
Selection, Routing and Sorting on the Star Graph

MS-CIS-93-10
GRASP LAB 343

Sanguthevar Rajasekaran
David S.L. Wei

University of Per~nsylvania
School of Engineering and Applied Science

Comput,er and 111format.io1l Science Department,

Philadelphia, PA 19104-6389

January 1993

Selection, Routing and Sorting on the Star Graph *

Sanguthevar Rajasekaran David S. L. Wei

Dept. of Computer and Info. Science Computer Science Department

University of Pennsylvania Radford University
Philadelphia, PA 191 04-6389 Radford, VA 24142

e-mail: raj @central. cis.upenn.edu e-mail: wei@rucs.faculty.cs.runet.edu

Abs t r ac t

We consider the problems of selection, routing and sorting on an n-star graph (with n!

nodes), an interconnection network which has been proven t o possess many special properties.
We identify a tree like subgraph (which we call as a '(k, 1, k) chain network') of the star graph
which enables us to design efficient algorithms for the above mentioned problems.

We present an algorithm that performs a sequence of n prefix computations in O(n2) time.
This algorithm is used as a subroutine in our other algorithms. In addition we offer an efficient
deterministic sorting algorithm that runs in O(n3 lg n) steps. Though an algorithm with the
same time bound has been proposed before, our algorithm is very simple and is based on a

different approach. We also show that sorting can be performed on the n-star graph in time
O(n3) and that selection of a set of uniformly distributed n keys can be performed in 0(n2) time
with high probability. Finally, we also present a deterministic (non oblivious) routing algorithm

that realizes any permutation in O(n3) steps on the n-star graph.
There exists an algorithm in the literature that can perform a single prefix computation in

O(n lg n) time. The best known previous algorithm for sorting has a run time of O(n3 lg n) and
is deterministic. To our knowledge, the problem of selection has not been considered before on
the star graph.

'This research was supported in part by the US Army Research Office Grant DAAL 03-89-C-0031

1 Introduction

Interconnection Networks (denoted as ICNs from hereon) have been generally accepted to be the

most practical models of computing. Among those suggested ICNs, a binary n-cube is one of the

most popular networks because it possesses some attractive features. The n-cube is a highly fault-

tolerant ICN and has low degree and small diameter (which is logarithmic in the network size). The

n-star graph has been suggested in [2] as a better alternative ICN to the n-cube. In [2], it has been

shown that the star graph has better features than the n-cube with respect to the degree, diameter,

etc. The network needs fewer links per node (~rocessing element) and fewer communication steps
per message passing request. A number of interesting algorithms have been designed for the star

graph (see e.g., [2, 21, 5, 9, 61). But still a lot more work has to be done.

In this paper, we consider the following problems: 1) Selection, 2) Sorting, and 3) Packet

Routing. Sorting is the process of rearranging a given sequence of keys in either ascending or

descending order. Packet routing is the problem of sending packets of information from their
origins to their destinations. We are interested in permutation routing wherein at most one packet
originates from any node in the ICN and at most one packet is destined for any node. Efficient

sorting algorithms for various ICNs have already been developed [31, 30, 20, 26, 29, 4, 161.

Before our work, the best known sorting algorithm for the n-star graph ran in O(n3 lg n) time

[18, 51. We present a simpler sorting algorithm which has the same time bound. Whereas the
previous algorithm is based on the shearsort algorithm, our algorithm is based on bitonic sort. We

also present an improved sorting algorithm which runs on the n-star graph in O (n 3) time with

high probability. Our approach to randomized sorting differs from previous approaches in that
we use repeated selection. These algorithms make use of prefix and selection algorithms that we

have designed. Our selection algorithm can perform a set of n selections in O(n2) time with high

probability. provided the keys to be selected have ranks uniform in the interval [I , n!]. The prefix

algorithm presented in this paper can compute the prefixes of n different sequences in O(n2) time.

In contrast, Akl and Qiu [5] show that a single prefix computation can be performed in O(n1gn)

time, which is the best possible. Prefix computation is performed using a tree like subgraph (which

we call as a '(k, 1, k) chain network'). This network, we believe, is applicable for many other
computations as well. Similar networks have been used before [18, 51.

Efficient packet routing algorithms for the star graph have already been obtained in [21]. Al-

though the best known randomized routing algorithm for the star graph runs in O(n) time with

very high probability [21], due to the lower bound of [12], the best known deterministic oblivious

routing algorithm for the star graph needs a much higher running time. In this paper we develop
a non-oblivious deterministic routing algorithm with O(n3) running time.

The rest of this paper is organized as follows. Section 2 introduces some properties of the star

graph, and describes bitonic sort. Sections 3 and 4 contain our prefix and deterministic sorting
algorithms respectively. In section 5 we present our selection algorithm for the star graph while

Section 6 describes our randomized sorting algorithm. The deterministic routing algorithm is

presented in section 7. Section 8 concludes the paper.

2 Preliminaries

We first define the star graph and then give some definitions and lemmas that will be helpful

throughout .

2.1 The Star Graph

Definition 2.1 Let slsz . . .sn be a permutation of n symbols, e.g., 1 . . . n. For 1 < j 5 n, we
define

SWAPj(sls2 . . .s,) = sjsz . . .sj-Islsj+l . . . s,.

Definition 2.2 An n-star graph is a graph S, = (V, E) with (V I = n! nodes, where V =
(~ 1 . 5 ~ . . . sn I slsz . . . sn is a permutation of n different symbols), and E = {(u,v) I u, v E V
and v = SWAPj(u) for some j, 1 < j 5 n}.

The 3-star and $-star graphs are shown in Figure 1. It is not hard to see (from Definition 2.2)

that the degree of the n-star graph is n - 1. Also, in [2], Akers, Harel, and Krishnamurthy have

shown that the diameter of the n-star graph is L$(n - I)]. On the other hand, an n-cube has 2"

nodes, degree n, and diameter n. Thus, in comparison with the n-cube, the degree and diameter of

the star graph grow more slowly as functions of the network size. Moreover, the star graph is both
vertex (node) symmetric and edge symmetric (just like the n-cube). We assume that the star graph

is a MIMD machine in which at each step different nodes could perform different instructions.

Definition 2.3 A subgraph of an n-star graph Sn is said to be an i-th stage subgraph, denoted

Sn-i(~n-i+l~n-i - .sn), i f f Sn-i is itself an (n - i)-star graph, 0 < i < n, and the last i symbols of
labels of all the nodes in it are identical.

The S;-l's of an S; partition the S; into i identical subgraphs. For example, an Sq consists of

4 S3's, viz., S3(1), S3(2), S3(3), and S3(4), and each of the S3's consists of 3 S2's, and so on.

Definition 2.4 The i-th position of the permutation labeling a node u in Sn is denoted by us,,

1 5 i L n .

