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Abstract 
The split and merge model is a reasonable method for 

architecture-independent programming of global image 
processing operations on parallel architectures. We con- 
sider image connected components from the point of view 
of this programming model, and develop split and merge 
algorithms that implement various connected components 
algorithms that have appeared in the literature. The al- 
gorithms are implemented in two architectures independ- 
ent languages we have developed, namely Apply and 
Adapt. Performance of the algorithms on the Sun, the 
Carnegie Mellon Warp, and the Camegie Mellon Nectar 
architectures is compared. 

1. Introduction 
Connected components is an important algorithm at the 

transition point between iconic and feature-based image 
processing. It is important because it allows the extrac- 
tion of geometric information from an image, and 
geometric information is important in all later stages of 
processing, regardless of the problem. It is particularly 
difficult to implement in parallel because: 

The result is global, and depends critically on local 
events. The presence or absence of a single pixel can 
affect the labelling of all pixels in the image. 

Processing is irregular. The distribution of processing 
over the image varies depending on the algorithm, but 
generally pixels in the middle of homogeneous regions 
need relatively little processing, while single pixels con- 
necting two homogeneous regions can cause a lot of 
processing to occur. 

*Both the inputs and the outputs are large. In many 
algorithms at the transition between iconic and feature- 
based processing, the input is the image, while the out- 
put is a small set of features. (For example, the output 
of connected components may be further processed to 
extract a list of bounding rectangles of regions.) This 
can make it easier to partition work among a set of 
processors. 

Since connected components is so important and so 
hard, it is a natural test case for architecture-independent 
parallel programming. In order to program the wide array 
of parallel computers currently available and being 
developed, i t  is necessary to develop programming 
models and languages that allow the programmer to ef- 
ficiently implement algorithms on parallel computers 
without being aware of the details of the 
architectures - Le., the number of processors, how they 

TH0363-2/91/0000/0194$01 .OO 0 1991 IEEE 

are connected, the distribution of data over the processors, 
and so on. The split and merge programming model is 
one way of doing this. Split and merge is based on an 
extremely common method of programming parallel com- 
puters: namely, divide the data into parts according to 
position, process each part independently on a different 
processor, and then combine the partial results to create 
the global result. It has previously been shown that this 
programming model is powerful: it can be uscd to com- 
pute any function that can be computed in forward or 
reverse order over a data structure [ 11. 

An implementation of the split and merge modcl exists 
in the Adapt programming language [2], and will be used 
to generate performance figures for the various connected 
compoenents algorithms on three architectures: the Car- 
negie Mellon Warp machine [3], the Carnegie Mellon 
Nectar computer architecture [4], and the Sun 4. 

2. The Split and Merge Model 
In the implementation of the split and merge model in 

the Adapt programming language, the data is partitioned 
among processors, each processor computes indepen- 
dently on its portion of the data, and then the results from 
each processor are combined. 

The Adapt language makes some restrictions on this 
model and embeds i t  in a specific set of language con- 
structs. The image is always partitioned by rows, and the 
programmer is encouraged to take advantage of the ef- 
ficiencies that result from raster-order processing. This is 
reflected in restrictions placed on the different parts of an 
Adapt program: 

First This section can be run only at the beginning of a 
row. It typically initializcs data structures on a 
processor. 

Next This section is run once per pixel, and is always 
preceded by another Next or a First. Processing 
“wraps around” the border of the imagc. The 
results from the previous Next or Firsf are available 
to be reused in the current Next. 

This section is run to combine the results from two 
adjacent regions of image rows. I t  has two sets of 
variables associated with it; a set associated with 
the top region and a set associated with the bottom 
region. Its function is to modify the values of the 
variables associated with the top region so that they 
have the correct values for the two regions merged 
together. 

Combine 
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Last This section is run exactly once, on the final results 
of all processing. It discards intermediate results 
and calculates the final values. 

For example, in image histogram the First section 
would set the histogram to zero, the Next section would 
increment a single histogram element, the Combine sec- 
tion would add two histograms, and the Last section 
would divide the histogram by the total pixel count to 
create a frequency distribution. 

