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Abstract
Parallel reconfigurable mesh algorithms are developed for the following image processing prob-
lems: shrinking, expanding, clustering, and template matching. Our N×N reconfigurable mesh
algorithm for the q-step shrinking and expansion of a binary image takes O (1) time. One pass of
the clustering algorithm for N patterns and K centers can be done in O (MK  + KlogN),
O (KlogNM ), and O (M  + logNMK ) time using N, NM, and NMK processors, respectively. For
template matching using an M×M template and an N×N image, our algorithms run in O (M 2)
time when N 2 processors are available and in O (M) time when N 2M 2 processors are available.
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1 Introduction

Miller, Prasanna Kumar, Resis and Stout [MILL88abc] have proposed a variant of a mesh con-

nected parallel computer. This variant, called a reconfigurable mesh with buses (RMESH),

employs a reconfigurable bus to connect together all processors. Figure 1 shows a 4×4 RMESH.

By opening some of the switches, the bus may be reconfigured into smaller buses that connect

only a subset of the processors.

_______________________________________________________________________________
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Figure 1 4×4 RMESH

________________________________________________________________________

The important features of an RMESH are [MILL88abc]:

1 An N×M RMESH is a 2-dimensional mesh connected array of processing elements (PEs).

Each PE in the RMESH is connected to a broadcast bus which is itself constructed as an

N×M grid. The PEs are connected to the bus at the intersections of the grid. Each processor

has up to four bus switches (Figure 1) that are software controlled and that can be used to

reconfigure the bus into subbuses. The ID of each PE is a pair (i, j) where i is the row index
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and j is the column index. The ID of the upper left corner PE is (0,0) and that of the lower

right one is (N −1,M −1).

2 The up to four switches associated with a PE are labeled E (east), W (west), S (south) and

N (north). Notice that the east (west, north, south) switch of a PE is also the west (east,

south, north) switch of the PE (if any) on its right (left, top, bottom). Two PEs can simul-

taneously set (connect, close) or unset (disconnect, open) a particular switch as long as the

settings do not conflict. The broadcast bus can be subdivided into subbuses by opening

(disconnecting) some of the switches.

3 Only one processor can put data onto a given sub bus at any time

4 In unit time, data put on a subbus can be read by every PE connected to it. If a PE is to

broadcast a value in register I to all of the PEs on its subbus, then it uses the command

broadcast(I).

5 To read the content of the broadcast bus into a register R the statement R := content(bus) is

used.

6 Row buses are formed if each processor disconnects (opens) its S switch and connects

(closes) its E switch. Column buses are formed by disconnecting the E switches and con-

necting the S switches.

7 Diagonalize a row (column) of elements is a command to move the specific row (column)

elements to the diagonal position of a specified window which contains that row (column).

This is illustrated in Figure 2.

In this paper we develop RMESH algorithms for some image processing problems. The

specific problems we consider are: shrinking and expanding (Section 3), clustering (Section 4),

and template matching (Section 5). In Section 2, we develop some basic data manipulation algo-

rithms for the RMESH. These are used in subsequent sections to obtain the image processing

algorithms.

2 Basic Data Manipulation Operations

In this section we define several data manipulation algorithms for RMESH multicomputers.

These are used in later sections to develop algorithms for the image processing applications we

consider.
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Figure 2 Diagonalize 4th row or 1st column elements of a 5×5 window

_______________________________________________________________________________

2.1 Window Broadcast

The data to be broadcast is initially in the A variable of the PEs in the top left w×w submesh.

These PEs have ID (0,0) .. (w −1,w −1). The data is to tile the whole mesh in such a way

A (i, j) = A (i mod w, j mod w) (A (i, j) denotes variable A of PE (i, j)). The algorithm for this is

given in Figure 3. Its complexity is O (w) and is independent of the size of the RMESH.

2.2 Data Sum

Initially, each PE of the N×N RMESH has an A value. Each PE is to sum up the A values of all

the N 2 PEs and put the result in its B variable. I.e., following the data sum operation we have :

B (i, j) = 
k =0
Σ

N −1

l =0
Σ

N −1
A (k,l),   0 ≤ i, j < N

This can be done in O (logN) time by first performing a prefix sum [MILL88] and then having PE

(N −1,N −1) broadcast Sum (N −1,N −1) to the remaining PEs in the RMESH. For this, all

switches can be closed.
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_______________________________________________________________________________

procedure WindowBroadcast(A,w);

{ broadcast the A values in the upper left w×w submesh }

begin

for j := 0 to w −1 do { broadcast column j of the submesh }

begin

diagonalize the A variables in column j of the w×w submesh so that

B (i,i) = A (i, j), 0 ≤ i < w;

set switches to form column buses;

PE (i,i) broadcasts its B value on column bus i, 0 ≤ i < w;

B (k,k mod w) := content (bus), 0 ≤ k < N;

set switches to form row buses;

PE (k,k mod w) broadcasts its B value on its row bus, 0 ≤ k < N;

A (k,i) := content(bus) for i mod w = j, and 0 ≤ k < N;

end;

end;

Figure 3 Window broadcast

_______________________________________________________________________________

2.3 Shift

Each PE has data in its A variable that is to be shifted to the B variable of a processor that is s, s >

0, units to the right but on the same row. Following the shift, we have

B (i, j) = 

�
� �
A (i, j −s),
null    j ≥ s

j < s

A circular shift variant of the above shift requires

B (i, j) = A (i,  (j −s) mod N)

Let us examine the first variant first. This can be done in O (s) time by dividing the send

and receive processor pairs ((i,  j −s), (i, j)) into s+1 equivalence classes as below:
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class  k  = {((i, j −s), (i, j)) �  (j −s) mod (s +1) = k}

The send and receive pairs in each class can be connected by disjoint buses and so we can

accomplish the shift of the data in the send processors of each class in O (1) time. In O (s) time

all the classes can be handled. The algorithm is given in Figure 4. The number of broadcasts is

s +1. The procedure is easily extended to handle the case of left shifts. Assume that s < 0

denotes a left shift by s units on the same row. This can also be done with s +1 broadcasts.

