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Abs t r ac t  

We consider the problems of selection, routing and sorting on an n-star graph (with n! 

nodes), an  interconnection network which has been proven t o  possess many special properties. 
We identify a tree like subgraph (which we call as a '(k, 1, k )  chain network') of the star graph 
which enables us to  design efficient algorithms for the above mentioned problems. 

We present an algorithm that performs a sequence of n prefix computations in O(n2)  time. 
This algorithm is used as a subroutine in our other algorithms. In addition we offer an efficient 
deterministic sorting algorithm that runs in O(n3 lg n) steps. Though an algorithm with the 
same time bound has been proposed before, our algorithm is very simple and is based on a 

different approach. We also show that sorting can be performed on the n-star graph in time 
O(n3) and that selection of a set of uniformly distributed n keys can be performed in 0(n2) time 
with high probability. Finally, we also present a deterministic (non oblivious) routing algorithm 

that realizes any permutation in O(n3) steps on the n-star graph. 
There exists an algorithm in the literature that can perform a single prefix computation in 

O(n lg n) time. The best known previous algorithm for sorting has a run time of O(n3 lg n) and 
is deterministic. To our knowledge, the problem of selection has not been considered before on 
the star graph. 

'This research was supported in part by the US Army Research Office Grant DAAL 03-89-C-0031 



1 Introduction 

Interconnection Networks (denoted as ICNs from hereon) have been generally accepted to be the 

most practical models of computing. Among those suggested ICNs, a binary n-cube is one of the 

most popular networks because it possesses some attractive features. The n-cube is a highly fault- 

tolerant ICN and has low degree and small diameter (which is logarithmic in the network size). The 

n-star graph has been suggested in [2] as a better alternative ICN to the n-cube. In [2], it has been 

shown that the star graph has better features than the n-cube with respect to the degree, diameter, 

etc. The network needs fewer links per node (~rocessing element) and fewer communication steps 
per message passing request. A number of interesting algorithms have been designed for the star 

graph (see e.g., [2, 21, 5, 9, 61). But still a lot more work has to be done. 

In this paper, we consider the following problems: 1) Selection, 2) Sorting, and 3) Packet 

Routing. Sorting is the process of rearranging a given sequence of keys in either ascending or 

descending order. Packet routing is the problem of sending packets of information from their 
origins to their destinations. We are interested in permutation routing wherein at most one packet 
originates from any node in the ICN and at most one packet is destined for any node. Efficient 

sorting algorithms for various ICNs have already been developed [31, 30, 20, 26, 29, 4, 161. 

Before our work, the best known sorting algorithm for the n-star graph ran in O(n3 lg n) time 

[18, 51. We present a simpler sorting algorithm which has the same time bound. Whereas the 
previous algorithm is based on the shearsort algorithm, our algorithm is based on bitonic sort. We 

also present an improved sorting algorithm which runs on the n-star graph in O ( n 3 )  time with 

high probability. Our approach to randomized sorting differs from previous approaches in that 
we use repeated selection. These algorithms make use of prefix and selection algorithms that we 

have designed. Our selection algorithm can perform a set of n selections in O(n2) time with high 

probability. provided the keys to be selected have ranks uniform in the interval [I ,  n!]. The prefix 

algorithm presented in this paper can compute the prefixes of n different sequences in O(n2) time. 

In contrast, Akl and Qiu [5] show that a single prefix computation can be performed in O(n1gn) 

time, which is the best possible. Prefix computation is performed using a tree like subgraph (which 

we call as a '(k, 1, k)  chain network'). This network, we believe, is applicable for many other 
computations as well. Similar networks have been used before [18, 51. 

Efficient packet routing algorithms for the star graph have already been obtained in [21]. Al- 

though the best known randomized routing algorithm for the star graph runs in O(n) time with 

very high probability [21], due to the lower bound of [12], the best known deterministic oblivious 

routing algorithm for the star graph needs a much higher running time. In this paper we develop 
a non-oblivious deterministic routing algorithm with O(n3) running time. 

The rest of this paper is organized as follows. Section 2 introduces some properties of the star 

graph, and describes bitonic sort. Sections 3 and 4 contain our prefix and deterministic sorting 
algorithms respectively. In section 5 we present our selection algorithm for the star graph while 



Section 6 describes our randomized sorting algorithm. The deterministic routing algorithm is 

presented in section 7. Section 8 concludes the paper. 

2 Preliminaries 

We first define the star graph and then give some definitions and lemmas that will be helpful 

throughout . 

2.1 The Star Graph 

Definition 2.1 Let slsz . . .sn be a permutation of n symbols, e.g., 1 . .  . n. For 1 < j 5 n, we 
define 

SWAPj(sls2 . . .s,) = sjsz . .  .sj-Islsj+l . . . s,. 

Definition 2.2 An n-star graph is a graph S, = (V, E) with ( V I =  n! nodes, where V = 
( ~ 1 . 5 ~ .  . . sn  I slsz . .  . sn is a permutation of n different symbols), and E = {(u,v) I u, v E V 
and v = SWAPj(u) for some j, 1 < j 5 n}. 

The 3-star and $-star graphs are shown in Figure 1. It is not hard to see (from Definition 2.2) 

that the degree of the n-star graph is n - 1. Also, in [2], Akers, Harel, and Krishnamurthy have 

shown that the diameter of the n-star graph is L$(n - I)]. On the other hand, an n-cube has 2" 

nodes, degree n, and diameter n. Thus, in comparison with the n-cube, the degree and diameter of 

the star graph grow more slowly as functions of the network size. Moreover, the star graph is both 
vertex (node) symmetric and edge symmetric (just like the n-cube). We assume that the star graph 

is a MIMD machine in which at each step different nodes could perform different instructions. 

Definition 2.3 A subgraph of an n-star graph Sn is said to be an i-th stage subgraph, denoted 

Sn-i(~n-i+l~n-i - .sn),  i f f  Sn-i is itself an (n - i)-star graph, 0 < i < n, and the last i symbols of 
labels of all the nodes in it are identical. 

The S;-l's of an S; partition the S; into i identical subgraphs. For example, an Sq consists of 

4 S3's, viz., S3(1), S3(2), S3(3), and S3(4), and each of the S3's consists of 3 S2's, and so on. 

Definition 2.4 The i-th position of the permutation labeling a node u in Sn is denoted by us,, 

1 5 i L n .  

