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Abstract—This paper explores the potential of 5G new radio
(NR) Time-of-Arrival (TOA) data for indoor drone localization
under different scenarios and conditions when fused with inertial
measurement unit (IMU) data. Our approach involves performing
graph-based optimization to estimate the drone’s position and
orientation from the multiple sensor measurements. Due to the
lack of real-world data, we use Matlab 5G toolbox and QuaDRiGa
(quasi-deterministic radio channel generator) channel simulator to
generate TOA measurements for the EuRoC MAV indoor dataset
that provides IMU readings and ground truths 6DoF poses of
a flying drone. Hence, we create twelve sequences combining
three predefined indoor scenarios setups of QuaDRiGa with
2 to 5 base station antennas. Therefore, experimental results
demonstrate that, for a sufficient number of base stations and a
high bandwidth 5G configuration, the pose graph optimization
approach achieves accurate drone localization, with an average
error of less than 15 cm on the overall trajectory. Furthermore,
the adopted graph-based optimization algorithm is fast and can
be easily implemented for onboard real-time pose tracking on a
micro aerial vehicle (MAV).

Index Terms—5G TOA, IMU, QuaDRiGa, Indoor Localization,
Pose Graph Optimization, Sensor Fusion, Micro Aerial Vehicles.

I. INTRODUCTION

Drones, such as micro aerial vehicles (MAVs), have become
increasingly prevalent in indoor environments due to their
potential in various applications, from surveillance to delivery
services. For many of these applications, accurate drone
positioning and orientation are essential.

Global Navigation Satellite Systems (GNSS), the most
widely used positioning technology, encounters challenges
in penetrating indoor environments due to signal attenuation
and multipath effects. Inertial navigation systems (INSs) are
another widely used method for indoor localization, but they
can accumulate noise over time, resulting in significant position
errors if left uncorrected.

Alternative indoor localization techniques, including Wi-Fi,
Bluetooth, and Ultra-Wideband (UWB), exhibit limitations in
accuracy, scalability, energy efficiency, and cost [1, 2]. For
instance, Wi-Fi is highly susceptible to noise, Bluetooth has
restricted range and accuracy, and UWB faces slow progress
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in standard development. Moreover, Zigbee’s emphasis on low-
power communication and its limited range further constrain its
localization capabilities. Consequently, a need for alternative
indoor positioning technologies arises that can offer high
accuracy and reliability without relying on GNSS.

Recent advances in wireless communication technologies
have paved the way for developing location-based services and
applications that rely on accurate localization. In particular,
deploying fifth-generation (5G) cellular networks has opened
up new possibilities for indoor localization due to their high
bandwidth, low latency, and improved coverage [3], with small
cell technologies, like femtocells and picocells, facilitating
indoor coverage. For downlink positioning, 5G utilizes a
dedicated pilot signal called Positioning Reference Signal
(PRS), which measures signal delay by correlating the received
PRS with a locally generated PRS. The delay, also called Time-
of-Arrival (TOA), is then calculated by identifying the peak
correlation value between the two signals.

Accurate and reliable indoor localization remains challenging
due to the complex and dynamic nature of indoor environments.
In this context, our work proposes a novel approach for indoor
localization using 5G TOA measurements. However, 5G TOA
alone may not provide sufficient information for reliable indoor
localization. Thus, our work aims to fuse 5G TOA with an
inertial measurement unit (IMU), to improve the real-time
pose estimation of a flying MAV. IMUs can measure angular
velocities, and linear acceleration, providing complementary
information to TOA measurements. To accomplish this, we
extract distances from the PRS correlation profiles and use them
to formulate a range error function tightly integrated with the
IMU measurements in a graph-based optimization technique.
Due to the lack of real 5G data recorded from MAVs, we
utilize the QuaDRiGa simulator [4] to create accurate 5G TOA
measurements based on ground truth 6 Degrees of Freedom
(DoF) pose data to ensure precise channel modeling. Hence, our
experimental simulations include three indoor configurations
with LOS and varying base stations (BSs) numbers virtually
placed inside the Euroc MAV dataset environment [5].

To summarize, the contributions provided by this paper are
the following:

• Formulation of a factor graph model that tightly optimizes
5G TOA ranges with IMU measurements.
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• Evaluation in a state-of-the-art dataset shows accuracy
close to centimeter precision while running an efficient
real-time algorithm.

• Simulation of 5G TOA comparing multiple antenna and
communication settings in an indoor scenario to find the
best configuration for precise localization.

