
CONNECTED COMPQNENTS WITH SPLIT
AND M€ROiE

Connected Components With Split and Merge
James J. Kistler and Jon A. Webb

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract
The split and merge model is a reasonable method for

architecture-independent programming of global image
processing operations on parallel architectures. We con-
sider image connected components from the point of view
of this programming model, and develop split and merge
algorithms that implement various connected components
algorithms that have appeared in the literature. The al-
gorithms are implemented in two architectures independ-
ent languages we have developed, namely Apply and
Adapt. Performance of the algorithms on the Sun, the
Carnegie Mellon Warp, and the Camegie Mellon Nectar
architectures is compared.

1. Introduction
Connected components is an important algorithm at the

transition point between iconic and feature-based image
processing. It is important because it allows the extrac-
tion of geometric information from an image, and
geometric information is important in all later stages of
processing, regardless of the problem. It is particularly
difficult to implement in parallel because:

The result is global, and depends critically on local
events. The presence or absence of a single pixel can
affect the labelling of all pixels in the image.

Processing is irregular. The distribution of processing
over the image varies depending on the algorithm, but
generally pixels in the middle of homogeneous regions
need relatively little processing, while single pixels con-
necting two homogeneous regions can cause a lot of
processing to occur.

*Both the inputs and the outputs are large. In many
algorithms at the transition between iconic and feature-
based processing, the input is the image, while the out-
put is a small set of features. (For example, the output
of connected components may be further processed to
extract a list of bounding rectangles of regions.) This
can make it easier to partition work among a set of
processors.

Since connected components is so important and so
hard, it is a natural test case for architecture-independent
parallel programming. In order to program the wide array
of parallel computers currently available and being
developed, i t is necessary to develop programming
models and languages that allow the programmer to ef-
ficiently implement algorithms on parallel computers
without being aware of the details of the
architectures - Le., the number of processors, how they

TH0363-2/91/0000/0194$01 .OO 0 1991 IEEE

are connected, the distribution of data over the processors,
and so on. The split and merge programming model is
one way of doing this. Split and merge is based on an
extremely common method of programming parallel com-
puters: namely, divide the data into parts according to
position, process each part independently on a different
processor, and then combine the partial results to create
the global result. It has previously been shown that this
programming model is powerful: it can be uscd to com-
pute any function that can be computed in forward or
reverse order over a data structure [11.

An implementation of the split and merge modcl exists
in the Adapt programming language [2], and will be used
to generate performance figures for the various connected
compoenents algorithms on three architectures: the Car-
negie Mellon Warp machine [3], the Carnegie Mellon
Nectar computer architecture [4], and the Sun 4.

2. The Split and Merge Model
In the implementation of the split and merge model in

the Adapt programming language, the data is partitioned
among processors, each processor computes indepen-
dently on its portion of the data, and then the results from
each processor are combined.

The Adapt language makes some restrictions on this
model and embeds i t in a specific set of language con-
structs. The image is always partitioned by rows, and the
programmer is encouraged to take advantage of the ef-
ficiencies that result from raster-order processing. This is
reflected in restrictions placed on the different parts of an
Adapt program:

First This section can be run only at the beginning of a
row. It typically initializcs data structures on a
processor.

Next This section is run once per pixel, and is always
preceded by another Next or a First. Processing
“wraps around” the border of the imagc. The
results from the previous Next or Firsf are available
to be reused in the current Next.

This section is run to combine the results from two
adjacent regions of image rows. I t has two sets of
variables associated with it; a set associated with
the top region and a set associated with the bottom
region. Its function is to modify the values of the
variables associated with the top region so that they
have the correct values for the two regions merged
together.

Combine

1 94

Last This section is run exactly once, on the final results
of all processing. It discards intermediate results
and calculates the final values.

For example, in image histogram the First section
would set the histogram to zero, the Next section would
increment a single histogram element, the Combine sec-
tion would add two histograms, and the Last section
would divide the histogram by the total pixel count to
create a frequency distribution.

We now consider several algorithms for connected com-
ponents, starting with the most local methods and ending
with the most global.

3. Nearest-Neighbor Propagation
Nearest-neighbor propagation is one of the simplest

methods for calculating the connected components of an
image. It consists merely of first assigning each sig-
nificant pixel a unique label, and then repeately propagat-
ing to each pixel the minimum of the adjacent labels.
This process is repeated until no pixels change.