Definition 2.5 The path between a pair of nodes u, v E V is an ordered sequence of nodes and links 

(edges) in the graph, such that the first and the last nodes in the sequence are u and v. Adjacent 
nodes are directly connected by a link in the sequence. The length of the path is the number of links 
in the path. Adjacent nodes, say u j  and uj+l = SWAP;(uj), together with the link connecting 

SWAP-  SWAP4 SWAP2 SWAP4 
them, are denoted by u j  *' uj+l. For example, in Sq, 4231 - 1234 - 2134 - 4132 
denotes a path of length 3. 



Definition 2.6 The distance between two nodes u and v is the length of the shortest path between 

u and v. 

For any network sorting algorithm, we need to specify an ordering (also known as an indexing 

scheme) of the nodes. The indexing scheme we adopt is reverse lexicographic order and is the same 
as the one assumed in [18]. Table 1 gives the indexing scheme for S4. 

Definition 2.7 (Reverse lexicographic order:) Let 4 be the ordering of nodes in the network. Let 

u be the node labelled as us, us, . - us, and v be the node labelled as v,, v,, . . . vSn. Then u 4 v ifJ 

there exists an i, 1 < i 5 n,  such that uSl = v,, for all j > i ,  and us, < v,,. 

Definition 2.8 Consider a k-star graph Sk. Sk consists of k copies of Sk-l. These copies can be 

arranged as Sk-1(k), Sk-l(k - I), . . , , Sk-1(2), Sk-1(l) in reverse lexicographic order. We say two 
or more nodes from distinct Sk-l '~ are corresponding if they have the same index in their respective 
Sk-l '~. 

As an example, in S4 (see Figure 2), the two nodes 2341 and 1243 are corresponding (since both 

have index 5 in their S3's). 

Definition 2.9 A (k, 1, k) chain in Sk is defined to be a sequence of k corresponding nodes 

qk,qk-1, . .. , q z , q ~  such that q j  E Sk-1(j) for 1 5 j 5 k. Also, the segment of a (k, 1, k) chain 
from node t to node u is denoted as a (k, l ,  u) chain. 

Figure 2 identifies all the (k, 1, k) chains (for 1 < k 5 4) in an S4. Notice that there are (k - I)! 

different (k, 1, k) chains in an Sk. Also, each node in any Sk-1 belongs to a unique (k, 1, k) chain. 

If v,, , v,, , . . . , v,, is any node in Sk,  its left neighbor in its (k, 1, k) chain can be obtained as follows: 
'exchange' v,, with the next smallest symbol. For instance in Figure 2, the left neighbor of 1243 is 

1342 and 1342 is obtainable from 1243 by 'exchanging' 3 with 2. Any two symbols can be exchanged 

with three or less SWAP operations. Right neighbor of v,, , v,,, . . . , v,, can be obtained in a similar 
way by exchanging v,, with the next largest symbol. 

Thus one could think of a (k, 1, k) chain as a linear array with k nodes. A packet (or item) from 

one node to its neighbor along the chain can be sent via a physical path of length 3.  A (k, 1, k) 

chain also has the following nice property: Say there is an item at each node of a (k, 1, k) chain 

qk, qk-1,. . . , q2, q1, and each item has to be moved to its (say) left neighbor. It is easy to see that 
these items could be moved simultaneously in 3 steps. For an illustration see Table 2. 

The above observations lead to the following Lemmas. 

Lemma 2.1 k items in a (k, 1, k) chain, stored one item per node, can be sorted using an odd-even 
transposition sort in 3k steps. 



Lemma 2.2 The odd-even transposition sort could be simultaneously applied on all the (k, 1, k) 

chains (there are (k  - I)! of them) of an Sk so that a set of k items in each chain, one per node, 

could be sorted in 3k steps. 

Proof : The odd-even transposition sort on any chain never affects any other chain (see Figure 2 

and Table 2), and the correctness of this theorem thus immediately follows from Lemma 2.1. 

Lemma 2.3 (u - I) + 1 items in a (k , l ,u )  chain, stored one item per node, can be sorted by 

odd-even transposition sort in 3(u - 1 $1 )  steps. 

Proof : Immediate from Lemma 2.2. 

Table 2 shows the communication between each pair of adjacent nodes of all (4,1,4) chains of 

Sq, and would help readers better appreciate Lemma 2.1 and Lemma 2.2. 

2.2 The Bitonic Sort 

Definition 2.10 A sequence X = (xl,  2 2 , .  , xN) of N numbers is said t o  be bitonic if either 

XI I 2 2  5 5 x; > x;+l > . . -  > X N  or x1 2 xz 2 . . . > xi 5 x;+1 < . . - 5 X N  for some i, 

l I i < N .  

Batcher's bitonic sorting network [7] can sort any bitonic sequence (defined in Definition 2.10) 

into ascending or descending order. The bitonic sorting network (bitonic-sorter) is constructed by 

recursively combining half-cleaners [I], as shown in Figure 3. 

A half-cleaner with 8 inputs and 8 outputs is shown in the dotted box in Figure 3. It moves 4 

larger items to  the upper 4 outputs, 4 smaller items to  the lower 4 outputs, and each subsequence 

of 4 items remains a bitonic sequence. The correctness of the bitonic-sorter has been shown in 

[15] and [8]. With the bitonic-sorter, any sequence (x l , xz , . . - , xN)  of N items could be sorted 

into ascending (or descending) order by recursively sorting (xl, x2,- 0 .  , x,+,) into ascending order, 

(x ,+J, 
- - , xN) into descending order (or vice versa). 

Many sorting algorithms for various ICNs have been designed based on bitonic sort (see e . g .  

[19] [31]). Although our sorting algorithm is also designed based on bitonic sort, our bitonic-sorter 

is made from m-sorter [15] modules instead of 2-sorters mentioned above. The reason that we 

adopt the m-sorter instead of 2-sorter could be easily seen from Definition 2.3 in which the S ,  
is constructed from m S,-l's rather than 2. We use the m-sorter to  construct a m-way cleaner. 
Figure 4 shows a 3-way cleaner with 6 inputs and 6 outputs. 

To prove the correctness of our sorter, we need only to  prove Lemma 2.4. The proof of Lemma 2.4 
could be simplified based on the zero-one principle (Theorem 2.1). 