II. RELATED WORKS

The literature on localization using 5G is relatively limited,
especially considering the mechanical aspects and sensor fusion
framework. The existing literature often relies on simplis-
tic methodologies and scenarios. Ferre et al. [6] compared
localization accuracy for different combinations of the 5G
network configurations (center frequency, sub-carrier spacing,
and PRS comb size) in terms of the Root Mean Square
Error (RMSE). Also, their study considered a fixed target
and employed multilateration based on PRS-derived TOA
from multiple BSs. A study by del Peral-Rosado et al. [7]
explored the impact of positioning performance when BSs are
linearly placed along a straight roadside 5G network. They
utilized Gauss-Newton optimization and simulated a 100 km/h
vehicle on a highway. The study revealed an accuracy of
less than 20-25 cm for a communication bandwidth of 50-
100 MHz. Additionally, the researchers calculated the TOA
by determining the first correlation peak between the PRS
and the received signal. Saleh et al. [8] proposed a time-
based positioning by combining vehicle velocity information
and 5G measurements. They evaluated their approach in a
simulated urban canyon using Siradel’s S 5GChannel simulator
and employed an EKF with a constant velocity model for
sensor fusion. The study also analyzed the impact of the 5G
geometrical setup on EKF positioning estimation. Another
EKF-based positioning framework is proposed by Menta et al.
[9]. The authors leveraged the 5G Angle of Arrival (AOA)
extracted from the communication signal of BSs equipped
with multi-array antennas. By utilizing this information, they
achieved sub-meter accuracy in localization. Sun et al. [10]
studied localization by combining AOA estimates from 5G BSs
with TOA measurements from GNSS satellites. The authors
utilized the Taylor series to linearize the mathematical model.
As post-processing, they applied a moving averaging to the raw
position estimates to minimize errors. Finally, [11] explored
the fusion of beamformed RSS information with GNSS data
using Neural Networks (NN), achieving meter accuracy.

Unlike previous approaches, we address indoor localization
using the factor graph to model the relation among non-
homogenous sensor measurements. Furthermore, we leverage
the advanced IMU pre-integration factor to propagate the
MAV’s 6 DoF pose between two lower frequency TOA
measurements, obtaining 6DoF pose estimates at a higher
frequency.

III. METHODOLOGY

This section describes the proposed drone localization
approach in 5G networks. This involves the fusion of range
measurements, which we obtain from the TOA of the signal

from multiple BSs, with IMU data, i.e., angular velocity and
linear acceleration measurements.

A. 5G ToA Estimation

To estimate the distance to 5G BSs, we must first obtain the
ToA values along the robot’s trajectory. Since we do not possess
actual data on 5G communication, this step first requires gener-
ating the 5G signal transmitted by each base station, including
PRS symbols. Then, a channel simulator creates an impulse
response that emulates the wireless channel characteristics
based on specific network configurations and given receiver and
transmitter positions. Convolving the transmitted signal with
the impulse response replicates the effects of the transmission
environment, generating the received signal.

At the receiver, the signal is correlated with the correspond-
ing PRS of each base station resulting in a PRS correlation
profile. By analyzing it, we identify the TOA as one of the
peak or local maxima. Notably, the real TOA is a value close
to the best peak but often not matching it. We apply a heuristic
selection of the first peak surpassing a global threshold that
we find experimentally on the data.

B. Pose Estimation

To accurately estimate the drone’s 6DoF pose, we use a
graph-based optimization technique that models the relation-
ships between the pose variables using sensor measurements
and optimizes the estimation using non-linear least squares.
This approach involves creating a factor graph model [12]
(see the one abstracting our problem formulation in Figure 1)
where the nodes represent the state variables to be estimated
and the edges, called factors, represent residual error functions
that compare predicted states and observed measurements.
Therefore, the factor graph models the posterior probability
density p(X|Z) of the state variables X given a set of
measurements Z , and, assuming independent measurements, it
can be factorized into likelihoods p(Zf

t |Xt) and prior p(X0):

p(X|Z) ∝ p(X0)p(Z|X ) = p(X0)
∏

∀t∈T ,∀f∈F
p(Zf

t |Xt) , (1)

where F defines the set of factors type of functions that can
replace the likelihoods. We denote the set of measurements
the factor f uses for computing the residual at time t with Zf

t ,
where T is the set of tracked time frames.