_______________________________________________________________________________

procedure Shift (s,A,B)

{ Shift from A (i, j) to B (i, j +s), s > 0 }

begin

All PEs disconnect their N and S switches;

for k := 0 to s do { shift class k }

begin

PE (i, j) disconnects its E switch if (j −s) mod (s +1) = k;

PE (i, j) disconnects its W switch and broadcasts

A (i, j) if j mod (s +1) = k;

B (i, j) := content(bus) for every PE (i, j) with (j −s) mod (s +1) = k;

end;

end;

Figure 4 Shifting by s,s > 0

_______________________________________________________________________________

A circular shift of s can be done in O (s) time by first performing an ordinary shift of s and

then shifting A (i,N −s),...,A (i,N −1) left by N−s. The latter shift can be done by first shifting

A (i,N −s), then A (i,N −s +1),..., and finally A (i,N −1). The exact number of broadcasts is 2s +1.

Circular shifts of s,  s > N/2 can be accomplished more efficiently by performing a shift of

−(N−s) instead. For s ≤ N/2, we observe that data from PEs (i, 0), (i, 1),  . . .  (i,s −1) need to be

sent to PEs (i,s), (i,s +1),  . . . ., (i, 2s−1), resepectively. So, by limiting the data movement to

within rows, s pieces of data need to use the bus segment between PE (i,s −1) and (i,s). This
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takes O (s) time. If only the data on one row of the N×N RMESH is to be shifted, the shifting can

be done in O (1) time by using each row to shift one of the elements. The circular shift operation

can be extended to shift in 1×W row windows or W×1 column windows. Let RowCircularShift

(A,s,W) and ColumnCircularShift (A,s,W), respectively, be procedures that shift the A values by

s units in windows of size 1×W and W×1. Let A in and A f , respectively, denote the initial and

final values of A. Then, for ColumnCircularShift we have

A in(i, j) = A f(q, j)

where PEs (i, j) and (q, j) are, respectively, the a = i mod W’th and b = q mod W’th PEs in the

same W×1 column window and b = (a −s) mod W. The strategy of Figure 4 is easily extended so

that RowCircularShift and ColumnCircularShift are done using 2s + 1 broadcasts.

2.4 Data Accumulation

In this operation PE (i, j) initially has a value I (i, j),  0 ≤ i, j < N. Each PE is required to accumu-

late M I values in its array A as specified below:

A [q ](i, j) = I (i, (j  + q) mod M)

This can be done using 2M  − 1 broadcasts. The algorithm is given in Figure 5.

2.5 Consecutive Sum

Assume that an N×N RMESH is tiled by 1×M blocks (M divides N) in a natural manner with no

blocks overlapping. So, processor (i, j) is the j mod M’th processor in its block. Each processor

(i, j) of the RMESH has an array X [0..M −1](i, j) of values. If j mod M  = q, then PE (i, j) is to

compute S (i, j) such that

S (i, j) = 
r =0
Σ

M −1
X [q ](i, (j div  M) ∗ M  + r)

That is, the q’th processor in each block sums the q’th X value of the processors in its block. The

consecutive sum operation is performed by having each PE in a 1×M block initiate a token that

will accumulate the desired sum for the processor to its right and in its block. More specifically,

the token generated by the q’th PE in a block will compute the sum for the (q +1) mod M’th PE in

the block, 0 ≤ q < M. The tokens are shifted left circularly within their 1×M block until each

token has visited each PE in its block and arrived at its destination PE. The algorithm is given in
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_______________________________________________________________________________

procedure Accumulate (A,I,M)

{ each PE accumulates in A, the next M I values }

PE (i, j) disconnects its S switch and connects its W switch, 0 ≤ i, j < N;

begin

{accumulate from the right}

for k := 0 to M −1 do

begin

{PEs (i, j) with j mod M = k broadcast to PEs

on their left that need their I value}

PE (i, j) disconnects its E switch if j mod M = k

and then broadcasts I (i, j);

A [(k +M −(j mod M)) mod M ](i, j) := content(bus);

end;

{accumulate from the left}

Each PE (i, j) disconnects its S switch and connects its W switch, 0 ≤ i, j < N;

for k := 0 to M −2 do

begin

PE (i,k) broadcasts I (i,k), 0 ≤ i < N;

A [q +k ](i,N −q) := content(bus), 1 ≤ q < M −k;

end;

end;

Figure 5 Data accumulation

_______________________________________________________________________________

Figure 6. The number of broadcasts is 3M −3 as each row circular shift of -1 takes 3 broadcasts.