We now consider several algorithms for connected com- 
ponents, starting with the most local methods and ending 
with the most global. 

3. Nearest-Neighbor Propagation 
Nearest-neighbor propagation is one of the simplest 

methods for calculating the connected components of an 
image. It consists merely of first assigning each sig- 
nificant pixel a unique label, and then repeately propagat- 
ing to each pixel the minimum of the adjacent labels. 
This process is repeated until no pixels change. 

This algorithm is inherently highly parallel. In fact, as 
many processors as pixels can be used efficiently, assum- 
ing the time to propagate labels between processors is 
fast. However, it can be extremely slow since the number 
of iterations, in the worst case (for example, a spiral), is 
proportional to the area of the image. 

The program that assigns the initial label, called i n i t ,  
assigns row*Rows+col+l to each significant pixel. 
(The current image position is (row, col) , and the im- 
age size is RowsxCols.) 

The propagation program simply assigns each pixel the 
minimum of the labels at its neighbors, and sets a flag to 
true if the pixel value changes. This process is repeated 
until no pixel changes. 

4. Shrink-Expand 
Cypher et al. [ 5 ]  have proposed an algorithm for SIMD 

mesh-connected machines based on Levialdi’s shrinking 
operation 161. The algorithm involves 0 (log n) iterations 
of an operation in which each image component is even- 
tually shrunk down to the lower-right pixel of its bound- 
ing box (before disappearing). The value at each iteration 
is saved in a vector for each pixel. Using the vectors, the 
shrinking process is then inverted, so that after another 
0 (log n) “expansion” iterations all components have 
reappeared. When the first pixel of a component reap- 
pears it is assigned a unique label; subsequently appearing 
connected pixels are given the same label. 

This algorithm has much better worst-case complexity 
than nearest-neighbor propagation because the number of 
iterations is proportional to the “Manhattan diameter” of 
the largest component rather than its “intrinsic 
diameter”. The former is essentially the perimeter of the 
bounding box, and is limited to 2&; the latter is the max- 
imum of the shortest paths between any two connected 
pixels, which is bounded by n. 

The biggest drawbacks to the algorithm are the rela- 
tively large amount of memory it needs to hold the inter- 
mediate results vectors and, potentially at least, the I/o 
requirements. The amount of memory needed is & bits 
per pixel’. For a worst-case image of moderate size, say 
1024x1024, the intermediate vectors will consume 1 
gigabit of store. In an Adapt implementation that docs 
not keep intermediate results on the processors, 100 
gigabits of data must be transferred. A realistic im- 
plementation must keep intermediate results on the 
processors. 

5. Boundary-Following 
The boundary-following algorithm for connected com- 

ponents was originally developed for the Connection 
Machine2 by Agrawal et al. [7]. Their algorithm is in two 
phases. In the first, the boundary pixels of each com- 
ponent are identified and labelled. In the second, interior 
pixels are labelled by propagating each component’s label 
inwards from its boundary. 

Most of the work and complexity of the algorithm is in 
the first phase, boundary identification and labelling. As- 
sume that the image has been mapped onto the processor 
array, one processor per pixel. Then, the actions of the 
first phase are the following: 
1. Mark: Identify boundary pixels/processors and label 

them uniquely. 

2. L i n k :  Link adjacent boundary pixels/processors into 
boundary “rings.” 

3. Merge: Relabel each ring by propagating around it the 
label of a “principal” pixel/processor. 

Steps 1 and 2 are purely local operations, which rcquire 
only a 3x3 window around each pixel. The initial label 
for a pixel is simply the “id” of the processor it is 
mapped to, and the linking is accomplishcd through 
“next” pointers kept in each processor. 

The relabelling of rings so that each boundary shares a 
common label, step 3 above, is done through a technique 
called distance doubling [ 8 , 9 ] .  Distance doubling allows 
computation and distribution of the maximum (or min- 
imum) value in a ring of processors in O(1ogn) time. At 
each iteration, each processor communicates with another 
processor in the ring that is double the distance of that in 
the previous iteration. Using distance doubling, the prin- 
cipal pixeVprocessor of a ring is simply that with the 
largest initial label. 