1) State Variables: We aim to determine the 3D location and
orientation of the MAV’s body center, which we align with the
IMU frame. As we track the full history of 6DoF poses, with a
full-smoothing approach, the set of state variables X contains
all the poses from the start of the trajectory T1 to the end TN,
where N is the total number of pose nodes added to the graph.
Especially, each Tt

.
= (R,p) ∈ SE(3),∀t ∈ T = {1, . . . ,N} is

composed of a rotation Rt ∈ SO(3) and a translation pt ∈ R3

that transforms the body frame B to the world frame W, where
the BSs are placed, at time t.

Additional to the 6DoF transformations, X comprises the
MAV’s linear velocity vt ∈ R3. We also need to estimate
the time-variant biases of the IMU’s gyroscope bg

t ∈ R3 and
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Fig. 1. The figure visualizes the structure of the factor graph used to
optimize the variables, represented by circles, by relating them through
factors, represented by squares. The nodes Tt contain the 6DoF pose variables
connected by IMU pre-integration factors (the bias and velocity nodes are not
visualized). TOA measurements create range factors between robot pose nodes
and BSs position nodes, L1 and L2. A prior factor is connected to the first
node T1 to constrain it with the initial trajectory pose.

accelerometer ba
t ∈ R3 to keep track of the IMU noise drift.

Lastly, we include the 3D positions of the 5G antennas Lk ∈
R3,∀k ∈ {1, . . . ,K}, where K is the total number of BSs.

2) IMU Factor: Our approach involves a 6-axis IMU that
measures the body B linear acceleration Bãt and angular
velocity Bω̃t expressed in the W frame. The IMU real motion
state {Bat, Bωt} is altered by additive Gaussian white noise
{ηa

t ,η
g
t } and slowly time-varying biases {ba

t ,b
g
t } affecting

respectively the accelerometer and gyroscope as defined by the
following IMU model:

Bω̃t = Bωt + bg
t + ηg

t (2)

Bãt = Bat − RTt g + ba
t + ηa

t , (3)

where g is the Earth’s gravity vector in the world frame W.
Due to the IMU’s higher sampling frequency than other sen-

sors, it typically captures multiple measurements between two
TOA instances. The IMU factor is constructed utilizing a prein-
tegrated measurement [13] constraining the relative motion
increments. Especially, we obtain the condensed measurements
∆R̃ij of rotation, ∆p̃ij of position, and ∆ṽij of velocity by
integrating multiple IMU readings {Bãt, Bω̃t : ∀t ∈ [i, j]}. So,
we can define the residual terms r for the states {Rij ,pij ,vij}:

rRij
.
= Log

(
∆R̃Tij RTi Rj

)
, (4)

rpij
.
= RTi

(
pj − pi − vi∆tij − 1

2g∆t2ij
)
−∆p̃ij , (5)

rvij
.
= RTi (vj − vi − g∆tij)−∆ṽij , (6)

where ∆tij is the total time interval. Also, Log : SO(3) →
R3 defines the logarithm map that associates elements of the
rotation manifold SO(3) to vectors on the Euclidean tangent
space R3 representing rotation increments.

Regarding the biases, the total residual rbij between time
t = i and t = j and i < j is set as follows:

rbij
.
= bg

j − bg
i + ba

j − ba
i . (7)

3) TOA Range Factor: By multiplying the estimated TOA
values δsk by the speed of light c, i.e., dsk = δsk · c, we obtain
K metric distance measurements dsk ∈ R,∀s ∈ S ⊆ T of
the drone to the k-th landmark Lk at time s = i. Notably,
we explicitly express the possibility of having fewer TOA
measurements than the number of tracked poses. The residual
rδik of the TOA factor at time s = i with the BS Lk is defined
as:

rδik
.
= dik − ∥pi − Lk∥2 . (8)

4) Optimization: The optimization problem is formulated
as Maximum a Posteriori Estimation (MAP) estimation that
involves finding the state X ∗ that maximizes the posterior:

X ∗ = argmax
X

p(X|Z). (9)

Considering the proportional relationship in Equation 1, Equa-
tion 9 is equivalent to the maximization of the problem
factorized through likelihood functions:

X ∗ = argmax
X

p(X0)
∏

∀t∈T ,∀f∈F
p(Zf

t |Xt) . (10)

Notably, with factor graphs, likelihoods can be expressed by
the more general factors, which we have defined with f ∈ F =
{R,p,v,b, δ} referring to the related residual functions. By
assuming that the measurements’ errors are zero-mean Gaussian
distributed, Equation 10 is analogous to the minimization of
the negative log-likelihood:

X ∗ = argmin
X

∥r0∥2Σ0
+

N∑
t=1

∑
∀f∈F

∥∥∥rft ∥∥∥2
Σf

t

, (11)

where ∥r∥2Σ = rTΣ−1r is the squared Mahalanobis norm,
and rft are the residual functions of the aforementioned factors
f computed at time t with covariance matrix Σf

t . We denote
with r0 the residual derived from the prior on the initial pose
with Σ0 being its covariance matrix.