-- --

9

_______________________________________________________________________________

procedure ConsecutiveSum (X,S,M);

{ Consecutive Sum of X in 1×M blocks }

begin

S (i, j) := X [((j mod M)+1) mod M ](i, j), 0 ≤ i, j < N ;

for k := 2 to M do

begin

{circularly shift S in 1×M blocks and add terms }

RowCircularShift (S, M,-1)

S (i, j) := S (i, j) + X [((j mod M)+k) mod M ](i, j),0 ≤ i, j < N;

end;

end;

Figure 6 Consecutive sums in 1×M blocks

_______________________________________________________________________________

2.6 Adjacent Sum

We consider two forms of this operation: row adjacent sum and column adjacent sum. In each,

PE (i, j) begins with an array X [0..M −1](i, j) of values. In a row adjacent sum, PE (i, j) is to com-

pute

S (i, j) = 
q =0
Σ

M −1
X [q ](i, (j +q) mod N),  0 ≤ i, j < N

While in a column adjacent sum it is to compute

S (i, j) = 
q =0
Σ

M −1
X [q ]((i +q) mod N, j),  0 ≤ i, j  < N

Since the algorithms for both are similar, we discuss only the one for row adjacent sum. The

strategy is similar to that for consecutive sum. Each processor initiates a token that will accumu-

late the desired sum for the processor that is M −1 units to its left. That is PE (i, j) initiates the
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token that will eventually have the desired value of S (i, (N +j −M +1) mod N), 0 ≤ i, j < N. The

tokens are shifted left circulary 1 processor at a time until they reach their destination PE. The

details of the algorithm are given in Figure 7. As each circular shift by -1 requires 3 broadcasts,

the algorithm of Figure 7 requires 3(M −1) broadcasts.

_______________________________________________________________________________

procedure RowAdjacentSum (S,X,M);

begin

S (i, j) := X (i, j)[M −1];

for k := M −2 down to 0 do

begin

RowCircularShift (S,N,−1);

S (i, j) := S (i, j) + X [k ](i, j);

end;

end;

Figure 7 Row adjacent Sum

_______________________________________________________________________________

3 Shrinking And Expanding

Let I [0..N −1,0..N −1] be an N×N image. The neighborhood of the pixel [i,j] is the set of pixels

nbd (i, j) = {[u,v ] �  0 ≤u,v < N,  max{ � u −i � , � v −j �  } ≤ 1}

The q-step shrinking of I is defined in [ROSE82] and [ROSE87] to be the N×N image S q such

that

S 1[i, j ] = 
(u,v) ∈ nbd (i, j)

min  { I [u,v ]}, 0 ≤ i < N, 0 ≤ j < N

S q[i, j ] = 
(u,v) ∈ nbd (i, j)

min  { S q −1[u,v ]}, q > 1, 0 ≤ i < N,  0 ≤ j < N

The q-step expansion of I is similarly defined to be the N×N image Eq where

E1[i, j ] = 
(u,v) ∈ nbd (i, j)

max  { I [u,v ] }, 0 ≤ i < N,  0 ≤ j  < N
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Eq[i, j ] = 
(u,v) ∈ nbd (i, j)

max  { Eq −1[u,v ]}, q > 1, 0 ≤ i < N,  0 ≤ j < N

When the image is binary the max and min operators used above may be replaced by the

logical or and and operators, respectively. Rosenfeld [ROSE87] present an algorithm for the

pyramid computer which computes S 2k−1 and E2k−1 at coarsely resampled points in O (k) time.

The complexity is valid for both binary and gray scale images. For unresampled binary image

expanding and shrinking in one dimension he developed an O (k 2) algorithm to compute S 2k−1

and E2k−1. The generalization to two dimensions results in a complexity of O (2k). Ranka and

Sahni [RANK89] show how S 2k−1 and E2k−1 may be computed in O (k) time on an N 2 PE SIMD

hypercube. Their algorithms apply to both binary and gray scale images. Eq and S q are easily

computed in O (q) time on an N×N mesh connected computer. In this section we develop an

algorithm to compute Eq in O (1) time on an N×N RMESH. Our algorithm is for the case of a

binary image. S q, for binary images, can be similarly computed in O (1) time.

Let B2q +1[i, j ] represent the block of pixels:

{[u,v ] �  0 ≤ u,v < N,  max { � u −i � , � v −j �  } ≤ q}}

So, nbd (i, j) = B3[i, j ]. Rosenfeld [ROSE87] has shown that

Eq[i, j ] = 
[u,v ]∈B2q +1[i, j ]

max {I [u,v ]}, 0 ≤ i, j < N

From this it follows that

Eq[i, j ] = 
[u, j ]∈B2q +1[i, j ]

max {Rq[u, j ]} ,0 ≤ i, j < N

where

Rq[u, j ] = 
[u,v ]∈B2q +1[i, j ]

max {I [u,v ]} ,0 ≤ u, j < N

= max { I [u,v ] �  � j −v �  ≤ q }, 0 ≤ u, j < N

The computation of Rq may be decomposed into subcomputations as below:

leftq[u, j ] = max{I [u,v ] �  0 ≤ j −v ≤ q}

rightq[u, j ] = max{I [u,v ] �  0 ≤v −j ≤q}

Rq[u, j ] = max{leftq[u, j ], rightq[u, j ]}
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Similarly we may decompose the computation of Eq from Rq as below:

top q[i, j ] = max{Rq[u, j ] �  0 ≤i −u ≤ q}

bottom q[i, j ] = max{Rq[u, j ] �  0 ≤u −i ≤ q}

Eq[i, j ] = max{top q[i, j ], bottom q[i, j ]}

The steps involved in computing Rq for a binary image I are given in Figure 8. The com-

plexity is readily seen to be O (1). Eq is similary computed from Rq in O (1) time. The algo-

rithm of Figure 8 assumes that all switches are initially connected and that if a processor reads a

bus and finds no value, the value ∞ is used.