There are two further observations to make about phase 

c 

‘Cypher et a1 describe a variation of the algorithm which saves only 
selected intermediate results and recomputes others hat  it needs during 
expansion. lkis  reduces the space requirement to O(logn)  bits pcr 
pixel, with only constant increase to the Lime complexity. 

konnection Machine is a trademark of Thinking Machines Corpora- 
tion. 
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one. First, distance doubling requires rings of processors; 
therefore, all boundaries must be at least two pixels wide. 
To enswe this property, the image must be “fattened” 
prior to phase one and “slimmed” following phase two. 
The fattened image is called the “dot canvas,” and each 
original pixel corresponds to a 2x2 square in the dot can- 

The second observation is that a single component may 
have multiple boundaries. This occurs when there are 
“holes” in a component. Every component has an outer 
boundary, and those with holes have additional inner 
boundaries, one for each hole. A component’s boundaries 
must be unified before the labelling of interior dots can be 
done. The unification is achieved by having boundary 
processors scan horizontally in one direction until they 
encounter another boundary processor. If that processor 
happens to be a principal, then the next pointers of the 
two processors are swapped, effectively merging the two 
rings into one. The scanning/swapping is followed by 
another distance doubling to relabel rings that have just 
been merged. 

Phase two of the algorithm, interior dot labelling (called 
f i l l ) ,  is straightforward by comparison. Boundary 
processors simply scan horizontally in one direction, 
labelling significant pixels until another boundary is en- 
countered. The final step is to slim the dot canvas back to 
the dimensions of the original image by sampling one out 
of every quartet of dots. 

Much of the boundary following algorithm lends itself 
to efficient implementation in split and merge. The one 
operation that does not is distance doubling. which re- 
quires arbitrary patterns of memory access. This is 
handled on the Connection Machine since it provides 
global shared memory with (nearly) constant access time. 
However, the split and merge model specifically does not 
assume the existence of shared memory. 

In our implementation distance doubling is performed 
serially, in the Last section of an Adapt program. Each 
processor computes a portion of the initial input table, and 
then forwards its portion on to the Last-processing sec- 
tion. The disadvantage to this approach is obvious: inser- 
tion of a serial bottleneck in the computation. Note that 
the demand on Last-processing by the second approach is 
not serialization, but shared-memory. 

Our split and merge implementation of boundary- 
following consists of four Adapt programs, mark,  l i n k ,  
merge, and f i l l .  The first three implement phase one 
described above, and the fourth implements phase two. 

The mark  maps each input pixel into the dot canvas 
with boundary dots uniquely labelled. interior dots set to a 
sentinel value, and other (Le., insignificant) dots 0. A 
dense set of labels is assigned by taking advantage of the 
restriction that we have made on split and merge. In the 
Combine section we note in an intermediate data structure 
the number of labels assigned in each region. In the Lasf 
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section we generate a row offset vector from the inter- 
mediate data structure which is output as another 
parameter of the program. This vector is used in sub- 
sequent steps to supply an index to be added to each label. 

The l i n k  program links boundary dots into rings and 
performs a distance doubling to unify the labels in each 
ring. The input is the dot canvas and row offset vector 
from the mark  program, and a “next-dot” table which is 
used to initialize the next pointers comprising the rings. 
The initial label and next pointer of each boundary dot are 
collected into a boundary table, which is used by the Last 
section to do the doubling. 

The initial boundary table is formed by having each 
processor “forward” < l a b e l ,  next> entries 
generated during Next processing in its region on to the 
Combine section. The “forwarding” is done via an inter- 
mediate data structure. The combining step merges the 
forwarded entries into a single table, which is then passed 
to the Last section. 