To efficiently solve the MAP optimization problem, we
utilize the iSAM2 iterative optimization algorithm [14] im-
plemented in GTSAM [15]. This algorithm can automatically
identify the variables that require linearization at each step,
and it enables us to keep our graph solution updated while
adding new nodes without experiencing memory overload.

IV. EXPERIMENTS

A. Simulation of the 5G Communication

This study uses 5G specifications for indoor base stations to
generate PRS signals for TOA signals. Our simulation relies
on the MATLAB 5G Toolbox to generate the resource grids
for 5G NR signals, including the PRS and Physical Downlink
Shared Channel (PDSCH) resources.

Aiming at a realistic simulation of the 5G NR wireless
communication, we employ QuaDRiGa (quasi-deterministic
radio channel generator) channel simulator [4]. For precise
channel modeling, it is essential to have information regarding
the drone’s position, orientation, and velocity. This information
is required to account for factors such as the Doppler shift



effect accurately. We also assume that both the receiver and
all transmitters use omnidirectional antennas. Three 5G sim-
ulation scenarios were considered, with different frequencies:
QuaDRiGa-Industrial-LOS for 5 GHz, 3GPP-38.901-Indoor-
LOS for 28 GHz, and mmMAGIC-Indoor-LOS for 78 GHz.

• QuaDRiGa Industrial LOS [16]: This scenario is de-
signed to replicate a LOS environment for industrial
applications.

• 3GPP 38.901 Indoor LOS [17]: This scenario simulates
indoor environments, e.g., office buildings and shopping
centers, with 0.5-100 GHz LOS frequency.

• mmMAGIC Indoor LOS [18]: This is designed specifi-
cally for frequencies ranging from 6-100 GHz and indoor
environments, e.g., offices, with LOS.

The configurations for each 5G simulation scenario are
provided in Table I.

TABLE I
5G SIMULATION SCENARIOS’ SYSTEM CONFIGURATIONS.

Scenario Freq.
(GHz)

Bandwidth
(MHz)

Subcarrier
Spacing
(KHz)

Num.
of RBs

Comb
Size SNR Cyclic

Prefix

QuaDRiGa-Industrial-LOS 5 (FR1) 100 30 275 6 10 dB normal
3GPP-38.901-Indoor-LOS 28 (FR2) 200 60 275 6 10 dB normal
mmMAGIC-Indoor-LOS 78 (FR2) 400 120 275 6 10 dB normal

B. Experimental Environment

As the 5G channel simulation requires knowing the state of
the receiver, i.e., its pose and velocity, we require a flying drone
dataset to evaluate our method. The EuRoC MAV dataset [5] is
a widely used benchmark dataset for visual-inertial odometry
and SLAM. It was collected by an indoor drone equipped
with a stereo-camera module providing images at 20 Hz and a
calibrated IMU at 200HZ. The EuRoC MAV dataset contained
the drone’s position and orientation data obtained through the
Vicon motion capture system, which can record the full 6DoF
at about 100Hz. The full set of calibrated rigid transformations
between sensors and the Vicon is also given. EuRoC MAV
consists of several sequences. For this study, we consider the
Vicon Room 1, sequence 01.

We employ QuaDRiGa to model the wireless communication
channel based on the available 6DoF ground truth poses of
the drone provided by the dataset from which we compute the
required velocity considering the translation vectors between
two time-consecutive poses. To this aim, we virtually place
two to five fictitious BSs in the room where the trajectory
is recorded. The positions of the BSs in the EuRoC MAV
Vicon system’s coordinate frame are BS1 = (−10,−7, 2),
BS2 = (7, 13, 3), BS3 = (25,−35, 4), BS4 = (−6, 9, 5),
BS5 = (−4,−14, 6). We use these values to initialize the
corresponding state variables of the optimization problem with
a small covariance.