4 Clustering

The input to the clustering problem is an N×M feature matrix F [0..N −1, 0..M −1]. Row i of F

defines the feature vector for pattern i. Thus there are N patterns represented in F. Each column

of F corresponds to a pattern attribute. Thus, M is the number of pattern attributes. The objec-

tive of clustering is to partition the N patterns into K sets S 0,S 1, . . . ,SK −1. Each Si is called a

cluster. Different methods to cluster have been proposed in [BALL85], [DUDA73], [FUKU72],

[FU74], [ROSE82], and [TOU74]. Here, we consider the popular squared error clustering tech-

nique. In this we begin with an initial (possibly random) partitioning (i.e. clusters) of the patterns

and iteratively improve the clusters as described below.

The center of cluster Si is a 1×M vector which gives the average of the attribute values for

the members of this cluster. The centers of the K clusters may be represented by a K×M matrix

C [0..K −1, 0..M −1] where C [i,* ] is the center of the i’th cluster Si and

C [i, j ] = � Si �
1_____

q∈Si

Σ F [q, j ], 0 ≤ i < K,  0 ≤ j  < M

The squared distance, d 2[i,k ], between pattern i and cluster k is defined to be the quantity

d 2[i,k ] = 
q =0
Σ

M −1
(F [i,q ] − C [k,q ])2

One pass of the iterative cluster improvement process is given in Figure 9.

The serial complexity of one pass of the iterative cluster improvement algorithm is readily

seen to be O (NMK). Parallel algorithms for this have been developed by several researchers.
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_______________________________________________________________________________

{ Compute Rq[i, j ] in variable R of PE [i, j ] }

{ Assume that I (i, j) = I [i, j ] initially }

Step 1 {Compute leftq[i, j ] in variable left of PE (i, j) }

{Find nearest 1 on the left }

PE (i, j) disconnects its N and S switches

if I (i, j) = 1 then PE (i, j) disconnects its W switch

and broadcasts j on its bus

Step 2 PE (i, j) reads its bus and puts the value read in its T variable

if j −T (i, j) ≤ q then left(i,j) = 1

else left(i,j) = 0

Step 3 {Compute rightq[i, j ] by finding nearest 1 on right }

PE (i, j) connects its E and W switches.

if I (i, j) = 1 then PE (i, j) disconnects its

E switch and broadcasts j on its bus

{Note that N and S switches are disconnected from Step 1 }

Step 4 PE (i, j) reads its bus and puts the value read in its T variable

if T (i, j) − j ≤ q then right(i,j) = 1

else right(i,j) = 0

Step 5 {Compute R}

R (i, j) := left(i, j) or right(i, j)

Figure 8 Computing R for a binary image

_______________________________________________________________________________

Hwang and Kim [HWAN87] have developed an algorithm for a multiprocessor with orthogonally

shared memory; Ni and Jain [NI85] have proposed a systolic array; Li and Fang [LI86] have

developed an O (KlogNM ) algorithm for an SIMD hypercube with NM processors; and Ranka

and Sahni [RANK88a] have developed an O (K  + logNMK ) algorithm for an SIMD hypercube

with NM processors as well as an O (logNMK ) algorithm for an SIMD hypercube with NMK
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_______________________________________________________________________________

Step 1 [ Cluster reassignment ]

Newcluster [i ] := j such that d 2[i, j ] =
0 ≤ q < k

min {d 2[i,q ]}, 0 ≤ i < N

[ In case of a tie pick the least j ]

Step 2 [ Termination and update ]

if NewCluster [i ] = OldCluster [i ], 0 ≤ i < N then terminate

else OldCluster [i ] = NewCluster [i ], 0 ≤ i < N

Step 3 [ Update cluster centers ]

Compute C [*,* ] based on the new clusters

Figure 9 One pass of the iterative cluster improvement algorithm

_______________________________________________________________________________

processors.

In this section we develop clustering algorithms for an RMESH. We consider RMESH’s

with, respectively, N, NM, and NMK processors. The time complexity of these algorithms is,

respectively, O (MK  + KlogN), O (KlogMN ), and O (M  + logNMK )

4.1 NN Processors

We assume that the N processor RMESH is configured as a √���N ×√���N array. Initially each proces-

sor contains one row of the feature matrix and the K cluster centers are stored one per processor.

For definiteness, assume that F [q ](i, j) = F [i√���N  + j,  q ], 0 ≤ i, j < √���N , 0 ≤ q < M (note that

F [q ](i, j) denotes the q’th entry in the array F in processor (i, j) of the RMESH array of proces-

sors and F [r,s ] denotes an entry in the feature matrix F); C [q ](i, j) = C [i √���N  + j, q ],

0 ≤ i√���N  + j < K, 0 ≤ q < M. The computation of the new cluster assignments (step 1 of Figure

9) can be done as in Figure 10.