This algorithm is inherently highly parallel. In fact, as
many processors as pixels can be used efficiently, assum-
ing the time to propagate labels between processors is
fast. However, it can be extremely slow since the number
of iterations, in the worst case (for example, a spiral), is
proportional to the area of the image.

The program that assigns the initial label, called i n i t ,
assigns row*Rows+col+l to each significant pixel.
(The current image position is (row, col) , and the im-
age size is RowsxCols.)

The propagation program simply assigns each pixel the
minimum of the labels at its neighbors, and sets a flag to
true if the pixel value changes. This process is repeated
until no pixel changes.

4. Shrink-Expand
Cypher et al. [5] have proposed an algorithm for SIMD

mesh-connected machines based on Levialdi’s shrinking
operation 161. The algorithm involves 0 (log n) iterations
of an operation in which each image component is even-
tually shrunk down to the lower-right pixel of its bound-
ing box (before disappearing). The value at each iteration
is saved in a vector for each pixel. Using the vectors, the
shrinking process is then inverted, so that after another
0 (log n) “expansion” iterations all components have
reappeared. When the first pixel of a component reap-
pears it is assigned a unique label; subsequently appearing
connected pixels are given the same label.

This algorithm has much better worst-case complexity
than nearest-neighbor propagation because the number of
iterations is proportional to the “Manhattan diameter” of
the largest component rather than its “intrinsic
diameter”. The former is essentially the perimeter of the
bounding box, and is limited to 2&; the latter is the max-
imum of the shortest paths between any two connected
pixels, which is bounded by n.

The biggest drawbacks to the algorithm are the rela-
tively large amount of memory it needs to hold the inter-
mediate results vectors and, potentially at least, the I/o
requirements. The amount of memory needed is & bits
per pixel’. For a worst-case image of moderate size, say
1024x1024, the intermediate vectors will consume 1
gigabit of store. In an Adapt implementation that docs
not keep intermediate results on the processors, 100
gigabits of data must be transferred. A realistic im-
plementation must keep intermediate results on the
processors.

5. Boundary-Following
The boundary-following algorithm for connected com-

ponents was originally developed for the Connection
Machine2 by Agrawal et al. [7]. Their algorithm is in two
phases. In the first, the boundary pixels of each com-
ponent are identified and labelled. In the second, interior
pixels are labelled by propagating each component’s label
inwards from its boundary.

Most of the work and complexity of the algorithm is in
the first phase, boundary identification and labelling. As-
sume that the image has been mapped onto the processor
array, one processor per pixel. Then, the actions of the
first phase are the following:
1. Mark: Identify boundary pixels/processors and label

them uniquely.

2. L i n k : Link adjacent boundary pixels/processors into
boundary “rings.”

3. Merge: Relabel each ring by propagating around it the
label of a “principal” pixel/processor.

Steps 1 and 2 are purely local operations, which rcquire
only a 3x3 window around each pixel. The initial label
for a pixel is simply the “id” of the processor it is
mapped to, and the linking is accomplishcd through
“next” pointers kept in each processor.

The relabelling of rings so that each boundary shares a
common label, step 3 above, is done through a technique
called distance doubling [8 , 9] . Distance doubling allows
computation and distribution of the maximum (or min-
imum) value in a ring of processors in O(1ogn) time. At
each iteration, each processor communicates with another
processor in the ring that is double the distance of that in
the previous iteration. Using distance doubling, the prin-
cipal pixeVprocessor of a ring is simply that with the
largest initial label.

There are two further observations to make about phase

c

‘Cypher et a1 describe a variation of the algorithm which saves only
selected intermediate results and recomputes others hat it needs during
expansion. lkis reduces the space requirement to O(logn) bits pcr
pixel, with only constant increase to the Lime complexity.

konnection Machine is a trademark of Thinking Machines Corpora-
tion.

195

one. First, distance doubling requires rings of processors;
therefore, all boundaries must be at least two pixels wide.
To enswe this property, the image must be “fattened”
prior to phase one and “slimmed” following phase two.
The fattened image is called the “dot canvas,” and each
original pixel corresponds to a 2x2 square in the dot can-

The second observation is that a single component may
have multiple boundaries. This occurs when there are
“holes” in a component. Every component has an outer
boundary, and those with holes have additional inner
boundaries, one for each hole. A component’s boundaries
must be unified before the labelling of interior dots can be
done. The unification is achieved by having boundary
processors scan horizontally in one direction until they
encounter another boundary processor. If that processor
happens to be a principal, then the next pointers of the
two processors are swapped, effectively merging the two
rings into one. The scanning/swapping is followed by
another distance doubling to relabel rings that have just
been merged.