The merge program links inner boundary rings to their 
outer rings, and performs a second distance doubling to 
unify the labels in each merged ring. The input is the dot 
canvas and the (once-doubled) boundary table generated 
by the l i n k  program. Rings are merged by “swapping” 
the next pointers of the principal dots of inner boundary 
rings with the dots in the outer boundary that are due west 
of them. 

The Combine and Last sections of merge are identical to 
those of Link, Le., preparing for and pcrforming a distance 
doubling. The output of the program is the (now twice- 
doubled) boundary table. 

The f i l l  program simply applies the find boundary 
table to the dot canvas, labelling both boundary and inte- 
rior dots, and slims the canvas back to the dimensions of 
the original image. A Next section which notes whether it 
is “in” or “out” of a component, and what the current 
label is if the state is “in,” is all that is requircd. 

6. Union-Find 
Union-find type algorithms make the greatest use of 

shared knowledge among processors, by assembling an 
equivalence table that potentially relates any pixel in the 
image to any othcr pixel, and then applying this table. 
This algorithm is commonly used in serial implcmen- 
tations of connected components. 

Union-find is actually more powerful than is necessary 
for computing connected components in images. Suppose 
we are processing the image row by row, and suppose that 
image component A lies on a row between two connected 
image components both labelled B. Then A cannot be 
unified with any component C that lies outside of B, 
based on information in the image above this row. This 
observation has been exploited several times [IO,  11, 121. 
However, in merging two regions, instead of a region and 
a row, any two components can be merged. So we cannot 
use this observation with the split and merge model. 
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Initial labels are assigned to pixels using the row offset 
vector method of Section 5. We assign horizontal runs 
the same label. We must next scan the image and merge 
labels between rows. We do this by creating a separate 
equivalence table for each region processed separately a 
series of application of Next. The Combine section then 
combines these tables. 

The separate equivalence tables are created by the 
u n i f y  program below: 

First Set all entries for labels in the row above the top 
row in this region to identity. 

Next If the current pixel is on, examine the pixel values 
in the three pixels above, above and to the left, and 
above and to the right of the current pixel. If any 
of these are on, perform unions as appropriate be- 
tween the label for the current pixel and the labels 
for those pixels. 

The Combine step is simplified by the observation that 
the only labels that can require merging between two 
regions are the labels in the top row of the bottom 
region - these are the only labels that are shared between 
the two regions. Other labels from the bottom region can 
be simply copied into the equivalence table for the top 
region. The Combine step therefore first copies all labels 
from the equivalence table for the bottom region into the 
equivalence table for the top region. Then, for every label 
in the top row of the bottom region, it works down the 
chain of equivalences for this label in the equivalence 
table from the bottom region and sets all these labels 
equal to the value of the label in the equivalence table for 
the top region. 

The relabel step of the uniodfind algorithm scans 
the image and assigns each pixel its value in the equiv- 
alence table. 

7. Implementations of the Split and Merge 
Model 

The Adapt language has been implemented on a variety 
of architectures; these show the range of possible im- 
plementations of the split and merge model. We now 
describe each of these implementations. 

7.1. Serial implementation 
On a serial architecture (in the experiments reported 

here, a Sun 4/330) Adapt can be implemented without use 
of the Combine section. All that is necessary is to execute 
First once, at the beginning of the image, and then ex- 
ecuted Next once for every pixel in the image, in raster 
order; finally, Lust is executed. 

7.2. Implementation on the Carnegie Mellon 

Adapt was implemented in two different ways on the 
Carnegie Mellon Warp machine [3]. This computer con- 
sists of an input host that feeds data from a large memory 
to a linear array of ten systolic processors, each of which 

Warp Machine 

can communicate only with its left and right neighbors. 
The last cell is connected to an output host which stores 
results into a large memory that is shared with the input 
host. Images are processed by feeding them in raster 
order through the array. Important limitations and ad- 
vantages arise from the characteristics of the systolic 
cells; each has high I/O bandwidth (40 MB/s) and low 
latency (200 ns) communication, but a relatively small 
data memory (32 KWords). The entire computer is 
programmed in a Pascal-level language called W2. 