In iteration q of the for loop the PE that contains cluster center q broadcasts it to all

RMESH PEs. Following this, each PE computes the squared distance between this center and

the pattern it contains. If this squared distance is smaller than the least squared distance com-

puted so far for this pattern then cluster q becomes the candidate for the new cluster assignment
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_______________________________________________________________________________

D 2(i, j) := ∞, 0 ≤ i, j < √
���

N

for q := 0 to K −1 do

begin

PE (i, j), i √
���

N + j = q broadcasts C [* ](i, j) (i.e., cluster center q) to all PEs;

Every PE (a,b) reads the broadcast cluster center into its array

A [* ](a,b) and then computes

X (a,b) :=
s =0
Σ

M −1
(F [s ](a,b) − A [s ](a,b))2

if X (a,b) < D 2(a,b) then

[ NewCluster (a,b) := q ; D 2(a,b) := X (a,b)];

end;

Figure 10 N processor RMESH algorithm for cluster reassignment

_______________________________________________________________________________

of

this pattern. The correctness of Figure 10 is easily established. Each iteration of the for loop

takes O (M) time as the center broadcast involves the transmission of M values over a bus that

includes all N processors and the computation of the squared distance involves O (M) arithemetic

per processor. The overall time for Figure 10 is therefore O (MK). Step 2 of Figure 9 can be

done in O (1) time as in Figure 11.

The new cluster centers are computed one cluster at a time. To compute the new center of

cluster i we need to sum, componentwise, the feature vectors of all patterns in cluster i and divide

by the number of such patterns. The number of patterns in cluster i can be determined by having

each PE set its A variable to 1 if its pattern is in this cluster and 0 if it isn’t. Then the data sum

operation of Section 2.2 can be used to sum up the A’s in O (logN) time. Let us therefore concen-

trate on computing the sum of the feature vectors of the patterns in cluster i. For this, we con-

sider two cases M  ≥ √
���

N and M  < √
���

N .

If M  ≥ √
���

N , the algorithm of Figure 13 is used. Steps 1 through 3 sum the feature vectors in
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_______________________________________________________________________________

Step 1 if NewCluster (a,b) = OldCluster (a,b)

then mark (a,b) := false

else [mark (a,b) := true,

OldCluster (a,b) := NewCluster (a,b)]

0 ≤ a,b < √
���

N

Step 2 PEs (i, 0) for i even disconnect their S switch

PEs (i, √
���

N −1) for i odd disconnect their S switch

PEs (i, j) for j ∈/ {0,√
���

N −1} disconnect their S switch

This results in the bus of Figure 12

Step 3 if mark (i, j) then PE (i, j) disconnects its W switch in case i is odd

and its E switch in case i is even, 0 ≤ i, j < √
���

N

{Following this the bus of Figure 12 extends only up to

the first PE on the bus with mark (i, j) = true}

Step 4 if mark (i, j) then PE (i, j) broadcasts 1 on its bus;

PE [0,0] reads its bus;

if a 1 is not read then PE (0,0) terminates the program;

Figure 11 N processor RMESH algorithm to update cluster assignments and terminate if

necessary

_______________________________________________________________________________

cluster i along the rows of the RMESH. This sum is eventually stored in the column 0 proces-

sors. The strategy employed is quite similar to that used in Section 2.5 to compute consecutive

sums. Step 4 then sums these sums and step 5 sends the overall sum to PE (0,0). Each step of

Figure 13 other than step 2 takes O (M) time. Step 2 takes O (1) time. So, the overall complexity

is O (M).

If M  < √
���

N , tile the √
���

N ×√
���

N RMESH with 1×M squares. Figure 14(a) shows the tiling for

the case when M divides √
���

N and Figure 14(b) shows it for the case when M does not divide √
���

N ,

*’s denote partial tiles. Consider, first, the case when M divides √
���

N . Now the feature vector

sums can be computed using the algorithm of Figure 15. The algorithm is itself explanatory.

Steps 1 and 6 each take O (M) time, steps 2 and 5 each take O (logN) time; and steps 3 and 4 each
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Figure 12 Bus resulting from switch setting of step 2 of Figure 11

_______________________________________________________________________________

take O (1) time. The overall complexity of the algorithm of Figure 15 is therefore O (M  + logN)

When M  < √
���

N and M doesn’t divide √
���

N , the last two blocks of each row can be considered

as a single block of length at most 2M−1 (i.e., the *’d block in each row of Figure 14(b) is com-

bined with the 1×M block immediately to its left). The algorithm is essentially that of Figure 15

except that the consecutive sum operation (step 1) is modified to handle the larger block at the

end of each row. This modification still takes O (M) time. Further, the right most √
���

N  mod M

columns of the RMESH are not involved in steps 2 through 6. The complexity remains

O (M  + logN).

O (M  + logN) time suffices to compute each cluster center. To compute all K of them takes

O (MK  + KlogN) time. Since cluster reassignment and update take O (MK) and O (1) time,

respectively, the time for one pass of the iterative cluster improvement algorithm is

O (MK  + KlogN) on an RMESH with N PEs.

4.2 NMNM processors

The NM processor RMESH is assumed to be configured as an N×M array of processors. Initially,

F (i, j) = F [i, j ], 0 ≤ i  < N, 0 ≤ j < M and C (i, j) = C [i, j ], 0 ≤ i < K, 0 ≤ j < M. The algorithm to

obtain the new cluster assignments is given in Figure 16. Summing the E values takes O (logM)

time. The remaining steps each take O (1) time. The overall complexity is therefore O (KlogM ).

Step 2 of Figure 9 (i.e., terminate and update) is easily done in O (1) time. The cluster

centers may be updated in O (KlogN) time using the algorithm of Figure 17. The overall
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Step 1 PE (q, 0) initiates M tokens of type 1 one at a time.

These tokens travel along row q of the RMESH in a pipelined manner.