Phase two of the algorithm, interior dot labelling (called
f i l l) , is straightforward by comparison. Boundary
processors simply scan horizontally in one direction,
labelling significant pixels until another boundary is en-
countered. The final step is to slim the dot canvas back to
the dimensions of the original image by sampling one out
of every quartet of dots.

Much of the boundary following algorithm lends itself
to efficient implementation in split and merge. The one
operation that does not is distance doubling. which re-
quires arbitrary patterns of memory access. This is
handled on the Connection Machine since it provides
global shared memory with (nearly) constant access time.
However, the split and merge model specifically does not
assume the existence of shared memory.

In our implementation distance doubling is performed
serially, in the Last section of an Adapt program. Each
processor computes a portion of the initial input table, and
then forwards its portion on to the Last-processing sec-
tion. The disadvantage to this approach is obvious: inser-
tion of a serial bottleneck in the computation. Note that
the demand on Last-processing by the second approach is
not serialization, but shared-memory.

Our split and merge implementation of boundary-
following consists of four Adapt programs, mark, l i n k ,
merge, and f i l l . The first three implement phase one
described above, and the fourth implements phase two.

The mark maps each input pixel into the dot canvas
with boundary dots uniquely labelled. interior dots set to a
sentinel value, and other (Le., insignificant) dots 0. A
dense set of labels is assigned by taking advantage of the
restriction that we have made on split and merge. In the
Combine section we note in an intermediate data structure
the number of labels assigned in each region. In the Lasf

Vas.

section we generate a row offset vector from the inter-
mediate data structure which is output as another
parameter of the program. This vector is used in sub-
sequent steps to supply an index to be added to each label.

The l i n k program links boundary dots into rings and
performs a distance doubling to unify the labels in each
ring. The input is the dot canvas and row offset vector
from the mark program, and a “next-dot” table which is
used to initialize the next pointers comprising the rings.
The initial label and next pointer of each boundary dot are
collected into a boundary table, which is used by the Last
section to do the doubling.

The initial boundary table is formed by having each
processor “forward” < l a b e l , next> entries
generated during Next processing in its region on to the
Combine section. The “forwarding” is done via an inter-
mediate data structure. The combining step merges the
forwarded entries into a single table, which is then passed
to the Last section.

The merge program links inner boundary rings to their
outer rings, and performs a second distance doubling to
unify the labels in each merged ring. The input is the dot
canvas and the (once-doubled) boundary table generated
by the l i n k program. Rings are merged by “swapping”
the next pointers of the principal dots of inner boundary
rings with the dots in the outer boundary that are due west
of them.

The Combine and Last sections of merge are identical to
those of Link, Le., preparing for and pcrforming a distance
doubling. The output of the program is the (now twice-
doubled) boundary table.

The f i l l program simply applies the find boundary
table to the dot canvas, labelling both boundary and inte-
rior dots, and slims the canvas back to the dimensions of
the original image. A Next section which notes whether it
is “in” or “out” of a component, and what the current
label is if the state is “in,” is all that is requircd.

6. Union-Find
Union-find type algorithms make the greatest use of

shared knowledge among processors, by assembling an
equivalence table that potentially relates any pixel in the
image to any othcr pixel, and then applying this table.
This algorithm is commonly used in serial implcmen-
tations of connected components.

Union-find is actually more powerful than is necessary
for computing connected components in images. Suppose
we are processing the image row by row, and suppose that
image component A lies on a row between two connected
image components both labelled B. Then A cannot be
unified with any component C that lies outside of B,
based on information in the image above this row. This
observation has been exploited several times [IO, 11, 121.
However, in merging two regions, instead of a region and
a row, any two components can be merged. So we cannot
use this observation with the split and merge model.

1%

Initial labels are assigned to pixels using the row offset
vector method of Section 5. We assign horizontal runs
the same label. We must next scan the image and merge
labels between rows. We do this by creating a separate
equivalence table for each region processed separately a
series of application of Next. The Combine section then
combines these tables.

The separate equivalence tables are created by the
u n i f y program below:

First Set all entries for labels in the row above the top
row in this region to identity.