The first Adapt implementation was based on the pre- 
vious implementation of Apply on Warp [13]: the Adapt 
compiler was a slightly modified version of the Apply 
compiler. The image was divided by columns, with each 
systolic cell taking a contiguous tenth of the image. For 
each row of the image, cell 0 executed the First section 
and then executed Next for each of its columns. It then 
transferred all intermediate variables to cell 1, which ex- 
ecuted Next for each of its columns, and so on. In the 
meantime, cell 0 went on to execute First and Next for the 
next row. A pipeline of processing was thus established 
with all cells working simultaneously after the tenth row 
of the image was processed. When the output reached the 
output host, it performed a Combine operation between 
the current row’s variables and the variables for the 
region above the current row. Finally, after the entire 
image had been processed, the output host performed 
Last. 

This implementation minimizes memory use on the 
cells; each must provide storage only for one-tenth of a 
row of the image and the variables used in Next; they 
need not store the variables used in Combine at all. It also 
involves the output host in the processing, and the 
Combine processing is overlapped with the Next process- 
ing on the cells. But the disadvantages of this method are 
severe. First, the First and Combine sections are executed 
once for every row in the image; if the processing in these 
sections is expensive, this can seriously add to the com- 
putational burden of the program. Second, and more sub- 
tly, all intermediate variables must be transferred from 
one cell to another after the execution of the cell’s Next’s. 
This adds VO overhead to the processing on a cell, but 
more importantly, it can actually eliminate parallelism. 
The systolic queues between cells in Warp have buffer 
space for only 512 words; if the size of the intermediate 
variables exceeds this, the sending cell blocks until the 
receiving cell has read the data. If this happens, no 
pipeline of processing will be created; instead, only a 
single cell at a time will execute its Next’s. 

In the second implementation the image was divided by 
rows, again with each cell taking a contiguous tenth. 
Each cell executed First at the first pixel in its region, and 
then Next for all pixels in its region. No 1/0 took place, 
except for the input and output of images, until the entire 
image was processed. Then cell 0 transferred its variables 
to cell 1, which executed Combine and then transferred its 
variables to cell 2, and so on. The Lust section was ex- 
ecuted on cell 9. 
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This implementation was far more efficient than the 
column-partitioned implementation. In fact, the perfor- 
mance of Adapt programs sometimes exceeded hand- 
written W2 code for the same section. A notable example 
is image histogram, which was carefully optimized in its 
handwritten implementation: for a 512x512 image, his- 
togram took 163 ms in the hand-written version but only 
119 ms in the Adapt version. 

The principal disadvantage of this method is that it re- 
quires a lot of memory on the cells. Each cell must store 
a complete row of the image, as well as two copies the 
variables used in Combine, one from the previous cell and 
one from this one. 

7.3. Implementation on the Nectar Architecture 
The Nectar architecture [4] consists of a crossbar 

switch, called a HUB, connected by fiber optics to mes- 
sage passing processors, called CABs, which share bus 
space with a host processor. In the experiments reported 
here, all of the host processors are Sun 4/330s, and the 
CABs are installed in the VME bus. 

In the Adapt implementation on Nectar, a special 
process called a master distributes the images to and col- 
lccts results from several slave processes. The master and 
slaves run on the Sun 4/330s; it is also possible to run 
processes on the CABs, but we did not do this because the 
CABs do not have hardware floating point. The master 
divides the image into a number of slices by row, and 
deals out the slices to the slaves as they request them; 
each slave gets an initial slice, executes First and Next as 
in the row-partitioned Warp implementation, and then, 
when it gets halfway through processing its slice, it sends 
a message to the master requesting more data. The master 
sends more slices to the slaves that request data. After all 
the slices have been sent to slaves, the master sends out a 
map telling each slave where all the slices are. 

The map is used by the slaves to execute their 
Combine's independently of the master. Each slave keeps 
track of the slices allocated to it. Slices are combined in a 
binary tree fashion. Each slave examines its slices, and if 
it has two slices that can be combined, it does so; if it has 
any slices for which the upper corresponding slice is on 
another slave, it sends its slice directly to that slave; and it 
receives and stores any slices intended for it. The final 
result of all of these Combine's is a set of variables on 
slave 0; this is sent to the master, which executes the Last 
section. 