The j’th token accumulates the sum of the j’th feature value of all

patterns in row q that are in cluster i, 0 ≤ q < √
���

N .

Step 2 Set up row buses.

Step 3 PE (q, √
���

N −1) broadcasts the tokens back to PE (q, 0).

Step 4 PE (0,0) initiates M tokens of type 2 one at a time.

These travel along column 0 of the RMESH.

The j’th token of type 2 accumulates the sum of the j’th token of

type 1 in each of the column 0 processors.

Step 5 PE (√
���

N −1,0) broadcasts the M type 2 tokens it has received

to PE (a,b), a√
���

N +b = i.

Figure 13 Computing the feature vector sum for cluster i

_______________________________________________________________________________

complexity of one pass of the iterative cluster improvement algorithm is therefore O (KlogMN )

on an NM processor RMESH.

4.3 NMKNMK processors

The RMESH is configured as an N×MK array of processors with F (i, j) = F [i, j ],

0 ≤ i < N,  0 ≤ j < M and C (0, j) = C [j  div  M,  j mod M ], 0 ≤ j  < KM initially. Our RMESH

algorithm for cluster reassignment (Figure 18) begins by making K copies of the feature matrix.

This can be done using M broadcasts on row buses. The remainder of the alogrithm takes

O (logMK ) time. Hence the complexity of the algorithm of Figure 18 is O (M  + logMK). Step 2

of Figure 9 is easily done in O (1) time.

The new cluster centers can be computed in O (logN) time by summing the feature values

in each cluster and dividing by the number of patterns in the cluster. Column j of the RMESH is

used to compute C [j div  M, j mod M ]. The complexity of one pass of the iterative improvement
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Figure 14 Tiling a √
���

N ×√
���

N RMESH with 1×M tiles

_______________________________________________________________________________

algorithm is therefore O (M  + logNMK ) when NMK processors are available.

5 Template Matching

In this section we develop RMESH algorithms for the image template matching problem. The

inputs are an N×N image matrix I [0..N −1, 0..N −1] and an M×M template matrix

T [0..M −1, 0..M −1]. The ouput is the two dimensional convolution, C2D, of I and T which is

defined as:

C 2D [i, j ] = 
u =0
Σ

M −1

v =0
Σ

M −1
I[(i +u) mod N,(j+v) mod N]∗T[u,v ], 0 ≤ i, j  < N

The serial complexity of computing C2D is O (N 2M 2). Parallel algorithms for a variety of

multiprocessor architectures have been developed. Chang et al. [CHAN87] have developed an

O (M 2 + logN) algorithm for a pyramid computer with N 2 processors at its base. Ranka and

Sahni [RANK88b] have developed an O (M 2) algorithm for an N 2 processor mesh connected

computer. Maresca and Li [MARE86] and Lee and Agarwal [LEE86] also develop mesh algo-

rithms. Hypercube algorithms have been developed by Fang, Li and Ni [FANG85], Prassanna

Kumar and Krishnan [PRAS87], and Ranka and Sahni [RANK88bcd]. The SIMD hypercube

algorithm of [RANK88c] uses N 2 processors and has complexity O (M 2 + logN) and the MIMD
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Step 1 The consecutive sum operation of Section 2.5 is used in each

1×M block of PEs . The data is the feature vectors

in the block that correspond to patterns in cluster i.

The result is stored in each PE’s A variable. So, the PE

in each 1×M block computes, in its A variable, the

sum of the j’th feature vector of all patterns in its

block that are also in cluster i.

Step 2 The A values are summed along the columns of the RMESH.

The result is stored in the B variables of the processors in

row 0.

Step 3 The B values are broadcast down column buses. Following

this the B values in PEs in the same column are the same.

Step 4 PE (a,b) sets its B value to 0 if a > M −1 or a ≠ b mod M.

Following this the nonzero B values in row a, a < M

all correspond to feature a.

Step 5 Sum the values on each row using the data sum operation of

Section 2.2. Put the result in the D variable of column

0 processors.

Step 6 PEs (a, 0), 0 ≤ a < M broadcast their D values serially

to PE (c,d), c√
���

N +d = i. PE (c,d) saves the received

M values as the sum of the feature vectors of cluster i.

Figure 15 Summing the feature vectors in cluster i

_______________________________________________________________________________

hypercube algorithm of [RANK88d] uses N 2 processors and has complexity O (M 2). Ranka and

Sahni [RANK88d] also report on experimental work with image template matching algorithms

for the NCUBE hypercube computer.

The RMESH algorithms we develop in this section have the following characteristics.
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D 2(i, 0) = ∞, 0 ≤ i < N

for i := 0 to K −1 do

begin

Set up column buses;

PE (i, j) broadcasts C (i, j) on its column bus, 0 ≤ j < M;

PE (a,b) reads its column and saves the value read in D (a,b),

0 ≤ a < N, 0 ≤ b < M;

E (a,b) := (F (a,b) − D (a,b))2;

Set up row buses;

Sum the E values in row a and save in S (a, 0), 0 ≤ a < N;

if S (a, 0) < D 2(a, 0) then

[NewCluster (a, 0) := i ; D 2(a, 0) := S (a, 0)];

end;

Figure 16 NM processors algorithm for cluster reassignment

_______________________________________________________________________________

Algorithm 1 : N 2 processors, O (M) memory per processor, O (M 2) complexity.

Algorithm 2 : N 2 processors, O (1) memory per processor, O (M 2) complexity.