Next If the current pixel is on, examine the pixel values
in the three pixels above, above and to the left, and
above and to the right of the current pixel. If any
of these are on, perform unions as appropriate be-
tween the label for the current pixel and the labels
for those pixels.

The Combine step is simplified by the observation that
the only labels that can require merging between two
regions are the labels in the top row of the bottom
region - these are the only labels that are shared between
the two regions. Other labels from the bottom region can
be simply copied into the equivalence table for the top
region. The Combine step therefore first copies all labels
from the equivalence table for the bottom region into the
equivalence table for the top region. Then, for every label
in the top row of the bottom region, it works down the
chain of equivalences for this label in the equivalence
table from the bottom region and sets all these labels
equal to the value of the label in the equivalence table for
the top region.

The relabel step of the uniodfind algorithm scans
the image and assigns each pixel its value in the equiv-
alence table.

7. Implementations of the Split and Merge
Model

The Adapt language has been implemented on a variety
of architectures; these show the range of possible im-
plementations of the split and merge model. We now
describe each of these implementations.

7.1. Serial implementation
On a serial architecture (in the experiments reported

here, a Sun 4/330) Adapt can be implemented without use
of the Combine section. All that is necessary is to execute
First once, at the beginning of the image, and then ex-
ecuted Next once for every pixel in the image, in raster
order; finally, Lust is executed.

7.2. Implementation on the Carnegie Mellon

Adapt was implemented in two different ways on the
Carnegie Mellon Warp machine [3]. This computer con-
sists of an input host that feeds data from a large memory
to a linear array of ten systolic processors, each of which

Warp Machine

can communicate only with its left and right neighbors.
The last cell is connected to an output host which stores
results into a large memory that is shared with the input
host. Images are processed by feeding them in raster
order through the array. Important limitations and ad-
vantages arise from the characteristics of the systolic
cells; each has high I/O bandwidth (40 MB/s) and low
latency (200 ns) communication, but a relatively small
data memory (32 KWords). The entire computer is
programmed in a Pascal-level language called W2.

The first Adapt implementation was based on the pre-
vious implementation of Apply on Warp [13]: the Adapt
compiler was a slightly modified version of the Apply
compiler. The image was divided by columns, with each
systolic cell taking a contiguous tenth of the image. For
each row of the image, cell 0 executed the First section
and then executed Next for each of its columns. It then
transferred all intermediate variables to cell 1, which ex-
ecuted Next for each of its columns, and so on. In the
meantime, cell 0 went on to execute First and Next for the
next row. A pipeline of processing was thus established
with all cells working simultaneously after the tenth row
of the image was processed. When the output reached the
output host, it performed a Combine operation between
the current row’s variables and the variables for the
region above the current row. Finally, after the entire
image had been processed, the output host performed
Last.

This implementation minimizes memory use on the
cells; each must provide storage only for one-tenth of a
row of the image and the variables used in Next; they
need not store the variables used in Combine at all. It also
involves the output host in the processing, and the
Combine processing is overlapped with the Next process-
ing on the cells. But the disadvantages of this method are
severe. First, the First and Combine sections are executed
once for every row in the image; if the processing in these
sections is expensive, this can seriously add to the com-
putational burden of the program. Second, and more sub-
tly, all intermediate variables must be transferred from
one cell to another after the execution of the cell’s Next’s.
This adds VO overhead to the processing on a cell, but
more importantly, it can actually eliminate parallelism.
The systolic queues between cells in Warp have buffer
space for only 512 words; if the size of the intermediate
variables exceeds this, the sending cell blocks until the
receiving cell has read the data. If this happens, no
pipeline of processing will be created; instead, only a
single cell at a time will execute its Next’s.

In the second implementation the image was divided by
rows, again with each cell taking a contiguous tenth.
Each cell executed First at the first pixel in its region, and
then Next for all pixels in its region. No 1/0 took place,
except for the input and output of images, until the entire
image was processed. Then cell 0 transferred its variables
to cell 1, which executed Combine and then transferred its
variables to cell 2, and so on. The Lust section was ex-
ecuted on cell 9.

197

This implementation was far more efficient than the
column-partitioned implementation. In fact, the perfor-
mance of Adapt programs sometimes exceeded hand-
written W2 code for the same section. A notable example
is image histogram, which was carefully optimized in its
handwritten implementation: for a 512x512 image, his-
togram took 163 ms in the hand-written version but only
119 ms in the Adapt version.