Definition 2.5 The path between a pair of nodes u, v E V is an ordered sequence of nodes and links

(edges) in the graph, such that the first and the last nodes in the sequence are u and v. Adjacent
nodes are directly connected by a link in the sequence. The length of the path is the number of links
in the path. Adjacent nodes, say u j and uj+l = SWAP;(uj), together with the link connecting

SWAP- SWAP4 SWAP2 SWAP4
them, are denoted by u j *' uj+l. For example, in Sq, 4231 - 1234 - 2134 - 4132
denotes a path of length 3.

Definition 2.6 The distance between two nodes u and v is the length of the shortest path between

u and v.

For any network sorting algorithm, we need to specify an ordering (also known as an indexing

scheme) of the nodes. The indexing scheme we adopt is reverse lexicographic order and is the same
as the one assumed in [18]. Table 1 gives the indexing scheme for S4.

Definition 2.7 (Reverse lexicographic order:) Let 4 be the ordering of nodes in the network. Let

u be the node labelled as us, us, . - us, and v be the node labelled as v,, v,, . . . vSn. Then u 4 v ifJ

there exists an i, 1 < i 5 n, such that uSl = v,, for all j > i , and us, < v,,.

Definition 2.8 Consider a k-star graph Sk. Sk consists of k copies of Sk-l. These copies can be

arranged as Sk-1(k), Sk-l(k - I), . . , , Sk-1(2), Sk-1(l) in reverse lexicographic order. We say two
or more nodes from distinct Sk-l '~ are corresponding if they have the same index in their respective
Sk-l '~.

As an example, in S4 (see Figure 2), the two nodes 2341 and 1243 are corresponding (since both

have index 5 in their S3's).

Definition 2.9 A (k, 1, k) chain in Sk is defined to be a sequence of k corresponding nodes

qk,qk-1, . .. , q z , q ~ such that q j E Sk-1(j) for 1 5 j 5 k. Also, the segment of a (k, 1, k) chain
from node t to node u is denoted as a (k, l , u) chain.

Figure 2 identifies all the (k, 1, k) chains (for 1 < k 5 4) in an S4. Notice that there are (k - I)!

different (k, 1, k) chains in an Sk. Also, each node in any Sk-1 belongs to a unique (k, 1, k) chain.

If v,, , v,, , . . . , v,, is any node in Sk, its left neighbor in its (k, 1, k) chain can be obtained as follows:
'exchange' v,, with the next smallest symbol. For instance in Figure 2, the left neighbor of 1243 is

1342 and 1342 is obtainable from 1243 by 'exchanging' 3 with 2. Any two symbols can be exchanged

with three or less SWAP operations. Right neighbor of v,, , v,,, . . . , v,, can be obtained in a similar
way by exchanging v,, with the next largest symbol.

Thus one could think of a (k, 1, k) chain as a linear array with k nodes. A packet (or item) from

one node to its neighbor along the chain can be sent via a physical path of length 3. A (k, 1, k)

chain also has the following nice property: Say there is an item at each node of a (k, 1, k) chain

qk, qk-1,. . . , q2, q1, and each item has to be moved to its (say) left neighbor. It is easy to see that
these items could be moved simultaneously in 3 steps. For an illustration see Table 2.

The above observations lead to the following Lemmas.

Lemma 2.1 k items in a (k, 1, k) chain, stored one item per node, can be sorted using an odd-even
transposition sort in 3k steps.

Lemma 2.2 The odd-even transposition sort could be simultaneously applied on all the (k, 1, k)

chains (there are (k - I)! of them) of an Sk so that a set of k items in each chain, one per node,

could be sorted in 3k steps.

Proof : The odd-even transposition sort on any chain never affects any other chain (see Figure 2

and Table 2), and the correctness of this theorem thus immediately follows from Lemma 2.1.

Lemma 2.3 (u - I) + 1 items in a (k , l ,u) chain, stored one item per node, can be sorted by

odd-even transposition sort in 3(u - 1 $1) steps.

Proof : Immediate from Lemma 2.2.

Table 2 shows the communication between each pair of adjacent nodes of all (4,1,4) chains of

Sq, and would help readers better appreciate Lemma 2.1 and Lemma 2.2.

2.2 The Bitonic Sort

Definition 2.10 A sequence X = (xl, 2 2 , . , xN) of N numbers is said t o be bitonic if either

XI I 2 2 5 5 x; > x;+l > . . - > X N or x1 2 xz 2 . . . > xi 5 x;+1 < . . - 5 X N for some i,

l I i < N .

Batcher's bitonic sorting network [7] can sort any bitonic sequence (defined in Definition 2.10)

into ascending or descending order. The bitonic sorting network (bitonic-sorter) is constructed by

recursively combining half-cleaners [I], as shown in Figure 3.

A half-cleaner with 8 inputs and 8 outputs is shown in the dotted box in Figure 3. It moves 4

larger items to the upper 4 outputs, 4 smaller items to the lower 4 outputs, and each subsequence

of 4 items remains a bitonic sequence. The correctness of the bitonic-sorter has been shown in

[15] and [8]. With the bitonic-sorter, any sequence (x l , xz , . . - , xN) of N items could be sorted

into ascending (or descending) order by recursively sorting (xl, x2,- 0 . , x,+,) into ascending order,

(x ,+J,
- - , xN) into descending order (or vice versa).

Many sorting algorithms for various ICNs have been designed based on bitonic sort (see e . g .

[19] [31]). Although our sorting algorithm is also designed based on bitonic sort, our bitonic-sorter

is made from m-sorter [15] modules instead of 2-sorters mentioned above. The reason that we

adopt the m-sorter instead of 2-sorter could be easily seen from Definition 2.3 in which the S ,
is constructed from m S,-l's rather than 2. We use the m-sorter to construct a m-way cleaner.
Figure 4 shows a 3-way cleaner with 6 inputs and 6 outputs.

To prove the correctness of our sorter, we need only to prove Lemma 2.4. The proof of Lemma 2.4
could be simplified based on the zero-one principle (Theorem 2.1).

Theorem 2.1 If a network with N inputs can sort all 2N possible sequences of 0's and 1's into
ascending (or descending) order, i t will sort any sequence of arbitrary numbers into ascending (or

descending) order.

Proof: See [15].

Lemma 2.4 Given a m-way cleaner of k m-sorters (denoted as m - cleanerk) with m x k inputs

and m x k outputs, which is grouped into m subsequences of k contiguous outputs, if the input to

the cleaner is a bitonic sequence of O's and l's, then the output satisfies the following properties:

each of m subsequences is a bitonic sequence, each item in i th group, 1 5 i < m, is at least as

small as (or as large as) every item in (i + 1)th group, each group of the output is clean' except

j t h group for a j, 1 5 j 5 m, which may be clean or dirty, but is still bitonic.