This implementation takes advantage of Nectar's 
crossbar connectivity and the large memories available on 
the host processors. It uses special characteristics of 
Adapt to improve efficiency; namely, the knowledge that 
a slave has that it is halfway through processing by read- 
ing the middle row of its slice. It is also automatically 
load balancing. 

There are some problems with the current implemen- 
tation. The most significant is that the images and other 

data structures must be sent across the VME bus from the 
host processors to the CABs and back again. While the 
CAB to CAB 1/0 bandwidth is fairly high (10 MB/s), the 
usable VME bandwidth is only 1-4 MB/s. 

Another disadvantage of running on the host is that a 
Unix process must be started for each slave. This takes a 
substantial amount of time, both because of the process 
startup time and because the code for the slaves is trans- 
mitted over the Ethernet in the current prototype Nectar 
implementation. 

8. Experimental Results 
8.1. Results from Sun and Warp 

We are comparing different algorithms for the same 
problem implemented on several difcrent architectures. 
Several insights can be drawn from this. 

First, we can normalize for the different processor ar- 
chitectures by comparing the same algorithm on different 
architectures. This allows us to combine insights from 
different architectures. 

Second, we can compare the requirements the different 
algorithms make of the architecture and make general 
statements, justified by our performance observations, on 
the pcrformance of different algorithms on parallel ar- 
chitectures in general. 

Table 8-1 presents the experimental results for the serial 
and both Warp implementations of Adapt on all al- 
gorithms, for two images: one including many small 
(several pixel) regions, and the other including a few large 
(64x64) regions. 

In many cases the column-partitioned method is orders 
of magnitude slower than the row-partitioned method. 
This is because the column-partitioned method requires 
synchronization between cells at the end of processing 
every row, while the row-partitioned method 
synchronizes at the end of processing every ten rows. 
Also, the innermost loop in the column-partitioned 
method has a loop bound only one-tenth as large as the 
loop bound in the row-partitioned method, because it 
iterates over all pixels in a cell's columns, rather than all 
the pixels in a row. These factors introduce a significant 
overhead (as in i n i t ,  expand,  and r e l a b e l ) ,  which 
grows larger when there is data to be exchanged between 
cells (as in p r o p  and s h r i n k ) .  When the data struc- 
tures grow large (as in s c a n  and u n i f y )  the limited 
queue size between cells destroys parallelism, resulting in 
orders of magnitude difference between the two methods. 

When we compare the algorithms based on their perfor- 
mance and architectural requirements, we observe: 

Propagate, shrink-expand, and union-find require only 
local connections between processors. The border- 
following algorithm is the only one that requires long- 
distance communication. 
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Table 8-1: Pcrformancc of Connectcd Components 
on Sun and Warp. 

All times in seconds. Image size: 512x512. 
‘Five iterations. 

20ne hundred twenty-eight iterations. 
3 T ~ o  hundred fifty-five iterations. 

Propagate and shrink-expand require small memories at 
processors. Boundary following makes moderate 
memory requircments in our implementation. Union- 
find is the only algorithm that requires large memories. 

Shrink-expand and border-following make use of only 
very limited processor facilities; they do not manipulate 
large integers or do any complex calculations. 
Propagate uses large integer comparisons, and union- 
find makes use of several different complex processor 
features, including local addressing. 

The execution times of propagate and shrink-expand 
depend linearly on the size of the regions in the image. 
Border-following and union-find are both largely inde- 
pendent of the region size. 

Propagate, shrink-expand, and border-following can all 
be implemented on very large processor arrays. 
Propagate and shrink-expand are entirely local in their 
action (except in the calculation of when to stop repeat- 
ing), while border-following’s global calculations can 
be done in parallel, given long-distance communication. 
Union-find can only be implemented on relatively small 
processor arrays, because in its second step it creates a 
single data structure (the equivalence table). The over- 
head for creating this table increases with the number of 
processors. 