The principal disadvantage of this method is that it re-
quires a lot of memory on the cells. Each cell must store
a complete row of the image, as well as two copies the
variables used in Combine, one from the previous cell and
one from this one.

7.3. Implementation on the Nectar Architecture
The Nectar architecture [4] consists of a crossbar

switch, called a HUB, connected by fiber optics to mes-
sage passing processors, called CABs, which share bus
space with a host processor. In the experiments reported
here, all of the host processors are Sun 4/330s, and the
CABs are installed in the VME bus.

In the Adapt implementation on Nectar, a special
process called a master distributes the images to and col-
lccts results from several slave processes. The master and
slaves run on the Sun 4/330s; it is also possible to run
processes on the CABs, but we did not do this because the
CABs do not have hardware floating point. The master
divides the image into a number of slices by row, and
deals out the slices to the slaves as they request them;
each slave gets an initial slice, executes First and Next as
in the row-partitioned Warp implementation, and then,
when it gets halfway through processing its slice, it sends
a message to the master requesting more data. The master
sends more slices to the slaves that request data. After all
the slices have been sent to slaves, the master sends out a
map telling each slave where all the slices are.

The map is used by the slaves to execute their
Combine's independently of the master. Each slave keeps
track of the slices allocated to it. Slices are combined in a
binary tree fashion. Each slave examines its slices, and if
it has two slices that can be combined, it does so; if it has
any slices for which the upper corresponding slice is on
another slave, it sends its slice directly to that slave; and it
receives and stores any slices intended for it. The final
result of all of these Combine's is a set of variables on
slave 0; this is sent to the master, which executes the Last
section.

This implementation takes advantage of Nectar's
crossbar connectivity and the large memories available on
the host processors. It uses special characteristics of
Adapt to improve efficiency; namely, the knowledge that
a slave has that it is halfway through processing by read-
ing the middle row of its slice. It is also automatically
load balancing.

There are some problems with the current implemen-
tation. The most significant is that the images and other

data structures must be sent across the VME bus from the
host processors to the CABs and back again. While the
CAB to CAB 1/0 bandwidth is fairly high (10 MB/s), the
usable VME bandwidth is only 1-4 MB/s.

Another disadvantage of running on the host is that a
Unix process must be started for each slave. This takes a
substantial amount of time, both because of the process
startup time and because the code for the slaves is trans-
mitted over the Ethernet in the current prototype Nectar
implementation.

8. Experimental Results
8.1. Results from Sun and Warp

We are comparing different algorithms for the same
problem implemented on several difcrent architectures.
Several insights can be drawn from this.

First, we can normalize for the different processor ar-
chitectures by comparing the same algorithm on different
architectures. This allows us to combine insights from
different architectures.

Second, we can compare the requirements the different
algorithms make of the architecture and make general
statements, justified by our performance observations, on
the pcrformance of different algorithms on parallel ar-
chitectures in general.

Table 8-1 presents the experimental results for the serial
and both Warp implementations of Adapt on all al-
gorithms, for two images: one including many small
(several pixel) regions, and the other including a few large
(64x64) regions.

In many cases the column-partitioned method is orders
of magnitude slower than the row-partitioned method.
This is because the column-partitioned method requires
synchronization between cells at the end of processing
every row, while the row-partitioned method
synchronizes at the end of processing every ten rows.
Also, the innermost loop in the column-partitioned
method has a loop bound only one-tenth as large as the
loop bound in the row-partitioned method, because it
iterates over all pixels in a cell's columns, rather than all
the pixels in a row. These factors introduce a significant
overhead (as in i n i t , expand, and r e l a b e l) , which
grows larger when there is data to be exchanged between
cells (as in p r o p and s h r i n k) . When the data struc-
tures grow large (as in s c a n and u n i f y) the limited
queue size between cells destroys parallelism, resulting in
orders of magnitude difference between the two methods.

When we compare the algorithms based on their perfor-
mance and architectural requirements, we observe:

Propagate, shrink-expand, and union-find require only
local connections between processors. The border-
following algorithm is the only one that requires long-
distance communication.