Proof: The network performs odd-even transposition sort in parallel on each m-sorter (i.e. inputs

i , i+k , . . . , i+ (m- l)k , fo r all 15 i < k). Without lossofgenerality, weassume that theinput isof

form 00. . .001. - . 1100. 0. (The proof for the symmetric input is also symmetric.) Assume that
the block of consecutive 1's expands across T subsequences (T < m - I) , say from ith to (i + T - l) th,

i > 1, such that none or some of 1's are in (i - 1)th subsequence and none or some of 1's are in

(i + r) th subsequence. There are 7 cases depending on the number of 1's in (i - 1)th and (i + r)th
subsequences. Each case is shown in Figure 5. In case (a), there are some 1's in both (i - 1)th

and (i + r) th subsequences, and the total number of 1's in these two subsequences is less than k,
the size of each subsequence. The result will be m - T - 1 clean subsequences of 0's followed by a

dirty subsequence which is still bitonic, and then followed by T clean subsequences of 1's. Case (b)

is similar t o case (a), but the total number of 1's in (i - 1)th and (i + r) th subsequences is equal

t o k. So the result will be m - T - 1 clean subsequences of 0's followed by r + 1 clean subsequences

of 1's. Case (c) is also similar to case (a), but the total number of 1's in two ended subsequences

is greater than k. So the result will be m - T - 2 clean subsequences of 0's followed by a dirty

subsequence which is bitonic, and then followed by T + 1 clean subsequences of 1's. Case (d) and

(e) are similar where in case (d) only (i - 1)th subsequence has 1's and in case (e) only (i + r) th

subsequence has 1's. Both cases result in m - T - 1 clean subsequences of 0's followed by one dirty

subsequence which is bitonic, and then followed by T clean subsequences of 1's. Case (f) is the case

that the block of consecutive 1's expands across exactly T subsequences. Thus the result is m - r

clean subsequences of 0's followed by r clean subsequences of 1's. Case (g) is the case that the size

of the block of consecutive 1's is smaller than k. And the result is thus m - 1 clean subsequences
of 0's followed by a dirty subsequence which is a bitonic 0ne.U

'A subsequence is clean if it consists of either all 0's or all l's, otherwise it is dirty

2.3 Packet Routing and Chernoff Bounds

The following lemma due to Palis, Rajasekaran and Wei will be applied in our randomized algo-

rithms:

Lemma 2.5 Permutation routing on S, can be performed in O(n) time with high probability.

One of the most frequently used facts in analyzing randomized algorithms is Chernoff bounds.

These bounds provide close approximations t o the probabilities in the tail ends of a binomial

distribution. Let X stand for the number of heads in n independent flips of a coin, the probability

of a head in a single flip being p. X is also known to have a binomial distribution B(n,p). The

following three facts (known as Chernoff bounds) are now folklore:

Prob.[X > (1 + ~) n p] 5 exp(-~~np /2) , and

Prob.[X 5 (1 - ~) n p] 5 exp(-e2np/3),

for any 0 < E < 1, and m > np.
Like the 0 () function is used to specify the asymptotic resource bounds of deterministic algo-

rithms, 6 () is used to specify resource (like time, space etc.) bounds of randomized algorithms.

We say a function f (.) is 6(g(.)) if there exist constants c and no such that f (n) 5 cag(n) with

probability > (1 - n-a) on any input of size n > no, for any a > 0.
Throughout let w.h.p. stand for 'with high probability.' By high probability we mean a proba-

bility of >_ (1 - nWa) for any fixed a, n being the input size.

3 Prefix Computation on the Star Graph

Given a sequence of items xo, XI , . . . , XN and a binary operator @, let p; = xo @ xl @ - . @ x; for

0 5 i 5 N. The process of computing the values po,pl, . . . , p~ is called a prefix computation.

A prefix computation algorithm is an essential tool for the design of numerous other algorithms.

In this section we show that on S, a sequence of n prefix computations can be simultaneously

completed in O(n2) time. In contrast, Akl and Qiu [5] show that a single prefix computation can

be completed in O(n1gn) time and their algorithm is clearly optimal.

First we present our prefix algorithm for a single sequence and later explain how to modify this

algorithm for the case of a sequence of prefixes. The star graph under concern is an S, and there is

an element a t each node of the graph. The indexing scheme assumed is reverse lexicographic order.

There are two phases in the algorithm, namely the forward phase and the reverse phase. There are

n - 1 stages in each phase. In stage i of the forward phase, computation is local t o the different

Si's, for 2 5 i 5 n.

In fact in any S;, computation takes place only along a specific (2, l , i) chain, namely the chain

in which nodes of largest index from the i different S;-17s lie. Call any such chain as a special (i ,1 , i)

chain. (Each S; has a unique special (i, 1, i) chain.) Referring to Figure 2, in stage 3 of the forward

phase, computation takes place only along the chain 2341, 1342, 1243, 1234. Similarly, in stage 2,

computation occurs only along the chains 3421, 2431, 2341; 3412,1432,1342; 2413,1423,1243; and

2314,1324,1234. (See also Figure 6.) More details follow.

Algorithm Prefix

(* The forward phase *)

for i := 2 to n do

(* Computation is local to each S; *)

Perform a prefix computation along the special (i, 1, i) chain.

(* The reverse phase *)

for i := n downto 2 do

(* Computation is local to each S; *)

Each node q in the special (i, 1,i) chain obtains the sum from

its left neighbor and propagates this sum to all the nodes in

the special ((i - I) , l , (i - 1)) chain that q belongs to;

The nodes in this ((i- I) , 1, (i- 1)) chain, excepting q, simply

accumulate the propagated sum to the previously computed

sums;

Analysis. In the forward phase, each stage i takes 3(i - 1) steps. Thus the total run time is O(n2).

In the reverse phase stage i takes time 3i, accounting for a total of O(n2) time. Thus the whole

algorithm runs in time 5 3n2. The correctness of the algorithm is quite clear. Thus we get the

following

Lemma 3.1 The prefix computation of a single sequence can be completed on S, in time O(n2).

We could indeed perform a sequence of n prefix computations in O(n2) time. The idea is to

pipeline. The precise definition of our problem is this: There are n items in each one of the n!

nodes of S,. The problem is to: 1) compute the prefix sums of the first items of the nodes; 2)

compute the prefix sums of the second items of the nodes; . . . ; and n) compute the prefix sums of
the nth items of the nodes.

We could make use of the same algorithm with a very simple modification. In stage i of the

forward phase, compute the prefix sums of the n numbers along the special (i , l , i) chain using

pipeline. Now stage i will terminate in time 3(n + i - 2) steps. Likewise in stage i of the reverse

phase, each node q along the special (i, 1,i) chain obtains the n sums from its left neighbor in 3n

steps; Followed by this, it propagates these n numbers along its ((i - I), 1, (i - 1)) chain, using
pipeline, in 5 3(n + i) steps. Thus the total run time will be 5 9n2. We get the following

Lemma 3.2 A sequence of n prefix computations can be performed on Sn in O(n2) time.