After generating the resource grids and simulating the
channel model, we generated the received signal at the receiver
every 0.2 seconds enabling the calculation of TOA with
the frequency of 5 Hz. To extract the TOA, the received
signal correlated with the transmitter’s PRS pattern, and the
delay was calculated by analyzing the correlation profile.

Typically, the initial or highest peak is considered as the
response. This approach can be compromised by noise. The
LOS coefficient may be weaker than the multipath coefficient
due to attenuation from non-line-of-sight (NLOS) objects or
constructive interference. To address this, a threshold was set to
eliminate values below it, and the first peak above the threshold
was chosen as the response. It is worth noting that the threshold
value was determined through experimentation.

0 2 4 6 8 9 10 12 14 16 18 20 22 24 26 28 29 30 32 34 36 38 40 42 44 46 48 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

·10−5

Time (shift)

C
o
rr
e
la
ti
o
n

v
a
lu
e

Max peak
First Peak
Response
Selected

Power Threshold

Fig. 2. PRS Correlation Profile

An example of a correlation profile in the simulation is
shown in Figure 2, where neither the first nor the maximum
peak was the response. Still, a suitable threshold allowed the
selection of the first peak as the response. Table II gives the
statistic of the error in the resulting estimated distance to each
BS.

TABLE II
ERROR STATISTICS OF THE ESTIMATED TOA DISTANCE TO BSS FOR

DIFFERENT 5G SIMULATION SCENARIOS GIVEN IN METERS.

5G Sim. Scenario Statistic TOA#1 TOA#2 TOA#3 TOA#4 TOA#5

QuaDRiGa-Industrial-LOS Mean 0.128 -0.044 0.005 -0.080 -0.022

Std. 0.568 0.810 0.763 0.872 0.717

3GPP-38.901-Indoor-LOS Mean -0.024 -0.021 -0.059 0.040 -0.059

Std. 0.344 0.368 0.351 0.394 0.3690

mmMAGIC-Indoor-LOS Mean 0. 0.0021 0.0103 -0.007 0.0032 -0.0104

Std. 0.1845 0.1709 0.1728 0.1592 0.1763

C. Evaluation Metrics

For the evaluation of our approach, we utilize the two
most popular metrics in SLAM: Absolute Trajectory Error
(ATE) and Relative Pose Error (RPE) of the rotation RPER

and translation RPEp [19]. In addition to these metrics, we
calculated the RMSE error Ea,∀a ∈ [x, y, z] for each trajectory
coordinate axis. By calculating the error for each coordinate
axis separately, we aim to gain insights into possible differences
in accuracy that depend on the spatial direction.

D. Results

The drone’s position and orientation results are obtained from
the factor graph based on the final MAP estimate for each node.
Nodes are generated consistently at 10Hz, twice the TOA’s
frequency. To evaluate the performance of the localization
algorithm, error metrics are computed by comparing the ground
truth Vicon pose with the estimated pose that is temporally
closest.



TABLE III
EVALUATION OF THE POSE ESTIMATION UNDER DIFFERENT 5G

SIMULATION SCENARIOS.

5G sim. scenario BS
Num. ATE(m) Ex(m) Ey(m) Ez(m) RPEp(m) RPER(deg)

QuaDRiGa-Industrial-LOS

2 3.7290 0.7326 1.1775 3.4615 0.0174 0.3979
3 1.2566 0.2978 0.1910 1.2058 0.0113 0.3984
4 1.5274 0.2230 0.1588 1.5026 0.0091 0.4175
5 0.6791 0.2431 0.1553 0.6147 0.0082 0.4142

3GPP-38.901-Indoor-LOS

2 2.5805 1.0242 1.6213 1.7266 0.0182 0.3979
3 1.1189 0.1935 0.1225 1.0952 0.0083 0.3979
4 0.3787 0.1757 0.1147 0.3152 0.0070 0.4114
5 0.2583 0.1717 0.0970 0.1668 0.0066 0.4487

mmMAGIC-Indoor-LOS

2 1.9861 0.7814 1.0087 1.5220 0.0104 0.3978
3 1.2447 0.1228 0.0522 1.2375 0.0065 0.4378
4 0.1432 0.0576 0.0468 0.1225 0.0055 0.4468
5 0.1312 0.0516 0.0422 0.1131 0.0052 0.4571

Based on the results, it is evident that increasing the number
of BSs enhances the precision of position estimation in all
situations except the first simulation scenario when transitioning
from three to four. In particular, the mmMAGIC-Indoor-LOS
with the highest bandwidth (400 MHz) outperforms the other
5G simulation scenarios.