Theorem 2.1 If a network with N inputs can sort all 2N possible sequences of 0's and 1's into 
ascending (or descending) order, i t  will sort any sequence of arbitrary numbers into ascending (or 

descending) order. 

Proof: See [15]. 

Lemma 2.4 Given a m-way cleaner of k m-sorters (denoted as m - cleanerk) with m x k inputs 

and m x k outputs, which is grouped into m subsequences of k contiguous outputs, if the input to  

the cleaner is a bitonic sequence of O's and l's, then the output satisfies the following properties: 

each of m subsequences is a bitonic sequence, each item in i th group, 1 5 i < m, is at least as 

small as (or as large as) every item in ( i  + 1)th group, each group of the output is clean' except 

j t h  group for a j, 1 5 j 5 m, which may be clean or dirty, but is still bitonic. 

Proof: The network performs odd-even transposition sort in parallel on each m-sorter (i.e. inputs 

i , i+k , . . . , i+ (m- l )k , fo r  all 15 i < k). Without lossofgenerality, weassume that theinput isof 

form 00. .  .001. - .  1100. 0. (The proof for the symmetric input is also symmetric.) Assume that 
the block of consecutive 1's expands across T subsequences (T < m - I ) ,  say from ith to  (i  + T - l) th,  

i > 1, such that none or some of 1's are in (i - 1)th subsequence and none or some of 1's are in 

(i + r ) th  subsequence. There are 7 cases depending on the number of 1's in ( i  - 1)th and ( i  + r)th 
subsequences. Each case is shown in Figure 5. In case (a), there are some 1's in both (i - 1)th 

and (i + r ) th  subsequences, and the total number of 1's in these two subsequences is less than k, 
the size of each subsequence. The result will be m - T - 1 clean subsequences of 0's followed by a 

dirty subsequence which is still bitonic, and then followed by T clean subsequences of 1's. Case (b) 

is similar t o  case (a), but the total number of 1's in (i  - 1)th and (i + r ) th  subsequences is equal 

t o  k. So the result will be m - T - 1 clean subsequences of 0's followed by r + 1 clean subsequences 

of 1's. Case (c) is also similar to  case (a), but the total number of 1's in two ended subsequences 

is greater than k. So the result will be m - T - 2 clean subsequences of 0's followed by a dirty 

subsequence which is bitonic, and then followed by T + 1 clean subsequences of 1's. Case (d) and 

(e) are similar where in case (d) only (i - 1)th subsequence has 1's and in case (e) only ( i  + r ) th  

subsequence has 1's. Both cases result in m - T - 1 clean subsequences of 0's followed by one dirty 

subsequence which is bitonic, and then followed by T clean subsequences of 1's. Case (f) is the case 

that the block of consecutive 1's expands across exactly T subsequences. Thus the result is m - r 

clean subsequences of 0's followed by r clean subsequences of 1's. Case (g) is the case that the size 

of the block of consecutive 1's is smaller than k. And the result is thus m - 1 clean subsequences 
of 0's followed by a dirty subsequence which is a bitonic 0ne.U 

'A subsequence is clean if it consists of either all 0's or all l's,  otherwise it is dirty 



2.3 Packet Routing and Chernoff Bounds 

The following lemma due to  Palis, Rajasekaran and Wei will be applied in our randomized algo- 

rithms: 

Lemma 2.5 Permutation routing on S, can be performed in O(n) time with high probability. 

One of the most frequently used facts in analyzing randomized algorithms is Chernoff bounds. 

These bounds provide close approximations t o  the probabilities in the tail ends of a binomial 

distribution. Let X stand for the number of heads in n independent flips of a coin, the probability 

of a head in a single flip being p. X is also known to have a binomial distribution B(n,p). The 

following three facts (known as Chernoff bounds) are now folklore: 

Prob.[X > (1 + ~ ) n p ]  5 exp( -~~np /2 ) ,  and 

Prob.[X 5 (1 - ~ ) n p ]  5 exp(-e2np/3), 

for any 0 < E < 1, and m > np. 
Like the 0 ( )  function is used to  specify the asymptotic resource bounds of deterministic algo- 

rithms, 6 ( )  is used to  specify resource (like time, space etc.) bounds of randomized algorithms. 

We say a function f (.) is 6(g(.)) if there exist constants c and no such that f (n) 5 cag(n) with 

probability > (1 - n-a) on any input of size n > no, for any a > 0. 
Throughout let w.h.p. stand for 'with high probability.' By high probability we mean a proba- 

bility of >_ (1  - nWa) for any fixed a, n being the input size. 

3 Prefix Computation on the Star Graph 

Given a sequence of items xo, XI ,  . . . , XN and a binary operator @, let p; = xo @ xl @ - . @ x; for 

0 5 i 5 N. The process of computing the values po,pl, . . . , p~ is called a prefix computation. 

A prefix computation algorithm is an essential tool for the design of numerous other algorithms. 

In this section we show that on S, a sequence of n prefix computations can be simultaneously 

completed in O(n2) time. In contrast, Akl and Qiu [5] show that a single prefix computation can 

be completed in O(n1gn) time and their algorithm is clearly optimal. 

First we present our prefix algorithm for a single sequence and later explain how to modify this 

algorithm for the case of a sequence of prefixes. The star graph under concern is an S, and there is 

an element a t  each node of the graph. The indexing scheme assumed is reverse lexicographic order. 

There are two phases in the algorithm, namely the forward phase and the reverse phase. There are 

n - 1 stages in each phase. In stage i of the forward phase, computation is local t o  the different 

Si's, for 2 5 i 5 n. 



In fact in any S;, computation takes place only along a specific (2, l , i )  chain, namely the chain 

in which nodes of largest index from the i different S;-17s lie. Call any such chain as a special ( i ,1 ,  i) 

chain. (Each S; has a unique special (i, 1, i) chain.) Referring to  Figure 2, in stage 3 of the forward 

phase, computation takes place only along the chain 2341, 1342, 1243, 1234. Similarly, in stage 2, 

computation occurs only along the chains 3421, 2431, 2341; 3412,1432,1342; 2413,1423,1243; and 

2314,1324,1234. (See also Figure 6.) More details follow. 

Algorithm Prefix 

(* The forward phase *) 

for i := 2 to n do 

(* Computation is local to each S; *) 

Perform a prefix computation along the special (i, 1, i) chain. 