198

A l g o r i h

~ r . i t 0.316 0.416 0.232 0.333 0.471 0.257
r r o p 257’ 3.14‘ 1.69’ 73.3’ 102’ 59.5’

T d 1 2.89 I 3.56 I 1.92 1 73.6 I I n . 1 59.8

Sun W u p W u p Sun Wnrp Warp
4f330 (Cdunm) (Row) 4D30 (Column) (Row)

I Smdl Rcpron h g c I Large k p i o n Image

s c r i r ~
~ x p a l d

Tnri

3.28’ 2.92’ 1.23’ 169.’ 149.’ 64.4’
5 28‘ 3.18‘ 1.96 265.’ 162’ 97 3’
8 M 6.10 3.13 434. 311. 162.

Small Region h g c Large Rcgion lmgc

Table 8-1: Pcrformancc of Connectcd Components
on Sun and Warp.

All times in seconds. Image size: 512x512.
‘Five iterations.

20ne hundred twenty-eight iterations.
3 T ~ o hundred fifty-five iterations.

Propagate and shrink-expand require small memories at
processors. Boundary following makes moderate
memory requircments in our implementation. Union-
find is the only algorithm that requires large memories.

Shrink-expand and border-following make use of only
very limited processor facilities; they do not manipulate
large integers or do any complex calculations.
Propagate uses large integer comparisons, and union-
find makes use of several different complex processor
features, including local addressing.

The execution times of propagate and shrink-expand
depend linearly on the size of the regions in the image.
Border-following and union-find are both largely inde-
pendent of the region size.

Propagate, shrink-expand, and border-following can all
be implemented on very large processor arrays.
Propagate and shrink-expand are entirely local in their
action (except in the calculation of when to stop repeat-
ing), while border-following’s global calculations can
be done in parallel, given long-distance communication.
Union-find can only be implemented on relatively small
processor arrays, because in its second step it creates a
single data structure (the equivalence table). The over-
head for creating this table increases with the number of
processors.

The last observation on union-find can be quantificd by
observing the variation in execution time with the number
of proccssors in the unify stcp. The timc can be ap-
proximated by r=i+x/n+cx(n-1), where t is the total ex-
ecution time, i is the overhead independent of numbcr of
cells (mainly due to I/O of the images to and from the
Warp array), x is the exccution timc on a single cell, c is
the time for a Combine operation, and n is the numbcr of
cells. With this model and data from runing u n i f y with
different numbers of cells in the Warp array, we obtain
i=161 ms , ~ 2 . 7 6 s , and c=lO.O ms. Givcn these numbcrs
and different Adapt implementation methods on onc-
dimensional, two-dimensional, and binary tree-connccted
processor arrays, we can calculate the maximum number
of cells that can be applied to the union-find algorithm:
these are 17, 42, and 190 for one-dimensional, two-
dimensional, and binary tree-connected arrays, respec-
tively. We can also calculate the most cost-effective array
size [14]: these are 10, 17, and 34, respectively. In other
words, the maximum array size is limitcd to a few tens of
cells, regardlcss of the method of implcmcntation of
Adapt.

By comparison, the maximum array size for propagatc,
shrink-expand, and bordcr-following is much
larger - perhaps as large as one processor pcr pixcl,
depending on the details of the architecture. So we might
expect that these algorithms potentially offer much better
speedup than union-find. However, a cost-benefits
analysis based on the Sun 4 execution times sheds doubt
on this for propagate and shrink-expand. These al-
gorithms are much slower than union-find; assuming a
maximum region size of 128 pixels, propagate is 38.6
times slower and shrinldexpand is 227 times slower. In
order for the performance of these algorithms to exceed
the performance of union-find, the processor array would
have to be this much larger in ordcr to make up for the
lost performance: a 17-processor union-find array versus
a 656 processor array for propagate, or a 3860 processor
array for shrink-expand. Now, the chief advantage of
these algorithms when compared with union-find is that
they require much smallcr per-processor memories than
union-find; requiring much larger processor arrays adds
additional cost. As a result, a the union-find algorilhm is
much more likely to be cost-effective than the other al-
gorithms, except when very large processor arrays must
be used.

The border-following algorithm is only 8.08 times
slower on the Sun 4 than union-find: a 17-processor
union-find array is equivalent to a 137-processor border-
following array. As with propagate and shrink-expand,
the border-following algorithm requires much less per-
processor memory than union-find. This suggests that
border-following may be a reasonable alternative to
union-find on processor arrays of hundreds of processors
or more. If such an array is organized as a mesh, and the
image is divided into blocks (so that each processor takes
a rectangle of pixels, with adjacent processor taking ad-

jacent rectangles) then in almost all cases the communica-
tion paths formed in the link step of border-following will
be short, and will not actually require hardware im-
plementation of a general-purpose switch as in the Con-
ncction Machine implementation of union-find.