The last observation on union-find can be quantificd by 
observing the variation in execution time with the number 
of proccssors in the unify stcp. The timc can be ap- 
proximated by r=i+x/n+cx(n-1), where t is the total ex- 
ecution time, i is the overhead independent of numbcr of 
cells (mainly due to I/O of the images to and from the 
Warp array), x is the exccution timc on a single cell, c is 
the time for a Combine operation, and n is the numbcr of 
cells. With this model and data from runing u n i f y  with 
different numbers of cells in the Warp array, we obtain 
i=161 ms , ~ 2 . 7 6  s ,  and c=lO.O ms. Givcn these numbcrs 
and different Adapt implementation methods on onc- 
dimensional, two-dimensional, and binary tree-connccted 
processor arrays, we can calculate the maximum number 
of cells that can be applied to the union-find algorithm: 
these are 17, 42, and 190 for one-dimensional, two- 
dimensional, and binary tree-connected arrays, respec- 
tively. We can also calculate the most cost-effective array 
size [14]: these are 10, 17, and 34, respectively. In other 
words, the maximum array size is limitcd to a few tens of 
cells, regardlcss of the method of implcmcntation of 
Adapt. 

By comparison, the maximum array size for propagatc, 
shrink-expand, and bordcr-following is much 
larger - perhaps as large as one processor pcr pixcl, 
depending on the details of the architecture. So we might 
expect that these algorithms potentially offer much better 
speedup than union-find. However, a cost-benefits 
analysis based on the Sun 4 execution times sheds doubt 
on this for propagate and shrink-expand. These al- 
gorithms are much slower than union-find; assuming a 
maximum region size of 128 pixels, propagate is 38.6 
times slower and shrinldexpand is 227 times slower. In 
order for the performance of these algorithms to exceed 
the performance of union-find, the processor array would 
have to be this much larger in ordcr to make up for the 
lost performance: a 17-processor union-find array versus 
a 656 processor array for propagate, or a 3860 processor 
array for shrink-expand. Now, the chief advantage of 
these algorithms when compared with union-find is that 
they require much smallcr per-processor memories than 
union-find; requiring much larger processor arrays adds 
additional cost. As a result, a the union-find algorilhm is 
much more likely to be cost-effective than the other al- 
gorithms, except when very large processor arrays must 
be used. 

The border-following algorithm is only 8.08 times 
slower on the Sun 4 than union-find: a 17-processor 
union-find array is equivalent to a 137-processor border- 
following array. As with propagate and shrink-expand, 
the border-following algorithm requires much less per- 
processor memory than union-find. This suggests that 
border-following may be a reasonable alternative to 
union-find on processor arrays of hundreds of processors 
or more. If such an array is organized as a mesh, and the 
image is divided into blocks (so that each processor takes 
a rectangle of pixels, with adjacent processor taking ad- 



jacent rectangles) then in almost all cases the communica- 
tion paths formed in the link step of border-following will 
be short, and will not actually require hardware im- 
plementation of a general-purpose switch as in the Con- 
ncction Machine implementation of union-find. 

We conclude the following: 
0 For small to medium-sized processor arrays (tens of 

processors) union-find is the best algorithm. It has SU- 
pcrior performance overall. In such arrays, it is impor- 
tant not to allocate too many processing nodes to the 
merge step; the best number depends on how the 
Combine step is implemented, and ranges from ten to a 
few dozen. 

On medium-sized arrays (hundreds of processors), the 
border-following algorithm is preferable. It makes 
smaller memory requirements and offers better perfor- 
mance than propagate or shrink-expand. Union-find is 
not feasible on such large arrays. 