(* The reverse phase *) 

for i := n downto 2 do 

(* Computation is local to each S; *) 

Each node q in the special (i, 1,i)  chain obtains the sum from 

its left neighbor and propagates this sum to all the nodes in 

the special ((i  - I ) ,  l , ( i  - 1)) chain that q belongs to; 

The nodes in this ((i- I ) ,  1, (i- 1)) chain, excepting q, simply 

accumulate the propagated sum to the previously computed 

sums; 

Analysis. In the forward phase, each stage i takes 3(i  - 1) steps. Thus the total run time is O(n2). 

In the reverse phase stage i takes time 3i, accounting for a total of O(n2) time. Thus the whole 

algorithm runs in time 5 3n2. The correctness of the algorithm is quite clear. Thus we get the 

following 

Lemma 3.1 The prefix computation of a single sequence can be completed on S,  in time O(n2).  

We could indeed perform a sequence of n prefix computations in O(n2) time. The idea is to  

pipeline. The precise definition of our problem is this: There are n items in each one of the n! 

nodes of S,. The problem is to: 1) compute the prefix sums of the first items of the nodes; 2) 

compute the prefix sums of the second items of the nodes; . . . ; and n) compute the prefix sums of 
the nth items of the nodes. 

We could make use of the same algorithm with a very simple modification. In stage i of the 

forward phase, compute the prefix sums of the n numbers along the special ( i , l ,  i) chain using 

pipeline. Now stage i will terminate in time 3(n + i - 2) steps. Likewise in stage i of the reverse 



phase, each node q along the special (i, 1,i)  chain obtains the n sums from its left neighbor in 3n 

steps; Followed by this, it propagates these n numbers along its ((i - I), 1, (i - 1)) chain, using 
pipeline, in 5 3(n + i )  steps. Thus the total run time will be 5 9n2. We get the following 

Lemma 3.2 A sequence of n prefix computations can be performed on Sn in O(n2) time. 

COPYING. Consider an S,. For any k < n,  say there is a specific Sk of Sn that has k! items 

(stored one per node), and we want to  copy these items to every other Sk.  (Similar, but not the 

same, problems are considered in [5].) 

We could do this copying task as follows: Use all the ((k + 1)) 1, (k i- 1)) chains (in the Sk+l 
that this Sk is in) to copy the contents of the specific Sk into every Sk in its Sk+l. The result of 

this copying is that nodes with the same index in every Sk (of Sk+1) will have the same item. Now 

use all the ((k + 2)) 1, (k + 2)) chains in the Sk+2 that our Sk is in to  make k + 2 copies of the 

Sk+1. The algorithm proceeds in a similar fashion. Clearly such an algorithm runs in O(n2) time. 

Therefore we have the following 

Lemma 3.3 The contents of any Sk in an S, (for k < n) can be copied onto every other Sk in 

O(n2) time. 

4 The Deterministic Sorting Algorithm for the Star Graph 

4.1 The Algorithm 

Our deterministic sorting algorithm for the star graph is called SGS (Star Graph Sort), and is based 
on the bitonic sorter with m-way cleaners. To simplify the discussion, we assume that initially there 

is exactly one item per node. However, the algorithm could be easily extended to  sort M items, 

where M >> N = n!, on the n-star graph Sn based on the argument in [17]. 

The basic idea behind our algorithm is as follows: For a given sequence X = (xl,  x2,. . . , xN),  

and a S, of N = n! nodes, we recursively sort (in parallel) each subsequence of (n - l ) !  items in each 

subgraph into ascending or descending order depending on if the subgraph (subsequence) is 
odd or even numbered. Each pair of adjacent subsequences will form a bitonic sequence. Then we 

sort each bitonic sequence into either ascending or descending order so that two bitonic sequences 

will be merged into a longer bitonic sequence of double the size. (Note that although we may have 

an odd number of subsequences such that the last group has only a single subsequence, according 

to  Definition 2.10, eventually we will still have a single large bitonic sequence of N items.) This 
will be done for llgn] times so that we have a bitonic sequence of N = n! items as the input for 
the bitonic sorter of N inputs and N outputs with m - cleane~(,-~)!'s, 1 < m < n. 

The algorithm is presented in Figure 7. As stated in the informal description of the algorithm 
above, the algorithm needs to  recursively merge shorter bitonic sequences into a longer bitonic 



sequence. It invokes procedure SGM (Star Graph Merge) to perform the task. In the algorithm, 

0 denotes the order of the sorted sequence, where 0 can be either A(ascending) or D(descending). 

The reason why the algorithm works could be easily understood from the sorting network (shown 

in Figure 8) which represents the behavior of S G S  on S4. Each stage consists of a merging phase 

and a bitonic sort phase. In the ith stage, all Si+l's perform the sorting task in parallel such that 

each pair of adjacent S;+l's form a bitonic sequence. These bitonic sequences will be merged into 

a longer single bitonic sequence in the merging phase (before bitonic sort phase) in the next stage. 

4.2 Complexity Analysis 

The number of steps needed for SGS to  finish the sorting task can be obtained from the following 

recurrences: 

, where 

M ( j )  = M ( $ )  + +xi:: k, 2 5 j 5 n, and B(n)  = B(n - 1)  + n. M ( n )  represents the number 

of steps needed for merging and B(n)  stands for the time needed for bitonic sort. Solving this 

recurrence equation by iteration, we have 

Solving for B(n) in similar way, we get B(n) = O(n2). Thus 

which yields T ( n )  = O(n3 lg n). 

Actually, from Figure 8, we could obtain the time complexity in more detail. There are n - 1 

stages for a sorting on the Sn. Each stage consists of two phases, namely merging phase and bitonic 

sort phase, and each phase in stage i again consists of i levels. j t h  level, 1 < j 5 i, in bitonic 

sort phase has (i  - j + I)! ( i  - j + 2,1, i - j + 2) chains. However, we could perform the odd-even 

transposition sort on these chains in parallel. The bitonic sort phase in stage i thus takes 3 .  ~ ~ 2 :  j 

steps. Since the merge phase of ith stage recursively merges [lg(i + 1)l bitonics into a longer single 
bitonic, it requires [lg(i + 1)l - 1 iterations in which the kth iteration takes 3 .  & + 3 .  xiz2 j steps. 

Therefore, the merge phase in stage i totally takes time 3.~!:1'+')'-' &+(pg( i+ l ) j  - 1 ) - 3 - ~ i = ,  j .  