COPYING. Consider an S,. For any k < n, say there is a specific Sk of Sn that has k! items

(stored one per node), and we want to copy these items to every other Sk. (Similar, but not the

same, problems are considered in [5].)

We could do this copying task as follows: Use all the ((k + 1)) 1, (k i- 1)) chains (in the Sk+l
that this Sk is in) to copy the contents of the specific Sk into every Sk in its Sk+l. The result of

this copying is that nodes with the same index in every Sk (of Sk+1) will have the same item. Now

use all the ((k + 2)) 1, (k + 2)) chains in the Sk+2 that our Sk is in to make k + 2 copies of the

Sk+1. The algorithm proceeds in a similar fashion. Clearly such an algorithm runs in O(n2) time.

Therefore we have the following

Lemma 3.3 The contents of any Sk in an S, (for k < n) can be copied onto every other Sk in

O(n2) time.

4 The Deterministic Sorting Algorithm for the Star Graph

4.1 The Algorithm

Our deterministic sorting algorithm for the star graph is called SGS (Star Graph Sort), and is based
on the bitonic sorter with m-way cleaners. To simplify the discussion, we assume that initially there

is exactly one item per node. However, the algorithm could be easily extended to sort M items,

where M >> N = n!, on the n-star graph Sn based on the argument in [17].

The basic idea behind our algorithm is as follows: For a given sequence X = (xl, x2,. . . , xN),

and a S, of N = n! nodes, we recursively sort (in parallel) each subsequence of (n - l) ! items in each

subgraph into ascending or descending order depending on if the subgraph (subsequence) is
odd or even numbered. Each pair of adjacent subsequences will form a bitonic sequence. Then we

sort each bitonic sequence into either ascending or descending order so that two bitonic sequences

will be merged into a longer bitonic sequence of double the size. (Note that although we may have

an odd number of subsequences such that the last group has only a single subsequence, according

to Definition 2.10, eventually we will still have a single large bitonic sequence of N items.) This
will be done for llgn] times so that we have a bitonic sequence of N = n! items as the input for
the bitonic sorter of N inputs and N outputs with m - cleane~(,-~)!'s, 1 < m < n.

The algorithm is presented in Figure 7. As stated in the informal description of the algorithm
above, the algorithm needs to recursively merge shorter bitonic sequences into a longer bitonic

sequence. It invokes procedure SGM (Star Graph Merge) to perform the task. In the algorithm,

0 denotes the order of the sorted sequence, where 0 can be either A(ascending) or D(descending).

The reason why the algorithm works could be easily understood from the sorting network (shown

in Figure 8) which represents the behavior of S G S on S4. Each stage consists of a merging phase

and a bitonic sort phase. In the ith stage, all Si+l's perform the sorting task in parallel such that

each pair of adjacent S;+l's form a bitonic sequence. These bitonic sequences will be merged into

a longer single bitonic sequence in the merging phase (before bitonic sort phase) in the next stage.

4.2 Complexity Analysis

The number of steps needed for SGS to finish the sorting task can be obtained from the following

recurrences:

, where

M (j) = M ($) + +xi:: k, 2 5 j 5 n, and B(n) = B(n - 1) + n. M (n) represents the number

of steps needed for merging and B(n) stands for the time needed for bitonic sort. Solving this

recurrence equation by iteration, we have

Solving for B(n) in similar way, we get B(n) = O(n2). Thus

which yields T (n) = O(n3 lg n).

Actually, from Figure 8, we could obtain the time complexity in more detail. There are n - 1

stages for a sorting on the Sn. Each stage consists of two phases, namely merging phase and bitonic

sort phase, and each phase in stage i again consists of i levels. j t h level, 1 < j 5 i, in bitonic

sort phase has (i - j + I)! (i - j + 2,1, i - j + 2) chains. However, we could perform the odd-even

transposition sort on these chains in parallel. The bitonic sort phase in stage i thus takes 3 . ~ ~ 2 : j

steps. Since the merge phase of ith stage recursively merges [lg(i + 1)l bitonics into a longer single
bitonic, it requires [lg(i + 1)l - 1 iterations in which the kth iteration takes 3 . & + 3 . xiz2 j steps.

Therefore, the merge phase in stage i totally takes time 3.~!:1'+')'-' &+(pg(i+ l) j - 1) - 3 - ~ i = , j .

We thus conclude that the total number of steps, T(n), needed for the algorithm to sort S, is given

by

This shows that the constant factor behind the big 0 is indeed very small (i.e. < i).
Theorem 4.1 N = n! items stored one per node in Sn can be sorted by S G S in ascending (or

descending) order in O(n3 lg n) steps.

Proof : Follows from Lemma 2.4, Lemma 2.2, Lemma 2.3, and the complexity analysis above in

this section.

5 Randomized Selection on the Star Graph

In this section we show that the problem of selection can be solved in 6 (n 2) time on a star graph

with n! nodes. Given a sequence of N numbers and an integer 1 5 i < N, the problem of selection

is to find the ith smallest element from out of the given N keys. We assume that there is a key

at each one of the N = n! nodes to begin with. We prove a stronger result, namely, that we can

perform selection of n keys within 6 (n 2) time if the ranks of these keys are uniform in the interval

[I , Nl.

5.1 Approach

Randomized selection has a long history [lo, 28, 24, 321. There is a central theme in all these
algorithms which we also adopt in our algorithm. The basic steps are: 1) To sample and sort

s = o(N) keys from the input; 2) To identify two keys from the sample (call these ql and q2) such

that the key to selected will have a value in the interval [ql, q2] w.h.p.; 3) To eliminate all the keys

from the input which do not have a value in the interval [q l , q2]; and 4) Finally to perform an

appropriate selection in the set of remaining keys (there will not be many of them w.h.p.).

We adopt the same approach to perform n selections on the star graph. In particular if there

is a key at each node of the star graph to begin with, and if i j = $ for 1 5 j j n , our algorithm

will output the il th smallest element, the i2th smallest element, . . . , and the i,th smallest element

all in O"(n2) time.

5.2 The Algorithm

First we show how to perform the selection of a single key and then explain how the same algorithm

could be modified to select n different keys. We'll make use of the following facts: We assume a

star graph with N = n! nodes.

Fact 5.1 If 1 5 l 5 N is any integer, then there exists a sub-star graph of the n-star graph whose

size is j en.

Lemma 5.1 For any fixed E < 3, a set of N' keys distributed in a N-node star graph with no more

than one keys per node can be sorted in 6 (n 2) time.

Proof. 1) Perform a prefix computation to assign a unique label to each key from the range [l, N'].

2) Now route these keys t o a sub-star graph of size N" where 6' > E and E' 5 $. Realize that a

sub-star graph of this size exists (cf. Fact 5.1) and a packet whose label is q can be routed to a

node indexed q in the sub-star graph. With this prefix computation and routing step we basically

concentrate the keys to be sorted in a sub-star graph whose size is no more than ~ ' 1 ' . Let the

sub-star graph in which the keys are concentrated be an ST (with r! nodes). Prefix computation

takes O(n2) time (Lemma 3.2) and routing takes 6 (n) time (Lemma 2.5).