Scenario 1
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Fig. 3. Box plot of the translation error in meters for each 5G simulation
scenario and number of BSs.

Figure 3 illustrates the 3D position error distribution. As
expected, the median value of the position error decreases with
an increase in the number of BSs. The box plot reveals that the
mmMAGIC-Indoor-LOS 5G simulation scenario achieves the
lowest overall error. Surprisingly, the first scenario performs
slightly worse when transitioning from three to four BSs.

The detailed results are given in Table III. The table includes
information on ATE, RPE, and translation RMSE for each
motion direction in different 5G simulation scenarios. The
error values confirm that a higher number of antennas and a
larger bandwidth decrease sensibly the error. However, in the
last two best simulation scenarios, the accuracy improvement is
marginal by increasing from four to five BSs. This may indicate
a lower bound to the error reduction achieved by adding more
antennas. Nevertheless, such redundancy may be helpful in
those environments where NLOS conditions are more frequent.

In Figure 4, we represent the most accurate results obtained
in the 5G simulation scenario mmMAGIC-Indoor-LOS with
five BSs. The plot displays the estimated 3D positions of the
MAV, with arrows indicating the estimated attitude (excluding
yaw). The position and orientation errors are color-coded to
show in red the few spots in which the poses do not match
well the ground-truth and in green where the error is low, down
to a few centimeters.

To evaluate the efficiency of the proposed method and its
potential for real-time application, we recorded and reported
the sum, average, and median optimization times. The sum
optimization time was calculated to be 5.203 seconds for the
144-second trajectory of the EuRoC Mav dataset, indicating
the total time required to optimize the drone’s position and
orientation using our graph-based framework. On average, the
optimization process took only 0.0036 seconds, demonstrating
the method’s speed and potential for efficient implementation.
Furthermore, the median optimization time was 0.0029 seconds,
indicating that most optimization processes were even faster
than the average, highlighting the consistency of the algorithm’s
performance.

All the experiments were performed on a Ubuntu 20.04
laptop with an Intel(R) Core(TM) i9-10885H CPU @ 2.40GHz
with 16 cores and 32 Gb of RAM. As the code was partially
implemented in Python, we expect further improvement by a
complete conversion in C++.
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Fig. 4. Visualization of the 3D trajectory estimated using five BSs in
mmMAGIC-Indoor-LOS 5G simulation scenario. Best viewed online and
in color.

E. Limitations

The approach used in the study has several limitations
and potential for future work. The 3D position is not fully
constrained with only two antennas, making convergence
difficult without other measurements. Nevertheless, the UAV’s
rotation errors primarily result from IMU noise, as the radio
frequency signal only provides distances to the antennas.
The yaw estimation has drift issues because it lacks global
measurement to correct it. Integrating other sensors can improve
the localization accuracy by observing the rotation around z,
e.g., employing a magnetometer. Notably, a camera can be
incorporated to add other constraints on the 6DoF relative
motion based on visual features and loop closures.

Furthermore, the error in the z axis is larger than along
x and y axes because of limited offset or variation in the
positions of the base stations in the height direction. We
foresee the possibility of fusing the barometer’s absolute
height measurements to relieve such issues. Additionally, the
localization accuracy depends heavily on the quality of the
TOA measurements, which can be negatively affected by NLOS
conditions. In such cases, correctly setting the measurement
uncertainty for each TOA range factor, using Mahalanobis



distance to discard outliers, or applying a robust kernel to the
cost function, e.g., Huber, may be beneficial to alleviate the
problem.

Finally, the proposed method assumes that the positions of
the base stations are known with high confidence and fixed
in the exact location, which may not be the case in real-
world scenarios where the stations may be moving or their
positions may be completely unknown. Moreover, the study
assumes that the odometry frame can be initially aligned with
the world frame inside which the antennas are placed. This
can be solved in future work by explicitly estimating the
transformation between the local coordinate frame and the
world.

V. CONCLUSION

In conclusion, we have successfully demonstrated the poten-
tial of using 5G TOA-based range measurements with data from
inertial sensors to locate a MAV indoors in various scenarios
and network setups. Our optimization strategy, which is graph-
based, enables us to accurately determine the drone’s position
and orientation, with an average testing error of less than 15
cm. This technique has many practical applications, such as
drone-powered monitoring and communication systems. In the
future, we plan to improve localization accuracy and reliability
by integrating visual data from cameras, experimenting with
real data, and investigating advanced techniques for precise
TOA estimation.
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