We thus conclude that the total number of steps, T(n),  needed for the algorithm to  sort S, is given 

by 



This shows that the constant factor behind the big 0 is indeed very small (i.e. < i). 
Theorem 4.1 N = n! items stored one per node in Sn can be sorted by S G S  in ascending (or 

descending) order in O(n3 lg n) steps. 

Proof : Follows from Lemma 2.4, Lemma 2.2, Lemma 2.3, and the complexity analysis above in 

this section. 

5 Randomized Selection on the Star Graph 

In this section we show that the problem of selection can be solved in 6 ( n 2 )  time on a star graph 

with n! nodes. Given a sequence of N numbers and an integer 1 5 i < N, the problem of selection 

is to find the ith smallest element from out of the given N keys. We assume that there is a key 

at each one of the N = n! nodes to  begin with. We prove a stronger result, namely, that we can 

perform selection of n keys within 6 ( n 2 )  time if the ranks of these keys are uniform in the interval 

[I ,  Nl. 

5.1 Approach 

Randomized selection has a long history [lo, 28, 24, 321. There is a central theme in all these 
algorithms which we also adopt in our algorithm. The basic steps are: 1) To sample and sort 



s = o(N) keys from the input; 2) To identify two keys from the sample (call these ql and q2) such 

that the key to  selected will have a value in the interval [ql, q2] w.h.p.; 3) To eliminate all the keys 

from the input which do not have a value in the interval [q l ,  q2]; and 4) Finally to perform an 

appropriate selection in the set of remaining keys (there will not be many of them w.h.p.). 

We adopt the same approach to  perform n selections on the star graph. In particular if there 

is a key at  each node of the star graph to  begin with, and if i j  = $ for 1 5 j j n ,  our algorithm 

will output the il th  smallest element, the i2th smallest element, . . . , and the i,th smallest element 

all in O"(n2) time. 

5.2 The Algorithm 

First we show how to perform the selection of a single key and then explain how the same algorithm 

could be modified to  select n different keys. We'll make use of the following facts: We assume a 

star graph with N = n! nodes. 

Fact 5.1 If 1 5 l 5 N is any integer, then there exists a sub-star graph of the n-star graph whose 

size is j en. 

Lemma 5.1 For any fixed E < 3, a set of N' keys distributed in a N-node star graph with no more 

than one keys per node can be sorted in 6 ( n 2 )  time. 

Proof. 1) Perform a prefix computation to  assign a unique label to  each key from the range [l, N']. 

2) Now route these keys t o  a sub-star graph of size N" where 6' > E and E' 5 $. Realize that a 

sub-star graph of this size exists (cf. Fact 5.1) and a packet whose label is q can be routed to a 

node indexed q in the sub-star graph. With this prefix computation and routing step we basically 

concentrate the keys to  be sorted in a sub-star graph whose size is no more than ~ ' 1 ' .  Let the 

sub-star graph in which the keys are concentrated be an ST (with r! nodes). Prefix computation 

takes O(n2) time (Lemma 3.2) and routing takes 6 ( n )  time (Lemma 2.5).  

3) Next we make a copy of these keys in every S, in S,. The number of such copies made will 

be at  least fi and these copies can be made in O(n2) time (cf. Lemma 3.3). If S:, S:, . . . , S: 
is the sequence of S,'s in S,, we make use of the copy in S,P to compute the rank of the pth key, 

i.e., the key whose label is p (as computed in step 1). Rank computation is done using the prefix 

algorithm in O(n2) time. 4) Finally we route the key whose rank is j to the node indexed j in a 

specific ST. 
Clearly this algorithm runs in 6 ( n 2 )  time. 

We also need the following sampling lemma from [25]. Let S = {kl, k2 , .  . . , k,} be a random 
sample from a set X of cardinality N. Let 'select(X, i)' stand for the i th smallest element of X 
for any set X and any integer i. Also let ki, k;, . . . , k', be the sorted order of the sample S. If r;  is 

the rank of ki in X and if (SI = s, the following lemma [25] provides a high probability confidence 
interval for r;. 



Lemma 5.2 For every a, Pmb. ( I T ,  - i+l > c a 5 ~ )  < N-O for some constant c .  

A description of the selection algorithm follows. This algorithm and the analysis of it is very 

similar to the ones in [22]. To begin with each key is alive. 

Algorithm Select 

repeat forever 

1) Count the number of alive keys using the prefix sums algorithm. Let M 

be this number. If M is 5 N ~ / ~  then quit and go to  7); 
N' 13 

2) Each alive element includes itself in a sample S with probability 7. 

The total number of keys in the sample will be 8(N1l3); 

3) Concentrate the sample keys in a sub-star graph of size no more than N ~ / ~  

and sort them. Let ql be select(S, i+ - 6) and let q2 be select(S, i+ + 6), 
where S = d J m  for some constant d (> ca)  to be fixed; 

4) Broadcast ql and q2 to the whole star graph; 

5) Count the number of alive keys < ql (call this number MI); Count the 

number of alive keys > q2 (call this number M2); If i is not in the interval 

(MI, M - M2], go to 2) else let i := i - MI; 

6) Any alive key whose value does not fall in the interval [ql, q2] dies; 

end repeat 

7) 

Concentrate the alive keys in a sub-star graph and sort them; Output 

the i th smallest key from this set. 

Theorem 5.1 The above selection algorithm runs in 6 ( n 2 )  time. 

Proof. We first show that the repeat loop is executed no more than 5 times w.h.p. Followed by 

this, we show that each of the seven steps in the algorithm runs in O"(n2) time. 

An application of Lemma 5.2 implies that if d is chosen to be large enough (> c a ) ,  the ith 

smallest element will lie between ql and q2 w.h.p. Also, the number of keys alive after j runs of the 

repeat loop is d (&(w)j). After 4 runs, this number is d ( ~ l / ~ ( & T ) ~ )  = d(N215). 

Step 1) of the algorithm takes O(n2) time since it involves just a prefix sums computation. 
Steps 2) and 6) take O(1) time each. In Step 3),  concentration of keys can be done by a prefix 

computation followed by a packet routing step (cf. the proof of Lemma 5.1). Sorting is done using 

the algorithm of Lemma 5.1. Thus step 3) takes 6 ( n 2 )  time. Steps 4) and 5 )  can be completed in 

O(n2) time using the prefix algorithm. Step 7) is similar to 3).  