3) Next we make a copy of these keys in every S, in S,. The number of such copies made will

be at least fi and these copies can be made in O(n2) time (cf. Lemma 3.3). If S:, S:, . . . , S:
is the sequence of S,'s in S,, we make use of the copy in S,P to compute the rank of the pth key,

i.e., the key whose label is p (as computed in step 1). Rank computation is done using the prefix

algorithm in O(n2) time. 4) Finally we route the key whose rank is j to the node indexed j in a

specific ST.
Clearly this algorithm runs in 6 (n 2) time.

We also need the following sampling lemma from [25]. Let S = {kl, k2 , . . . , k,} be a random
sample from a set X of cardinality N. Let 'select(X, i)' stand for the i th smallest element of X
for any set X and any integer i. Also let ki, k;, . . . , k', be the sorted order of the sample S. If r; is

the rank of ki in X and if (SI = s, the following lemma [25] provides a high probability confidence
interval for r;.

Lemma 5.2 For every a, Pmb. (I T , - i+l > c a 5 ~) < N-O for some constant c .

A description of the selection algorithm follows. This algorithm and the analysis of it is very

similar to the ones in [22]. To begin with each key is alive.

Algorithm Select

repeat forever

1) Count the number of alive keys using the prefix sums algorithm. Let M

be this number. If M is 5 N ~ / ~ then quit and go to 7);
N' 13

2) Each alive element includes itself in a sample S with probability 7.

The total number of keys in the sample will be 8(N1l3);

3) Concentrate the sample keys in a sub-star graph of size no more than N ~ / ~

and sort them. Let ql be select(S, i+ - 6) and let q2 be select(S, i+ + 6),
where S = d J m for some constant d (> ca) to be fixed;

4) Broadcast ql and q2 to the whole star graph;

5) Count the number of alive keys < ql (call this number MI); Count the

number of alive keys > q2 (call this number M2); If i is not in the interval

(MI, M - M2], go to 2) else let i := i - MI;

6) Any alive key whose value does not fall in the interval [ql, q2] dies;

end repeat

7)

Concentrate the alive keys in a sub-star graph and sort them; Output

the i th smallest key from this set.

Theorem 5.1 The above selection algorithm runs in 6 (n 2) time.

Proof. We first show that the repeat loop is executed no more than 5 times w.h.p. Followed by

this, we show that each of the seven steps in the algorithm runs in O"(n2) time.

An application of Lemma 5.2 implies that if d is chosen to be large enough (> c a) , the ith

smallest element will lie between ql and q2 w.h.p. Also, the number of keys alive after j runs of the

repeat loop is d (&(w)j). After 4 runs, this number is d (~ l / ~ (& T) ~) = d(N215).

Step 1) of the algorithm takes O(n2) time since it involves just a prefix sums computation.
Steps 2) and 6) take O(1) time each. In Step 3), concentration of keys can be done by a prefix

computation followed by a packet routing step (cf. the proof of Lemma 5.1). Sorting is done using

the algorithm of Lemma 5.1. Thus step 3) takes 6 (n 2) time. Steps 4) and 5) can be completed in

O(n2) time using the prefix algorithm. Step 7) is similar to 3).

5.3 A Set of n Selections

We show now how to modify the above selection algorithm to perform n selections within time
N 2N d(n2). In particular, we are interested in selecting keys whose ranks are T, n, . . . , F. The main

idea is t o exploit the fact that a sequence of n prefix computations can be completed in O(n2) time.

Let i j = $ for 1 < j 5 n.

We only indicate the modifications to be done. Steps 1) and 2) remain the same. In step 3, we

select 2n keys (instead of just two). Call these keys qll, q12,q21,q22, . . . , qnl, qnz. qjl and qj2 (for

any 1 5 j < n) are such that the i j th smallest key in the input (i.e., the j t h key to be selected)

will have a value in the range [qjl,qj2] w.h.p. and qjl and qj2 are defined as before. For instance

qjl=select(S, ij+ -6) where S = d J m f o r some constant d > c a . After identifying this sequence

of 2n keys, in step 4) the sequence is broadcast to the whole star graph so that each processor has

a copy. Clearly, this can be done in 6 (n 2) time (Lemma 3.2).

In step 5 , count the number of alive keys < qjl (call this number Mjl) and the number of

alive keys > qj2 (call this number Mj2), for each 1 5 j 5 n. Broadcast these numbers to each

processor as well. If i j is not in the interval (Mil, M - Mj2] for any j go to 2) else let i j :=

i j - Mjl + C;,:(M - MT1 - MT2), for each j. In this step we need to perform twice a sequence of
2n prefix computations and hence we only need O(n2) time (Lemma 3.2).

In step 6), any alive key that does not fall in any of the intervals [qll, q12], [q21, q22], . . . , [qnl, qn2]

dies. We emphasize that these n intervals will be disjoint w.h.p. This step takes O(n) time.

In step 7), we output n keys whose ranks are il , i2, . . . , in.

Analysis At any time in the algorithm the intervals [qll, q12], [q21, 4221, . . . , [qnl, qn2] will be disjoint

w.h.p. for the following reasons: During any run of the repeat loop, 1) if N' is the number of alive

keys, the ij's (for 1 < j < n) will be nearly uniform in the range [I, N'l w.h.p., and 2) the number

of sample keys in the range [qjl, qjz] (for any 1 5 j 5 n) will be o (J ~) .

The number of aPve keys after step 6) of run j is seen to be 6 (& (m) j n j) After 4

runs, this number is d (~ ~ / ~ 1 ~ ~ N n4) = d (~ 2 / 5) .

The analysis of the other steps is similar. Thus we get the following

Theorem 5.2 A set of n keys whose ranks are uniform in the interval [l, N] can be selected on an

Sn with N = n! nodes in 6 (n 2) time, the queue size being O(n).

6 Randomized Sorting

Randomized algorithms for sorting have been proposed on various models: [28, 261 (PRAM), [29]

(CCC), [ll, 231 (Mesh). All the abovementioned algorithms have a central idea similar to that of

Quicksort. A summary of their approach follows. 1) Given N keys to be sorted, sample o (N) keys

and sort the sample using any nonoptimal algorithm; 2) Partition the input using the sample keys

as splitters; and 3) Finally sort each part recursively.

Our algorithm takes a different approach. We make use of the selection algorithm as a subrou-

tine. In fact we exploit Theorem 5.2 t o partition the given input into n exactly equal parts and

sort each part recursively. The indexing scheme used is the reverse lexicographic order.