We conclude the following:
0 For small to medium-sized processor arrays (tens of

processors) union-find is the best algorithm. It has SU-
pcrior performance overall. In such arrays, it is impor-
tant not to allocate too many processing nodes to the
merge step; the best number depends on how the
Combine step is implemented, and ranges from ten to a
few dozen.

On medium-sized arrays (hundreds of processors), the
border-following algorithm is preferable. It makes
smaller memory requirements and offers better perfor-
mance than propagate or shrink-expand. Union-find is
not feasible on such large arrays.

0 On large mesh arrays (thousands of processors or more)
propagate or shrink-expand is the choice. These al-
gorithms make almost no use of global operations, and
depend on local interprocessor communication only.
The choice between the two is to be made based on the
availability of fast bit-serial operations; if a speedup of
six or more is available from such operations, then
shrink-expand is likely to be faster than propagate.
Note that this observation applies to the Connection
Machine, which offers a general-purpose switch com-
munication mechanism as well as mesh communication;
local scan operations make it possible to implement
propagate much more efficiently than
border-following [15].

The border-following algorithm is the only algorithm
presented here that does not fit the split and merge
model, as a result of the distance-doubling step.

8.2. Results from Nectar
Even with the automatic load balancing done by the

Nectar compiler, and excluding slave startup time from
the measurements, the Nectar data exhibits a great deal of
variability from run to run. A typical performance curve
is shown in Figure 8-1. This figure shows a number of
oulliers in different runs: the actual execution time of the
s h r i n k program with four slave nodes is typically about
730 ms, but times up to 2 s are not uncommon, and a time
of over 4 s was recorded.

We have therefore used a combination of outlier rejec-
tion and Monte Carlo analysis to analyze this data. Out-
liers are rejected by sorting the data for each number of
slaves, and starting with a small number of the smallest
execution times, incrementally add execution times until
the variance is observed to increase rapidly. All larger
exection times are then rejected.

Monte Carlo analysis is used by fitting a simple model
to data with the same mean and variance as the actual

J ;:
i = t ism

a -
Ism

sm

~ ; ; i
Io(0

Numbs, Of .I.". "des

N.str erHutla, rhea lor ahrhk

Figure 8-1: Nectar Execution Times for One Iteration

data, and then predicting execution times with each num-
ber of slaves. This gives a predicted mean and variance
of execution times as shown in Figure 8-1.

This analysis is not complete: it observably does not
account for all aspects of the Nectar data. But we can use
it to characterize the current Nectar implementation.

Overall, the current Nectar implementation of Adapt
does not compare favorably with the Sun implementation,
which used just one Sun 4/330 (as opposed to Nectar's
Sun 41330 master and Sun 41330 slave nodes). the fun-
damental reason for the loss of performance is uansfer-
ring images over the VME bus between the Sun memory
and the NeCtar CAB for transmission to the slave nodes.

For example, in the data in Figure 8-1 the best execution
time, with three slave nodes, is about 680 ms. The execu-
tion time of one iteration of shrink on the Sun 4/330
(Table 8-1) was about 660 ms. In each execution of the
shrink opcration, 0.5 MB of data is transferred over the
VME bus: a transfer rate of about 740 KB/s was achieved.
This is near the maximum transfer rate of the VME bus
under Sun programmed I/O. Only a higher speed inter-
face, such as HIPPI, to Nectar will improve these results.

We also observed an interesting behavior related to our
implementation of the Combine section on Ncctar. The
relevant data is shown in Figure 8-2. Note the "bump"
with two slave nodes. We believe this bump is due, at
least in part, to the simple method we have chosen for
allocation of slices to slaves. In a system with low overall
load, the slices will be dealt alternately to slaves; thus, all
even-numbered slices end up in slave 0, and all odd-
numbered slices in slave 1. During the Combine step,
slave 1 will send all of its slices to slave 0, which will
then to all of the Combine operations; slave 1 will be
completely idle. This and the overhead of having to do
more Combine operations help create the bump. Clearly,
random assignment of slices or some other technique that
helps to balance load during the Combine phase is needed.