5.3 A Set of n Selections 

We show now how to modify the above selection algorithm to perform n selections within time 
N 2N d(n2). In particular, we are interested in selecting keys whose ranks are T, n, . . . , F.  The main 

idea is t o  exploit the fact that a sequence of n prefix computations can be completed in O(n2)  time. 

Let i j  = $ for 1 < j  5 n. 

We only indicate the modifications to  be done. Steps 1) and 2) remain the same. In step 3, we 

select 2n keys (instead of just two). Call these keys qll, q12,q21,q22, . . . , qnl, qnz. qjl and qj2 (for 

any 1 5 j < n)  are such that the i j th smallest key in the input (i.e., the j t h  key to  be selected) 

will have a value in the range [qjl,qj2] w.h.p. and qjl and qj2 are defined as before. For instance 

qjl=select(S, ij+ -6) where S = d J m f o r  some constant d > c a .  After identifying this sequence 

of 2n keys, in step 4) the sequence is broadcast to the whole star graph so that each processor has 

a copy. Clearly, this can be done in 6 ( n 2 )  time (Lemma 3.2). 

In step 5 ,  count the number of alive keys < qjl (call this number Mjl) and the number of 

alive keys > qj2 (call this number Mj2), for each 1 5 j 5 n. Broadcast these numbers to each 

processor as well. If i j  is not in the interval (Mil, M - Mj2] for any j go to  2) else let i j  := 

i j  - Mjl + C;,:(M - MT1 - MT2), for each j. In this step we need to  perform twice a sequence of 
2n prefix computations and hence we only need O(n2) time (Lemma 3.2). 

In step 6), any alive key that does not fall in any of the intervals [qll, q12], [q21, q22], . . . , [qnl, qn2] 

dies. We emphasize that these n intervals will be disjoint w.h.p. This step takes O(n)  time. 

In step 7), we output n keys whose ranks are il , i2, . . . , in. 

Analysis At any time in the algorithm the intervals [qll, q12], [q21, 4221, . . . , [qnl, qn2] will be disjoint 

w.h.p. for the following reasons: During any run of the repeat loop, 1) if N' is the number of alive 

keys, the ij's (for 1 < j < n)  will be nearly uniform in the range [I, N'l w.h.p., and 2) the number 

of sample keys in the range [qjl, qjz] (for any 1 5 j 5 n) will be o ( J ~ ) .  

The number of aPve keys after step 6) of run j is seen to  be 6 ( & ( m ) j n j )  After 4 

runs, this number is d ( ~ ~ / ~ 1 ~ ~  N n4) = d ( ~ 2 / 5 ) .  

The analysis of the other steps is similar. Thus we get the following 

Theorem 5.2 A set of n keys whose ranks are uniform in the interval [l, N] can be selected on an 

Sn with N = n! nodes in 6 ( n 2 )  time, the queue size being O(n). 

6 Randomized Sorting 

Randomized algorithms for sorting have been proposed on various models: [28, 261 (PRAM), [29] 

(CCC), [ll, 231 (Mesh). All the abovementioned algorithms have a central idea similar to  that of 

Quicksort. A summary of their approach follows. 1) Given N keys to  be sorted, sample o ( N )  keys 



and sort the sample using any nonoptimal algorithm; 2) Partition the input using the sample keys 

as splitters; and 3) Finally sort each part recursively. 

Our algorithm takes a different approach. We make use of the selection algorithm as a subrou- 

tine. In fact we exploit Theorem 5.2 t o  partition the given input into n exactly equal parts and 

sort each part recursively. The indexing scheme used is the reverse lexicographic order. 

There are n phases in the algorithm. In the first phase each key will end up in the correct Sn-1 
it  belongs to. In the second phase, sorting is local to  each Sn-l. At the end of second phase each 

key will be in its correct Sn-2. In general, a t  the end of the t t h  phase, each key will be in its right 

S,-! (for 15 t 5 n - 1). 

Algorithm Sort 

for i := n downto 2 do 
(* Computation is local to  each S;. Let Mi = i! and the nodes in any S; be 

named 1 ,2 , .  . . , Mi.  *) 

1) Select i keys whose ranks are uniform in the range [l, i!] using the algo- 

rithm of the previous section. At the end of this selection, each node will 

have a copy of these i keys (call them kl, k2,.  . . , ki in sorted order). 

2) Each processor p (1  5 p 5 i!) identifies the its key k belongs to, by 

sequentially scanning through the i selected keys. In particular i t  sets 

NT := 1 if kj-1 < k 5 kj; for every other j (1 5 j 5 i) it sets NT := 0. 

(Assume that ko = -03.) 

3) Compute the prefix sums of the following i sequences: 1) N:,  N:, . . . , N? ; 

2) N i ,  N;, . . . , N?; . . .; i) N:, N:, . . . , N?. 

4 )  If processor p has set NT to  1 in step 2), it means that the key k of 

processor p belongs to  the j t h  The pth prefix sum of the j t h  

sequence will then assign a unique node for this key k in the j t h  Si-l. 
Route each one of the i! keys to a unique node in the S;-l it belongs to. 

Analysis. We first compute the time needed for the completion of a single phase (say the ith phase). 

Later we compute the high probability run time of the whole algorithm. The proof technique for 

obtaining high probability bound is adopted from [27]. 

Step 1 can be completed in O(i2) time w.h.p. Here by high probability we mean a probability 

of 2 1 - & for any constant c .  Step 2 can clearly be completed in O ( i )  steps. Step 3 involves the 

computation of a sequence of i prefix sums and hence can be performed in O(i2) time (according 
to  Lemma 3.2). The routing task in step 4) takes o ( i )  time (cf. Lemma 2.5). 

Thus we can make the following statement: If Ti is the run time of the i th phase, then, 



for some constant c and any a. But i! is R((i/e)i) for large i's. Therefore rewriting the above we 

for some constant c and any a. Let ti = c'cri2 for some constant c'. Then, 

Also, 
Prob.[T, > cai2 + ti] 5 2-&. 