There are n phases in the algorithm. In the first phase each key will end up in the correct Sn-1
it belongs to. In the second phase, sorting is local to each Sn-l. At the end of second phase each

key will be in its correct Sn-2. In general, a t the end of the t t h phase, each key will be in its right

S,-! (for 15 t 5 n - 1).

Algorithm Sort

for i := n downto 2 do
(* Computation is local to each S;. Let Mi = i! and the nodes in any S; be

named 1 ,2 , . . . , Mi. *)

1) Select i keys whose ranks are uniform in the range [l, i!] using the algo-

rithm of the previous section. At the end of this selection, each node will

have a copy of these i keys (call them kl, k2,. . . , ki in sorted order).

2) Each processor p (1 5 p 5 i!) identifies the its key k belongs to, by

sequentially scanning through the i selected keys. In particular i t sets

NT := 1 if kj-1 < k 5 kj; for every other j (1 5 j 5 i) it sets NT := 0.

(Assume that ko = -03.)

3) Compute the prefix sums of the following i sequences: 1) N:, N:, . . . , N? ;

2) N i , N;, . . . , N?; . . .; i) N:, N:, . . . , N?.

4) If processor p has set NT to 1 in step 2), it means that the key k of

processor p belongs to the j t h The pth prefix sum of the j t h

sequence will then assign a unique node for this key k in the j t h Si-l.
Route each one of the i! keys to a unique node in the S;-l it belongs to.

Analysis. We first compute the time needed for the completion of a single phase (say the ith phase).

Later we compute the high probability run time of the whole algorithm. The proof technique for

obtaining high probability bound is adopted from [27].

Step 1 can be completed in O(i2) time w.h.p. Here by high probability we mean a probability

of 2 1 - & for any constant c . Step 2 can clearly be completed in O (i) steps. Step 3 involves the

computation of a sequence of i prefix sums and hence can be performed in O(i2) time (according
to Lemma 3.2). The routing task in step 4) takes o (i) time (cf. Lemma 2.5).

Thus we can make the following statement: If Ti is the run time of the i th phase, then,

for some constant c and any a. But i! is R((i/e)i) for large i's. Therefore rewriting the above we

for some constant c and any a. Let ti = c'cri2 for some constant c'. Then,

Also,
Prob.[T, > cai2 + ti] 5 2-&.

Let Q = CyZl i2. (Of course Q is O(n3)). If T is the run time of the whole algorithm, we are
interested in computing the probability that T > Q + t for any t. This probability is less than
the probability of events where Cy=l ti = t + j for 0 < j 5 Q. We compute the probability that

C$l ti = t and multiply the result by Q to get an upper bound.
Consider a computation tree the root of which is phase 1 of the algorithm. There are n children

for the root (one corresponding to phase 2 of each one of the Sn-l's). The tree is defined for the

rest of the levels in a similar way. We can associate a time bound for each path in this tree. The

run time of our algorithm is nothing but the maximum of all the path times. Consider one such
worst case path. Probability that along this path C?=, ti is = t is 5

The number of ways of distributing t over the n phases is to(n). Therefore,

Taking t = c'Q we get

Prob.[T > Q + c'Q] < n32-Sl(n1.5)+O(nlgn)

a
which is less than (A) , for any fixed a and c' > 0.

Thus we have the following

Theorem 6.1 Sorting of N = n! keys can be performed on an S, in 6(n3) time, the queue size

being O(n).

7 A Deterministic Routing Algorithm for the Star Graph

The routing problem is defined as follows: A network has a set of packets of information in which a

packet is a (source, destination) pair. To start with, the packets are placed in their sources. These

packets must be sent in parallel to their correct destinations such that at most one packet passes
through any link of the network at any time and all packets arrive at their destinations as quickly

as possible. Usually, the performance of a routing algorithm is determined by its run time and

queue size. The run time of a routing algorithm is the time needed for the last packet to reach

its destination, and the queue size is the maximum number of packets that will accumulate at any

node in the network during the entire course of routing. A paradigmatic case of general routing

is permutation routing in which initially there is exactly one packet at each node, and exactly

one packet is destined for any node. An optimal randomized on-line routing algorithm for the star

graph has been obtained in [21]. It runs in time O(n) w.h.p., but requires a queue of size O (n) for

each link. Although an oblivious deterministic routing algorithm is also obtained in the same paper,
it takes 0 (m) steps, and needs a queue of size o (G) for each node due to the lower bound of

[12]. We will present a deterministic routing algorithm which realizes a permutation routing in
time O(n3), and requires only a queue of size n for each node, and without a queue needed for each

link.

We first introduce a packing procedure which will be invoked by our routing algorithm. A

packing problem is a restriction of routing problem, which routes M 5 N packets (one per node),

where N is the size of the network, from their sources to a set of M contiguous nodes, say from

node s to node s + M - 1, where s > 1 and s + M - 1 5 N, so that the relative order of these M
packets is still preserved. Note that a node that contains a packet to be packed may not know the

destination of the packet although it has known s , the destination of the first packet in the packing

problem. In order to obtain the correct destination for packets involved in the packing, we need to

compute the index of each packet. The indices of these packets can be obtained by performing the

prefix computation. We use addition as the associative prefix operator, and if a node contains the

packet, it sets x; = 1, otherwise it sets x; = 0. Thus once a node, say node i, obtains the ith prefix

pi = XI + . . - + x; = k, it knows that there are k - 1 packets with destination before its packet, so

the right destination of its packet is s + k - 1.

Lemma 7.1 Given an n-star graph of N = n! nodes and a set of M 5 N packets, one per node,

these M packets can be packed in O(n2) steps.

Proof: We first perform a prefix sum to determine the correct destination of each packet. We then

route these packets to their own destinations using a greedy algorithm. Since we have shown that

each node in a subgraph S; has a corresponding node in every other S; along the (i + 1,1, i + 1)

chain to which it belongs, we could try to send a packet from its source to a node in the same

(n, 1, n) chain as the destination, and in the same subgraph as source. The node is unique to the

source, and we name the node as a,-1. From a,-1 the packet can be sent to its destination along

the (n, 1, n) chain. To send the packet from its source to a,-1, we need to first send the packet to

a 2 , then to a ~ , then to aq, and so on, until it reaches a,-1, where ai is defined as follows: Given

a node which occupies a position in S; to which it belongs, there is a corresponding position in

every other Si, which is named as ai. For example, node 3124 in Figure 2 has three a i s , viz.,
node 4123, node 4132, and node 4231, and has 12 a2's, viz., node 2134, node 3214, node 2143,

to enumerate just a few. So the greedy algorithm is to send each packet from its source to a 2 of

the destination along the (2,1,2) chain to which it belongs (stage 1)) then to a3 of the destination

along (3,1,3) chain to which it belongs (stage 2), and so on, until the packet reaches an-1 of the

destination. Then along the (n, 1, n) chain to which the an-1 and the destination belong (stage

n - I) , the packet will arrive at its destination. So each packet will go through n - 1 stages to reach

