile phone magnetometer was calibrated by the authors
of the dataset before starting a new trial.

IPIN’20 dataset. This dataset was collected as a part of
the Track 3 IPIN’20 competition [4] in the five store library
building located at Universitat Jaume I (Castellén, Spain).
The dataset was collected by the same actor with a Samsung
Galaxy A5 2017 (SM-AS520F) smartphone with Android
8.0 using a dedicated “GetSensorData” app [13]. For the
experiments, we have selected 18 short single-floor tracks
(collected 4 times each) and 4 long trajectories across library
bookshelves (two on floor 3 and two in floor 5). Out of these
four tracks, two were chosen for train, one for validation and
one for test.

Hyundai Department store dataset. This dataset was col-
lected by two navigation robots, with smartphones being
placed in special holders (see Figure[I). The electromagnetic
field generated by the robots heavily disturbs the analysis and
modeling nearly magnetic anomalies.

Moreover, the train and test sets were collected with four
months of difference, by different robots. Finally, during the
train and test data collection runs the robot was not moving
at exactly the same speed, and these engine disturbances
between train and test runs were also slightly different. Con-
sequently, there is a severe mismatch of MF data recorded
by four phones in the train and test sets, even at the same
location. In Section |V| we addressed this mismatch problem
and proposed an alignment of the collected magnetic data,
%efore using it in our pipel}ne.

agPie evaluation results

Table [I] presents evaluation results for three buildings in
the MagPie dataset. It compares the localization errors of our
CNN+FN and CNN+RNN regression methods to the baseline
CNN+FN Landmark-based classification method.

The CNN+FN regression models show good results for
CSL, but report high errors for other two buildings. The table
includes the ablation analysis of the number of channels N.
It reports localization errors when the number of channels
is 1 (x for RP), 3 (z, y, « for RP), 9 (z, y, z for
RP, GASF and GADF) or 12 (z, y, z for four 1D-to-2D

transformation methods). Results clearly show that using
multiple (alternative) channels greatly contribute to reducing
the localization error.

Using landmarks for classification confirmed that build-
ings differ greatly in their magnetic anomalies. Good results
are obtained only for CSL; in general, there is little signifi-
cant improvement over CNN+FN regression.

Taking the trajectory context into account helps solve the
pattern ambiguity problem and allows to reduce considerably
the localization error. In all models, we assume the starting
point estimation is noisy for both training ans test trials. The
noise is simulated as the normal distribution with the mean
of 0 m and variance of 3 m.

Building N CNN+FN CNN+FN CNN+RNN
channels || Landmarks | Regression | Regression
CSL 1 5.15 5.09 5.80
3 2.16 1.47 4.61
9 1.16 0.97 0.81
12 0.95 0.98 0.30
Loomis 1 8.13 8.50 7.36
3 6.62 6.72 2.51
9 5.77 6.16 I.15
12 4.62 5.05 1.07
Talbot 1 9.27 11.32 6.91
3 6.79 6.91 4.04
9 4.95 4.90 1.17
12 4.49 4.72 1.06

TABLE I: Localization error of the deep regression and
landmark classification methods for 1, 3, 9 and 12 channels.

Floor CNN+FN | CNN+RNN
Regression | Regression
1 0.76 0.42
2 0.68 0.50
3T 1.55 1.38
3~ 0.79 0.59
4 0.50 0.39
5T 2.58 2.20
57 1.89 1.09

TABLE II: Localization error of the deep regression using
CNN and RNN models on IPIN’20 data using the best set
of hyper-parameters for each floor. +/- indicate passages of
that floor with or without books shelves.



Alignment type || CNN+FNN | CNN+RNN
Regression Regression
No alignment 47.35 35.12
Linear 3.72 1.43
Deep 2.15 1.08

TABLE III: Localization error (in meters) of the deep regres-
sion using CNN and RNN models on Hyundai Department
Store (Floor 4) data using the best set of hyper-parameters
without and with two different types of alignment of the
magnetic data in the pre-processing step.

C. IPIN evaluation results

Evaluation results for IPIN’20 dataset are reported in
Table|[Il For each of the five floors in the dataset, it compares
the localization errors for CNN+FN and CNN+RNN regres-
sions. Moreover, for 3rd and 5th floors, it includes results
for two evaluation versions, without (easier case) and with
(harder case) passages between the book shelves. As the table
shows, in this dataset CNN+RNN regression models allow
for 11% to 45% error reduction w.r.t. CNN+FN regression
ones.

D. Hyundai evaluation results

Table shows evaluation results for Hyundai store
dataset. It reports localization errors for CNN+FN and
CNN+RNN regression models and for the linear and deep
alignment methods presented in Section For the sake
of completeness, we also present results for both methods
without alignment. Like in the previous datasets, CNN+RNN
regression models outperform CNN+FN regression ones.
Moreover, the deep alignment provides a comfortable ad-
vantage over the linear one.

VII. CONCLUSION

In this paper, we presented a unique pipeline for MF-based
indoor localization for two different setups, when MF data is
“clean” or disturbed by robot electro-magnetic field. In the
latter case, we complete the pipeline with the deep alignment
step to compensate data mismatch. It has an impact on the
training and evaluation protocol, but permits to keep the
localization error around 1 m in both setups. This makes MF
data-based localization competitive with other sensor-based
localization methods. However, unlike Wi-Fi or Bluetooth
based localization that are infrastructure-dependant, MF data
based localization requires no infrastructure investment and
counts on the advanced modeling of magnetic field anomalies
in indoor environment only.

The main components of out pipeline extend the state-of-
the-art techniques based on the identification of landmarks
in magnetic map. We brought multiple improvements in
the localization process, including converting magnetic field
time series into 2D representation to enable training CNN-
and RNN-based models, processing the localization as deep
regression.

We tested our methods on two public and one proprietary
datasets. Evaluation results show that our methods outper-
form the baseline methods by large margins, and report

the localization error around 1 m. in all tested cases and
situations. We also discussed limitations of our approach.
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