Let Q = CyZl i2. (Of course Q is O(n3)). If T is the run time of the whole algorithm, we are 
interested in computing the probability that T > Q + t for any t. This probability is less than 
the probability of events where Cy=l ti = t + j for 0 < j 5 Q. We compute the probability that 

C$l ti = t and multiply the result by Q to get an upper bound. 
Consider a computation tree the root of which is phase 1 of the algorithm. There are n children 

for the root (one corresponding to phase 2 of each one of the Sn-l's). The tree is defined for the 

rest of the levels in a similar way. We can associate a time bound for each path in this tree. The 

run time of our algorithm is nothing but the maximum of all the path times. Consider one such 
worst case path. Probability that along this path C?=, ti is = t is 5 

The number of ways of distributing t over the n phases is to(n). Therefore, 

Taking t = c'Q we get 

Prob.[T > Q + c'Q] < n32-Sl(n1.5)+O(nlgn) 

a 
which is less than (A) , for any fixed a and c' > 0. 

Thus we have the following 

Theorem 6.1 Sorting of N = n! keys can be performed on an S, in 6(n3)  time, the queue size 

being O(n). 

7 A Deterministic Routing Algorithm for the Star Graph 

The routing problem is defined as follows: A network has a set of packets of information in which a 

packet is a (source, destination) pair. To start with, the packets are placed in their sources. These 

packets must be sent in parallel to their correct destinations such that at  most one packet passes 
through any link of the network at any time and all packets arrive at their destinations as quickly 



as possible. Usually, the performance of a routing algorithm is determined by its run time and 

queue size. The run time of a routing algorithm is the time needed for the last packet to reach 

its destination, and the queue size is the maximum number of packets that will accumulate at any 

node in the network during the entire course of routing. A paradigmatic case of general routing 

is permutation routing in which initially there is exactly one packet at each node, and exactly 

one packet is destined for any node. An optimal randomized on-line routing algorithm for the star 

graph has been obtained in [21]. It runs in time O(n) w.h.p., but requires a queue of size O ( n )  for 

each link. Although an oblivious deterministic routing algorithm is also obtained in the same paper, 
it takes 0 ( m )  steps, and needs a queue of size o ( G )  for each node due to the lower bound of 

[12]. We will present a deterministic routing algorithm which realizes a permutation routing in 
time O(n3), and requires only a queue of size n for each node, and without a queue needed for each 

link. 

We first introduce a packing procedure which will be invoked by our routing algorithm. A 

packing problem is a restriction of routing problem, which routes M 5 N packets (one per node), 

where N is the size of the network, from their sources to a set of M contiguous nodes, say from 

node s to  node s + M - 1, where s > 1 and s + M - 1 5 N, so that the relative order of these M 
packets is still preserved. Note that a node that contains a packet to be packed may not know the 

destination of the packet although it has known s ,  the destination of the first packet in the packing 

problem. In order to obtain the correct destination for packets involved in the packing, we need to 

compute the index of each packet. The indices of these packets can be obtained by performing the 

prefix computation. We use addition as the associative prefix operator, and if a node contains the 

packet, it sets x; = 1, otherwise it sets x; = 0. Thus once a node, say node i, obtains the ith prefix 

pi = XI + . . - + x; = k, it knows that there are k - 1 packets with destination before its packet, so 

the right destination of its packet is s + k - 1. 

Lemma 7.1 Given an n-star graph of N = n! nodes and a set of M 5 N packets, one per node, 

these M packets can be packed in O(n2) steps. 

Proof: We first perform a prefix sum to determine the correct destination of each packet. We then 

route these packets to  their own destinations using a greedy algorithm. Since we have shown that 

each node in a subgraph S; has a corresponding node in every other S; along the (i + 1,1,  i + 1) 

chain to  which it belongs, we could try to send a packet from its source to a node in the same 

(n, 1, n)  chain as the destination, and in the same subgraph as source. The node is unique to the 

source, and we name the node as a,-1. From a,-1 the packet can be sent to its destination along 

the (n,  1, n) chain. To send the packet from its source to a,-1, we need to first send the packet to 

a 2 ,  then to a ~ ,  then to aq, and so on, until it reaches a,-1, where ai is defined as follows: Given 

a node which occupies a position in S; to which it belongs, there is a corresponding position in 

every other Si, which is named as ai. For example, node 3124 in Figure 2 has three a i s ,  viz., 
node 4123, node 4132, and node 4231, and has 12 a2's, viz., node 2134, node 3214, node 2143, 



to  enumerate just a few. So the greedy algorithm is to  send each packet from its source to a 2  of 

the destination along the (2,1,2) chain to  which it belongs (stage 1)) then to  a3 of the destination 

along (3,1,3) chain to  which it belongs (stage 2), and so on, until the packet reaches an-1 of the 

destination. Then along the (n, 1, n) chain to  which the an-1 and the destination belong (stage 

n - I ) ,  the packet will arrive at its destination. So each packet will go through n - 1 stages to  reach 

its destination. To make the algorithm normal and thus simplify the analysis of the behavior of 

the algorithm, stage i + 1 wouldn't be triggered until all packets in stage i have reached their a,+l 

of their own destinations. 
We now show that during the routing, no packet will be delayed by any other packet. According 

to our algorithm, the only possible delay occurs when there are several packets with the same a;+l, 

in stage i, so that in the next stage, some packets will be delayed (waiting for other packets in 

the same node to  be sent out) if a node can process only a packet a t  a time. However, according 

to the definition of a;, this will occur only when the destinations of these packets are in different 

subgraphs S;+l, which is impossible in a packing routing. Because if this occurs, then the routing 

is not a packing. For example, in Figure 2, if in stage 2, packets in nodes 3214, 3124, and 2134 are 

routed to  node 3214 which is the a3 of their destinations, then the destinations of these packets 

must be three of the following four nodes, viz., node 4321, node 4312, node 4213, and node 3214, 

which contradicts the definition of packing problem (e. g., WLOG, if the destination of packet in 

node 3214 is node 4321, then packets in node 3124 and node 2134 should be destined for nodes 

between node 4321 and node 2341). 

Since no packet will be delayed during the routing, it's not hard to  see that stage i takes i steps. 

The routing can thus be finished in time Cygt i = O(n2). Because a prefix sum on the Sn also 

takes O(n2) steps, a packing on the Sn thus requires O(n2) + 0(n2 )  = O(n2) steps. This completes 

our proof. 

Lemma 7.2 If each node in the n-star graph can receive a packet from each incoming link and 

send a packet along each outgoing link in one unit of time, then n sequences of packing can be 

finished in O(n2) steps. 