The Adapt Nectar implementation is still in an early
phase. We expect that further refinement of the im-
plementation and the addition of new hardware to Nectar
(including a HIPPI interface expected for 1991) will sub-
stantially improve the performance of Adapt here.

of S h r i n k

200

I 1 I 8 I #
w m b u o1.l.w mdu

heir w m l k n the. for unlly

Figure 8-2: Nectar Execution Times for One Iteration
o f u n i f y

9. Summary
We have demonstrated that it is possible to implement

an architecture-independent programming language for
global image processing operations on a variety of com-
puter architectures.

We have shown how various parallcl connected com-
ponents algorithms can be implemented with a common
programming model. Only the border-following algo-
rithm, which manages a large distributed data structure
through a general-purpose switch, does not fit the model.

We have shown how different architectures and al-
gorithms can be compared fairly through the usc of such
an architecture-independent language.

Acknowledgments
Thanks to George Gusciora, who created the row-

partitioned implementation of Adapt on Warp.

This research was supported by the National Science
Foundation under grant MP-8920420. The views and
conclusions contained in this document are those of the
authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Na-
tional Science Foundation or the U.S. government.

1.

2.

3.

4.

Bibliography
Wcbb, J. A., “The Divide and Conquer Model for
Parallel Computation’ ’ . Submitted

Webb, J. A., “Architecture-Independent Global
Image Processing”, Tenth International Con-
ference on Pattern Recognition, International AS-
socation for Pattern Recognition, Atlantic City,
NJ, June 1990, pp. 623-628.

Annaratone, M., Amould, E., Gross, T., Kung,
H. T., Lam, M., Menzilcioglu, 0. and Webb, J. A.,
“The Warp Computer: Architecture, Implemen-
tation and Performance”, IEEE Transactions on

12, December 1987, pp. 1523-1538.

Amould, E. A., Bitz, F. J., Coopcr, E. C., Kung,
H. T., Sansom, R. and Steenkiste, P. A., “The
Dcsign of Nectar: A Network Backplane for
Hctcrogcncous Multicomputcrs”, Proceedings of

Computers, Vol. C-36, NO.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Third International Conference on Architectural
Support for Programming Languages and Operat-
ing Systems (ASPLOS I I I) , ACM, April 1989.

Cypher, R., Sanz, J., and Snyder, L., “Algorithms
for Image Component Labelling on SIMD Mesh-
Connected Computer”, IEEE Transactions on
Computers, Vol. 39, No. 2, February 1990, pp.

Lcvialdi, S., “On Shrinking Binary Pictures”,
Communications of the ACM, Vol. 15, NO.

Agrawal, A., Nekludova, L., Lim, W., “A Parallel
O(1og N) Algorithm for Finding Connccted Com-
ponents in Planar Images”, Proceedings of the
1987 International Conference on Pnrallel
Processing, 1987.

Wyllie, J.C., “The Complexity of Parallcl Com-
putations”, Tech. rcport TR 79-387, Cornell
Univcrsity Dcpartmcnt of Computcr Scicnce,
August 1979.

Lim, W., Agrawal, A., Nekludova, L., “A Fast
Parallel Algorilhm for Labeling Connccted Com-
ponents in Image Arrays”, Tcch. report 15, Think-
ing Machincs Corporation. 1986.

Kung, H.T. and Wcbb, J.A., “Global Operations
on the CMU Warp Machine”, Proceedings of
1985 AIM Computers in Aerospace V
Conference, American Institute of Acronautics
and Astronautics, Octobcr 1985, pp. 209-218.

Lumia, R., Shaprio, L, and Zuniga, 0.. “A New
Connected Components Algorithm for Virtual
Memory Computers”, Computer Vision,
Graphics, and Image Processing, Vol.

Schwartz, J., Shark, M., and Siegel, A,, “An cf-
ficicnt algorithm for finding connected com-
ponents in a binary image”, Technical Report
154, New York Univcrsity Dcpartmcnt of Com-
putcr Scicnce, February 1985.

Wallace, R. S., Wcbb, J. A. and Wu, I-C., “Ar-
chitecture Indepcndent Imagc Processing: Pcrfor-
mance of Apply on Diverse Architecturcs”.
Computer Vision, Graphics, and Image
Processing, Vol. 48, 1989, pp. 265-276.

Eager, D. L., Zahorjan, J., and Lazowska, E. D.,
“Speedup versus efficiency in parallel systcms”,
IEEE Transactions on Computers, Vol. 38, No.
3,1989, pp. 408-423.

Blclloch, G.. Personal communication

276-281.

1, 1972, pp. 7-10.

22, 1983, pp. 287-300.

201