0 On large mesh arrays (thousands of processors or more) 
propagate or shrink-expand is the choice. These al- 
gorithms make almost no use of global operations, and 
depend on local interprocessor communication only. 
The choice between the two is to be made based on the 
availability of fast bit-serial operations; if a speedup of 
six or more is available from such operations, then 
shrink-expand is likely to be faster than propagate. 
Note that this observation applies to the Connection 
Machine, which offers a general-purpose switch com- 
munication mechanism as well as mesh communication; 
local scan operations make it possible to implement 
propagate much more efficiently than 
border-following [15]. 

The border-following algorithm is the only algorithm 
presented here that does not fit the split and merge 
model, as a result of the distance-doubling step. 

8.2. Results from Nectar 
Even with the automatic load balancing done by the 

Nectar compiler, and excluding slave startup time from 
the measurements, the Nectar data exhibits a great deal of 
variability from run to run. A typical performance curve 
is shown in Figure 8-1. This figure shows a number of 
oulliers in different runs: the actual execution time of the 
s h r i n k  program with four slave nodes is typically about 
730 ms, but times up to 2 s are not uncommon, and a time 
of over 4 s was recorded. 

We have therefore used a combination of outlier rejec- 
tion and Monte Carlo analysis to analyze this data. Out- 
liers are rejected by sorting the data for each number of 
slaves, and starting with a small number of the smallest 
execution times, incrementally add execution times until 
the variance is observed to increase rapidly. All larger 
exection times are then rejected. 

Monte Carlo analysis is used by fitting a simple model 
to data with the same mean and variance as the actual 
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Figure 8-1: Nectar Execution Times for One Iteration 

data, and then predicting execution times with each num- 
ber of slaves. This gives a predicted mean and variance 
of execution times as shown in Figure 8-1. 

This analysis is not complete: it observably does not 
account for all aspects of the Nectar data. But we can use 
it to characterize the current Nectar implementation. 

Overall, the current Nectar implementation of Adapt 
does not compare favorably with the Sun implementation, 
which used just one Sun 4/330 (as opposed to Nectar's 
Sun 41330 master and Sun 41330 slave nodes). the fun- 
damental reason for the loss of performance is uansfer- 
ring images over the VME bus between the Sun memory 
and the NeCtar CAB for transmission to the slave nodes. 

For example, in the data in Figure 8-1 the best execution 
time, with three slave nodes, is about 680 ms. The execu- 
tion time of one iteration of shrink on the Sun 4/330 
(Table 8-1) was about 660 ms. In each execution of the 
shrink opcration, 0.5 MB of data is transferred over the 
VME bus: a transfer rate of about 740 KB/s was achieved. 
This is near the maximum transfer rate of the VME bus 
under Sun programmed I/O. Only a higher speed inter- 
face, such as HIPPI, to Nectar will improve these results. 

We also observed an interesting behavior related to our 
implementation of the Combine section on Ncctar. The 
relevant data is shown in Figure 8-2. Note the "bump" 
with two slave nodes. We believe this bump is due, at 
least in part, to the simple method we have chosen for 
allocation of slices to slaves. In a system with low overall 
load, the slices will be dealt alternately to slaves; thus, all 
even-numbered slices end up in slave 0, and all odd- 
numbered slices in slave 1. During the Combine step, 
slave 1 will send all of its slices to slave 0, which will 
then to all of the Combine operations; slave 1 will be 
completely idle. This and the overhead of having to do 
more Combine operations help create the bump. Clearly, 
random assignment of slices or some other technique that 
helps to balance load during the Combine phase is needed. 

The Adapt Nectar implementation is still in an early 
phase. We expect that further refinement of the im- 
plementation and the addition of new hardware to Nectar 
(including a HIPPI interface expected for 1991) will sub- 
stantially improve the performance of Adapt here. 
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9. Summary 
We have demonstrated that it is possible to implement 

an architecture-independent programming language for 
global image processing operations on a variety of com- 
puter architectures. 

We have shown how various parallcl connected com- 
ponents algorithms can be implemented with a common 
programming model. Only the border-following algo- 
rithm, which manages a large distributed data structure 
through a general-purpose switch, does not fit the model. 

We have shown how different architectures and al- 
gorithms can be compared fairly through the usc of such 
an architecture-independent language. 
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