Proof: We simply pipeline the packings. After each packing is triggered for n steps, we trigger the 

next packing. Since each individual packing takes < n2 steps (Lemma 7.1)) totally n sequences of 

packing will take < 2n2 - n steps (because of the overlap due to  the pipeline) which is still O(n2). 

We need the following definition to describe our permutation routing algorithm. 

Definition 7.1 A stage is said to  be i-th stage stable, denoted Sttable, iff for every i-th stage 

subgraph Sn-;, the destination of each packet in the subgraph is in the subgraph itself, and each 

node of the subgraph has exactly one packet. 



n-1 Our algorithm is designed as a sequence of stage transitions S,O,able, . . - , SStable in which initially 

we are in Szable for a permutation routing on S,. We then in each subsequent stage route each 

packet t o  the subgraph to  which its destination belongs such that the stage is transited from sftable 
to  This could be done by routing each packet along the (n  - i,  1 ,n  - i )  chain to  which it 

belongs t o  the subgraph which contains the destination of the packet. However, some nodes may 

accumulate several packets because some packets in the same chain may be destined for the same 

subgraph, and thus end up at  the same node. For example, in Figure 2, if the destinations of nodes 

1234, 1243, 1342, and 2341 are all in subgraph &(I) ,  then during the transition from SYtable to 
Sttable, a11 these four nodes will be accumulated at  node 2341. So as not to keep accumulating 

too many packets at  some nodes in subsequent stages (which might mean longer delays for some 

packets), before we start the next transition, we have to  balance the network such that each node 

contains exactly one packet. This could be done by token distribution. According to  our algorithm, 

in stage i ,  after routing each packet along its (n  - i + 1,1,  n - i + 1) chain to  its right subgraph, 

every node of each subgraph S,-; has between 0 and n - i + 1 nodes, and each S,-; has exact 

(n  - i)! nodes. To distribute the packets so that each node of the subgraph has exactly one packet, 

we simply invoke packing procedure (in Lemma 7.1) 5 n - i times. In each packing, a node which 

contains more than one packets will contribute a packet to be packed. Also, if previous packing 

ends a t  position s, and there are M nodes which contribute packets in current packing, then these 

packets will be packed t o  positions from s + 1 to s + M. If the maximum number of packets in the 

individual nodes of a subgraph is k, then after k - 1 packings, each node of the subgraph will have 

exactly one packet. 

Remark 1 Observe that for each node in the network, although there may be several packets accu- 

mulated at the node during routing, it's not necessary to  put these packets in the queue along the links 

they come in. Because except one o f  the packets, all other packets will be distributed to  other nodes in 

the same subgraph, and we simply store these packets in the local memory of  the node before they are 

sent out. 

Theorem 7.1 A permutation routing on the n-star graph can be realized in time 0 (n3 )  without 

queues needed for each link. 

Proof: For a permutation routing, initially the n-star graph is in S2able. We try to  transit n - 1 

stages so that eventually the network is in 5':~;~~. During the transition from sitable to ~ d c ~ ~ ~ ,  

we first route each packet in a S,-; along its (n - i + 1,1,  n - i + 1) chain to  its right subgraph 

Sn-; (this will take at  most n - i steps), and then perform packing for n - i times such that the 

network is in Each transition takes (n - i )  steps for routing and O((n - i)') steps for token 
distribution (Lemma 7.2). Totally we have n -  1 transitions, the permutation algorithm thus totally 

takes < C1zl1(n - i )  + (n - i)2 = O(n3) steps. Also, according to Remark 1, the algorithm requires 

no queues for each link. 



8 Conclusions 

In this paper we have addressed the problems of selection, sorting and routing on the star graph. 

Our deterministic sorting algorithm is based on bitonic sorting and has a time bound that matches 

the best known previous algorithm. Randomized algorithms have been given in this paper for 

sorting and selection. The time bound of our randomized sorting is better than that of the previously 

best known sorting algorithm. We also have presented a deterministic routing algorithm which runs 

in O(n3)  time on S,. Both selection and sorting have the obvious lower bound of R(n1gn) on the 

star graph. Discovering algorithms with matching time bounds is still open. 
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Figure 1: 3-star graph and 4-star graph. 
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Figure 2: All the (k, 1, k )  chains in an S4, for 1 < k 5 4. 



Figure 3: A bitonic-sorter for 8 inputs and 8 outputs. 

Figure 4: A 3-way cleaner. 
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Figure 6: A tree-like (k, 1, k)  chain network for the prefix computations of the star graph. 



procedure SGS(S; ,  0 )  
begin 

1. if i > 2 then 

do in parallel 
for all even numbered S;-l's do in parallel 

SGS(S;- l ,  A); 
for all odd numbered Si-l's do in parallel 

SGS(S;-1, D) ;  
endif 

2. /* Make a bitonic sequence by merging */ 
S G M ( S i , 0 7  l , i7 i ) ;  

3. /* Bitonic Sort */ 
for k  from i downto 2 do 

for each ( k ,  1, k )  chain do in parallel 
Perform odd-even transposition sort in the order of 0. 

end procedure SGS  

procedure S G M ( S j ,  0 ,  low, high, i )  
begin 

if 2 2 then 

if 0 is A then 

do in parallel 

S G M ( S j 7  A, ~ O W , I O W  + I ;]  - 1, [;I); 
S G M ( S j ,  D ,  low + [$I, high, [$I); 

else 

do in parallel 

S G M ( S j ,  D ,  low, low + 131 - 1, I$]); 
S G M ( S j 7  A, low + [ $ ] ,  high, [$J); 

endif 
endif 

for each (j, low,high) chain do in parallel 
Perform odd-even transposition sort in the order of 0; 

for k  from j - 1 downto 1  do 
for each (k, 1, k )  chain do in parallel 

Perform odd-even transposition sort in the order of 0;  
end procedure SGM 

Figure 7: The Deterministic Sorting Algorithm 
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Table 1: An indexing scheme for S4. 

permutation 

432 1 
342 1 
4231 
2431 
3241 
2341 
4312 
3412 
4132 
1432 
3142 
1342 
4213 
2413 
4123 
1423 

2 143 
1243 
3214 

index 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

2134 22 
1234 23 



Table 2: The communication between each pair of adjacent nodes in (4,1,4) chains of Sq. 