Algorithm 3 : N 2M 2 processors, O (1) memory per processor, O (M) complexity.

While one can obtain O (M 2) RMESH template matching algorithms that use N 2 proces-

sors by simulating the known mesh connected computer algorithm of this complexity, the algo-

rithms we propose are considerably simpler.

5.1 N 2N 2 Processors, O (M)O (M) Memory

The N 2 processors are configured as an N×N array. Initially, I (i, j) = I [i, j ], 0 ≤ i, j < N and

T (i, j) = T [i, j ], 0 ≤ i, j  < M. The desired final configuration is C 2D (i, j) = C 2D [i, j ],

0 ≤ i, j < N. This is accomplished in two steps. First, each PE (i, j) computes an array C [q ](i, j),

0 ≤ q < M of values such that
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for i := 0 to K −1 do

{Compute center of cluster i }

begin

Set up row buses;

if NewCluster (a, 0) = i then PE (a, 0) broadcasts a 1 on its row bus

else PE (a, 0) broadcasts a 0, 0 ≤ a < N;

PE (a,b) sets A (a,b) = F (a,b) if it reads a 1 on its bus,

otherwise it sets A (a,b) = 0;

Sum the A values on each column and save the result in the C variable

of the processors in row i;

end;

Figure 17 Computing cluster centers with NM processors

_______________________________________________________________________________

C [q ](i, j) = 
v =0
Σ
M

I [i, (j +v) mod N ] ∗ T [q,v ]

Next, C 2D (i, j) is computed using the equation

C 2D (i, j) = 
q =0
Σ

M −1
C [q ]((i +q) mod N, j)

This is done by simply using the column adjacent sum operation of Section 2.6. The details are

given in Figure 19. The complexity is O (M 2).

5.2 N 2N 2 Processors, O (1)O (1) Memory

Even when only O (1) memory per PE is available, template matching can be done in O (M 2)

time. The algorithm repeatedly shifts the image and template values so that each PE (i, j) always

has an image and template value whose product contributes to C 2D (i, j). The algorithm is given

in Figure 20. The initial and final configurations are the same as for the algorithm of Figure 19.
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Step 1 Create K copies of F so that F (i, j) = F [i, j mod M ],

0 ≤ j < KM, 0 ≤ i < N.

Step 2 Set up column buses and broadcast C (0, j) to C (*, j), 0 ≤ j < KM.

Step 3 A (i, j) = (F (i, j) − C (i, j))2, 0 ≤ i < N, 0 ≤ j < MK

Step 4 Sum A in each 1×M block of PEs. Store the result in the

B variable of the first processor in each block.

Step 5 In each row, a, of the RMESH, compute q such that

B (a,q) = min{B (a, j)
�

j mod M = 0 };

store this q in NewCluster (a, 0);

Figure 18 New cluster determination with NMK processors

_______________________________________________________________________________

While the asymptotic complexity of the O (M) memory and O (1) memory algorithms is the

same, the O (M) memory algorithm requires M 2 + 3(M −1) broadcasts while the O (1) memory

one requires 4M 2 + 3M.

5.3 N 2M 2N 2M 2 Processors, O (1)O (1) Memory

We assume that the N 2M 2 processor RMESH is configured as an NM×NM array and that ini-

tially, I (iM, jM) = I [i, j ], 0 ≤ i, j < N and T (i, j) = T [i, j ], 0 ≤ i, j  < M. The initial distribution of I

for the case N = 3, M  = 2 is given in Figure 21. The final configuration will have

C 2D (iM, jM) = C 2D [i, j ], 0 ≤ i, j  < N.

The NM×NM processor array is naturally partitioned into N 2 M×M processor blocks as in

Figure 21 (c) (the partitions are of size 2×2 and are demarkated by double lines). The (i, j)’th

such block is used to compute all the terms involving row i of the image that contribute to

column j of C 2D. For this, PE (iM +q, jM +k) first gets an image value from its row such that

I (iM +q, jM +k) = I [i, (j +k) mod N ] (step 2 of Figure 22). This can be done in O (1) time. The

image values are initially in PEs (iM, jM), 0 ≤ i, j  < N. These locations are divided into M

equivalence classes based on the value of j  mod M. The values in each column can be broadcast
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{Compute C 2D using O (M) memory per PE }

{ Step1, compute C [q ](i, j), 0 ≤ i, j < N, 0 ≤ q < M}

Accumulate(A,I,M); {each PE accumulates, in A, the next M template values}

for q := 0 to M −1 do

begin

C [q ](i, j) := 0, 0 ≤ i, j <N;

for v := 0 to M −1 do

begin

PE (q,v) broadcasts T (q,v) to all PEs;

B (i, j) := content(bus), 0 ≤ i, j < N;

C [q ](i, j) := C [q ](i, j) + A [v ](i, j) ∗ B (i, j), 0 ≤ i, j < N;

end;

end;

{Step2, compute C 2D (i, j), 0 ≤ i, j < N }

ColumnAdjacentSum (C 2D,C,M);

Figure 19 N 2 processor, O (M) memory, template matching

_______________________________________________________________________________

to all PEs that need them using three broadcasts each. The first broadcast sends the image value

in column j to row j mod M of its M×M sub RMESH. The next uses row sub buses to broadcast

to the submeshes that need the image values. The third broadcasts on column buses local to each

sub RMESH. The template T is then broadcast, in step 3, to all M×M windows resulting in the

configuration

T (iM +q, jM +k) = T [q,k ], 0 ≤ i, j < N,  0 ≤ k,q < M

This requires another M broadcast steps and uses the window broadcast algorithm of Section 2.1.