its destination. To make the algorithm normal and thus simplify the analysis of the behavior of

the algorithm, stage i + 1 wouldn't be triggered until all packets in stage i have reached their a,+l

of their own destinations.
We now show that during the routing, no packet will be delayed by any other packet. According

to our algorithm, the only possible delay occurs when there are several packets with the same a;+l,

in stage i, so that in the next stage, some packets will be delayed (waiting for other packets in

the same node to be sent out) if a node can process only a packet a t a time. However, according

to the definition of a;, this will occur only when the destinations of these packets are in different

subgraphs S;+l, which is impossible in a packing routing. Because if this occurs, then the routing

is not a packing. For example, in Figure 2, if in stage 2, packets in nodes 3214, 3124, and 2134 are

routed to node 3214 which is the a3 of their destinations, then the destinations of these packets

must be three of the following four nodes, viz., node 4321, node 4312, node 4213, and node 3214,

which contradicts the definition of packing problem (e. g., WLOG, if the destination of packet in

node 3214 is node 4321, then packets in node 3124 and node 2134 should be destined for nodes

between node 4321 and node 2341).

Since no packet will be delayed during the routing, it's not hard to see that stage i takes i steps.

The routing can thus be finished in time Cygt i = O(n2). Because a prefix sum on the Sn also

takes O(n2) steps, a packing on the Sn thus requires O(n2) + 0(n2) = O(n2) steps. This completes

our proof.

Lemma 7.2 If each node in the n-star graph can receive a packet from each incoming link and

send a packet along each outgoing link in one unit of time, then n sequences of packing can be

finished in O(n2) steps.

Proof: We simply pipeline the packings. After each packing is triggered for n steps, we trigger the

next packing. Since each individual packing takes < n2 steps (Lemma 7.1)) totally n sequences of

packing will take < 2n2 - n steps (because of the overlap due to the pipeline) which is still O(n2).

We need the following definition to describe our permutation routing algorithm.

Definition 7.1 A stage is said to be i-th stage stable, denoted Sttable, iff for every i-th stage

subgraph Sn-;, the destination of each packet in the subgraph is in the subgraph itself, and each

node of the subgraph has exactly one packet.

n-1 Our algorithm is designed as a sequence of stage transitions S,O,able, . . - , SStable in which initially

we are in Szable for a permutation routing on S,. We then in each subsequent stage route each

packet t o the subgraph to which its destination belongs such that the stage is transited from sftable
to This could be done by routing each packet along the (n - i, 1 ,n - i) chain to which it

belongs t o the subgraph which contains the destination of the packet. However, some nodes may

accumulate several packets because some packets in the same chain may be destined for the same

subgraph, and thus end up at the same node. For example, in Figure 2, if the destinations of nodes

1234, 1243, 1342, and 2341 are all in subgraph &(I) , then during the transition from SYtable to
Sttable, a11 these four nodes will be accumulated at node 2341. So as not to keep accumulating

too many packets at some nodes in subsequent stages (which might mean longer delays for some

packets), before we start the next transition, we have to balance the network such that each node

contains exactly one packet. This could be done by token distribution. According to our algorithm,

in stage i , after routing each packet along its (n - i + 1,1, n - i + 1) chain to its right subgraph,

every node of each subgraph S,-; has between 0 and n - i + 1 nodes, and each S,-; has exact

(n - i)! nodes. To distribute the packets so that each node of the subgraph has exactly one packet,

we simply invoke packing procedure (in Lemma 7.1) 5 n - i times. In each packing, a node which

contains more than one packets will contribute a packet to be packed. Also, if previous packing

ends a t position s, and there are M nodes which contribute packets in current packing, then these

packets will be packed t o positions from s + 1 to s + M. If the maximum number of packets in the

individual nodes of a subgraph is k, then after k - 1 packings, each node of the subgraph will have

exactly one packet.

Remark 1 Observe that for each node in the network, although there may be several packets accu-

mulated at the node during routing, it's not necessary to put these packets in the queue along the links

they come in. Because except one o f the packets, all other packets will be distributed to other nodes in

the same subgraph, and we simply store these packets in the local memory of the node before they are

sent out.

Theorem 7.1 A permutation routing on the n-star graph can be realized in time 0 (n3) without

queues needed for each link.

Proof: For a permutation routing, initially the n-star graph is in S2able. We try to transit n - 1

stages so that eventually the network is in 5':~;~~. During the transition from sitable to ~ d c ~ ~ ~ ,

we first route each packet in a S,-; along its (n - i + 1,1, n - i + 1) chain to its right subgraph

Sn-; (this will take at most n - i steps), and then perform packing for n - i times such that the

network is in Each transition takes (n - i) steps for routing and O((n - i)') steps for token
distribution (Lemma 7.2). Totally we have n - 1 transitions, the permutation algorithm thus totally

takes < C1zl1(n - i) + (n - i)2 = O(n3) steps. Also, according to Remark 1, the algorithm requires

no queues for each link.

8 Conclusions

In this paper we have addressed the problems of selection, sorting and routing on the star graph.

Our deterministic sorting algorithm is based on bitonic sorting and has a time bound that matches

the best known previous algorithm. Randomized algorithms have been given in this paper for

sorting and selection. The time bound of our randomized sorting is better than that of the previously

best known sorting algorithm. We also have presented a deterministic routing algorithm which runs

in O(n3) time on S,. Both selection and sorting have the obvious lower bound of R(n1gn) on the

star graph. Discovering algorithms with matching time bounds is still open.

References

[I] M. Ajtai, J. Koml6s and E. Szemeredi, An O(N lg N) Sorting Network, Proc. 15th ACM

Symposium on Theory of Computing, 1983, pp. 1-9.

[2] S. Akers, D. Hare1 and B. Krishnamurthy, The Star Graph: An Attractive Alternative to the

n-Cube, Proc. International Conference of Parallel Processing, 1987, pp. 393-400.

[3] S. Akers and B. Krishnamurthy, A Group Theoretic Model for Symmetric Interconnection

Networks, Proc. International Conference on Parallel Processing, 1986, pp.216-223.

[4] S.G. Akl, Parallel Sorting Algorithms, Academic Press, 1985.

[5] S.G. Akl and K. Qiu, Data Communication and Computational Geometry on the Star and

Pancake Interconnection Networks, T R 91-301, Dept. of Computing and Information Science,

Queen's University a t Kingston, Ontario, Canada, May 1991.

[6] S.G. Akl and K. Qiu, Parallel Minimum Spanning Forest Algorithms on the Star and Pancake

Interconnection Networks, T R 91-323, Dept. of Computing and Information Science, Queen's

University a t Kingston, Ontario, Canada, December 1991.

[7] K. Batcher, Sorting Networks and Their Applications, Proc. AFIPS Spring Joint Comput.

Conf., 1968, pp. 307-314.

[8] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms, McGraw Hill, 1991.