Step 4 computes the product of I and T in each processor and requires no broadcasts. The result

of this step is
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C 2D (i, j) := 0;

for u := 0 to M −1 do

{ compute terms involving T [u,* ] }

begin

A := I;

for v := 0 to M −1 do

{ compute terms involving T [u,v ] }

begin

PE (i, j) connects its N and W switches, 0 ≤ i, j < N;

PE (u,v) broadcasts T (u,v);

A (i, j) := content(bus), 0 ≤ i, j < N;

C 2D (i, j) := C 2D (i, j)+ A (i, j) ∗ I (i, j), 0 ≤ i, j <N;

CircularRowShift (I,−1); {Shift left circularly by 1 }

end;

{ restore I values }

I := A;

{ set up I for next v}

CircularColumnShift (I, 1); {shift up circularly by 1 }

end;

Figure 20 N 2 PEs, O (1) memory algorithm for C 2D

_______________________________________________________________________________

C (iM +q, jM +k) = I [i, (j +k) mod M ]∗T [q,k ], 0 ≤ i, j  < N,  0 ≤ k,q < M

The next step is to sum the C values in each row of each M×M block to get

D (iM +q, jM) = 
k =0
Σ

M −1
C (iM +q,  jM +k)

=
k =0
Σ

M −1
I [i, (j +k) mod N ] ∗ T [q,k ]



-- --

26

_______________________________________________________________________________

1 2

3 4

7 8 9

4 5 10

1 2 3

7 8 9

4 5 10

1 2 3

1 2

3 4

(a) 3×3 image

(b) 2×2 template (c) initial distribution of image & template on a 6×6 RMESH

Figure 21 Example initial configuration of an N 2M 2 RMESH with N = 3, M = 2.

_______________________________________________________________________________

This is done using the data sum operation which requires O (logM) broadcasts. We observe now

that D (iM +q, jM) contributes to C 2d [a, j ] where a = (i +M −q) mod M). In fact,

C 2D [a, j ] = 
(i +M −q) mod  M = a

Σ D (iM +q, jM)

To compute this sum efficiently, we assign column r of each M×M block the task of computing

C 2D [a, j ] for a mod M  = r. For this, in step 6, we broadcast D values along rows of each M×M

block and then is step 7 the D’s not needed to compute the C 2D’s assigned to a column are set to

nil. Step 6 takes 1 broadcast and step 7 takes 0. The C 2D values can now be computed by sum-

ming the non nil values in each column in groups of size M. This requires O (logM) broadcasts.

The total complexity of the N 2M 2 processor algorithm is therefore O (M).

The O (M) complexity of the N 2M 2 algorithm is disappointing as this results in a

processor-time product of O (N 2M 3) which exceeds that of the serial algorithm by a factor of

O (M). However, using a data bandwidth argument we can show that O (M) time is optimal

given our initial configuration. Since the template is initially in the upper left M×M block of pro-

cessors and the template is needed outside this block, M 2 pieces of data must flow out of the
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Step 1 Collect image values such that

I (iM, jM +k) = I [i, (j +k) mod N ], 0 ≤ i, j < N, 0 ≤ k< M

Step 2 Broadcast the I values in row 0 of each M×M block along columns

of the M×M block.

Following this, we have

I (iM +q, jM +k) = I [i, (j +k) mod N ], 0 ≤ i, j < N, 0 ≤ k,q < M.

Step 3 Broadcast the template T to all M×M blocks.

Step 4 C (a,b) = I (a,b) ∗ T (a,b), 0 ≤ a,b < NM.

Step 5 Sum the C’s in each row of each M×M block to get

D (iM +q, jM) =
k =0
Σ

M −1
C (iM +q, jM +k), 0 ≤ i, j < N, 0 ≤ q < M.

Step 6 Broadcast D along rows of each M×M block to get

D (iM +q, jM +k) =
k =0
Σ

M −1
C (iM +q, jM +k), 0 ≤ i, j < N, 0 ≤ q,k < M.

Step 7 Let D (iM +q, jM +k) = nil if (i +M −q) mod M ≠ k, 0 ≤ i, j < N,

0 ≤ q,k < M

Step 8 Sum the non nil D values in each column in groups of size M to get

C 2D

Figure 22 N 2M 2 processor algorithm

_______________________________________________________________________________

block. However, only 2M −1 pieces of data can exit the block at any time as the block boundary

includes only 2M −1 processors. So, at least M 2/(2M −1) = O (M) time is needed to broadcast the

template to the rest of the RMESH.
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6 Conclusions

We have developed parallel RMESH algorithms for shrinking, clustering, and template matching.

Tables 1 - 3 compare the complexity of these algorithms with those for the hypercube and mesh

connected computers.

q step expanding

Mesh Hypercube RMESH

binary O (q) O (logq) O (1)

gray scale O (q) O (logq) -

Table 1 N 2 processor image expanding

Clustering

Mesh Hypercube RMESH

N PEs - - O (MK + KlogN)

NM PEs - O (K + logNMK ) O (KlogNM )

NMK PEs - O (logNMK ) O (M + logNMK )

Table 2 Clustering complexity
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Template Matching

Mesh Hypercube RMESH

N 2 PEs O (M 2) O (M 2 + logN) O (M 2)

N 2M 2 PEs - O (logN) O (M)

Table 3 Template matching complexity
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