[9] M. Dietzfelbinger, S. Madhavapeddy and I.H. Sudborough, Three Disjoint Path Paradigms in

Star Networks, Proc. Symposium on Parallel and Distributed Processing, Dallas, Texas, Dec.
1991, pp. 400-406.

[lo] R.W. Floyd and R.L. Rivest, Expected Time Bounds for Selection, Communications of the

ACM, vol. 18, no.3, 1975, pp. 165-172.

[ll] C. Kaklamanis, D. Krizanc, L. Narayanan, and Th. Tsantilas, Randomized Sorting and Se-

lection on Mesh Connected Processor Arrays, Proc. ACM Symposium on Parallel Algorithms

and Architectures, 1991.

[12] C. Kaklamanis, D. Krizanc and Th. Tsantilas, Tight Bounds for Oblivious Routing in the

Hypercube, Proc. ACM Symposium on Parallel Algorithms and Architectures, 1990, pp. 31-

36.

[13] R. Karp and V. Ramachandran, Parallel Algorithms for Shared-Memory Machines, in Hand-

book of Theoretical Computer Science, North-Holland, 1990.

[14] M. Kunde, Routing and Sorting on Mesh-Connected Arrays, Proc. Aegean Workshop on Com-

puting, 1988. Springer-Verlag Lecture Notes in Computer Science # 319, pp. 423-433.

[15] D.E. Knuth, The Art of Computer Programming, Vol. 3, Addison-Wesley, 1973.

[16] F.T. Leighton, Tight Bounds on the Complexity of Parallel Sorting, IEEE Trans. on Comput-

ers, C-34(4), 1985, pp. 344-354.

[17] F.T. Leighton, Introduction to Parallel Algorithms and Architectures: Trees, Arrays, Hyper-

cubes, Morgan-Kaufmann Publishers, San Mateo, CA, 1992.

[18] A. Menn and A.K. Somani, An Efficient Sorting Algorithm for the Star Graph Interconnection

Network, Proc. International Conference on Parallel Processing, 1990, vol. 3, pp. 1-8.

[19] D. Nassimi and S. Sahni, Bitonic Sort on a Mesh Connected Parallel Computer, IEEE Trans.

on Computers, C-28:Z-7, 1979.

[20] D. Nassimi and S. Sahni, Parallel Permutation and Sorting Algorithms and a New Generalized

Connection Network, JACM, July 1982, pp. 642-667.

[21] M. Palis, S. Rajasekaran and D. Wei, General Routing Algorithms for Star graphs, Proc.

International Parallel Processing Symposium, 1990, pp. 597-611.

[22] S. Rajasekaran, Mesh Connected Computers with Multiple Fixed Buses: Packet Routing,

Sorting and Selection, T R MS-CIS-92-56, Dept. of CIS, Univ. of Pennsylvania, July 1992.

[23] S. Rajasekaran, k - k Routing, k - k Sorting, and Cut Through Routing on the Mesh, TR,

Dept. of CIS, University of Pennsylvania, Oct. 1991.

[24] S. Rajasekaran, Randomized Parallel Selection, Proc. Tenth International Conference on Foun-

dations of Software Technology and Theoretical Computer Science, 1990. Springer-Verlag Lec-

ture Notes in Computer Science 472, pp. 215-224.

[25] S. Rajasekaran and J.H. Reif, Derivation of Randomized Sorting and Selection Algorithms,

Technical Report, Aiken Computing Lab., Harvard University, 1985.

[26] S. Rajasekaran and J.H. Reif, Optimal and Sub-Logarithmic Time Randomized Parallel Sorting

Algorithms, SIAM Journal on Computing, 18(3), 1989, pp. 594-607.

[27] S. Rajasekaran, and S. Sen, Random Sampling Techniques and Parallel Algorithms Design, in
Synthesis of Parallel Algorithms, editor: Reif, J.H., Morgan-Kaufmann Publishers, San Mateo,

California, 1992.

[28] R. Reischuk, Probabilistic Parallel Algorithms for Sorting and Selection, SIAM Journal of

Computing, 14(2), 1985, pp. 396-411.

[29] J.H. Reif and L.G. Valiant, A Logarithmic Time Sort for Linear Size Networks, JACM, volume

34, January, 1987, pp. 60-76.

[30] C.P. Schnorr and A. Shamir, An Optimal Sorting Algorithm for Mesh Connected Computers,

Proc. 18th ACM Symposium on Theory of Computing, 1986, pp. 255-263.

[31] C.D. Thompson and H.T. Kung, Sorting on a Mesh Connected Parallel Computer, Commu-

nications of the ACM, vo1.20, no.4, 1977.

[32] U. Vishkin, An Optimal Parallel Algorithm for Selection, Unpublished manuscript, 1983

Figure 1: 3-star graph and 4-star graph.

a ABCD

ACBD \ DCB A

CDAB / BDAC

X CADB BADC

- -u
(3, 1, 3) chains

(4, 1, 4) chains (2, 1, 2) chains

Figure 2: All the (k, 1, k) chains in an S4, for 1 < k 5 4.

Figure 3: A bitonic-sorter for 8 inputs and 8 outputs.

Figure 4: A 3-way cleaner.

chains

cha ins

Figure 6: A tree-like (k, 1, k) chain network for the prefix computations of the star graph.

procedure SGS(S; , 0)
begin

1. if i > 2 then

do in parallel
for all even numbered S;-l's do in parallel

SGS(S;- l , A);
for all odd numbered Si-l's do in parallel

SGS(S;-1, D) ;
endif

2. /* Make a bitonic sequence by merging */
S G M (S i , 0 7 l , i7 i) ;

3. /* Bitonic Sort */
for k from i downto 2 do

for each (k , 1, k) chain do in parallel
Perform odd-even transposition sort in the order of 0.

end procedure SGS

procedure S G M (S j , 0 , low, high, i)
begin

if 2 2 then

if 0 is A then

do in parallel

S G M (S j 7 A, ~ O W , I O W + I ;] - 1, [;I);
S G M (S j , D , low + [$I, high, [$I);

else

do in parallel

S G M (S j , D , low, low + 131 - 1, I$]);
S G M (S j 7 A, low + [$] , high, [$J);

endif
endif

for each (j, low,high) chain do in parallel
Perform odd-even transposition sort in the order of 0;

for k from j - 1 downto 1 do
for each (k, 1, k) chain do in parallel

Perform odd-even transposition sort in the order of 0;
end procedure SGM

Figure 7: The Deterministic Sorting Algorithm

stage 1 stage 2
stage 3

Table 1: An indexing scheme for S4.

permutation

432 1
342 1
4231
2431
3241
2341
4312
3412
4132
1432
3142
1342
4213
2413
4123
1423

2 143
1243
3214

index

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

2134 22
1234 23

Table 2: The communication between each pair of adjacent nodes in (4,1,4) chains of Sq.

