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Abstract 

Least Common Ancestor Networks {LCANs} comprise levels of switches that enable com­
munication in two directions. LCANs are a generalization of previously developed networks 
including fat-trees, baseline networks, SW-banyans and the router networks of the TRAC and 
the CM-5. In this paper, LCANs are characterized and the routing capabilities of important 
subclasses are analyzed. 
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1 Introduction 

There have been many multistage interconnection networks (MINs) proposed for effecting com­
munication between processing elements (PEs) in SIMD machines, as well as MIMD machines 
(2, 5, 6, 20]. SIMD communication takes the form of permutation routing where given a unique 
labelling of the PEs, source-destination pairs are obtained from a one-to-one mapping of the set of 
labels onto itself. Past research suggests that determining switch settings to route permutations in 
MINs capable of routing any permutation in one network cycle takes at least O(N log N) sequential 
time (13, 16, 21]. Because of this high set-up cost, it is important to analyze networks that could 
take multiple network cycles to route a permutation; in each cycle, a subset of the permutation's 
source-destination pairs are set up and data is transmitted. 

Routing a source-destination pair in a MIN typically progresses in only one direction through 
the network (this is called uni-directional routing) and must utilize a switch in every stage. 

Most research concerning MINs has involved studying uni-directional routing; however, proce­
dures for routing in both directions (this is called bi-directional routing) in two MINs, SW-banyans 
and baseline networks, are described in [14] and [21]1. Bi-directional routing requires a different 
switch definition. KYKLOS (15] and fat-trees [11] both use tree topologies to facilitate bi-directional 
routing; in [11] a switch is explicitly defined that permits this form of routing. In this paper, a gen­
eralization of bi-directional routing that considers all network topologies is presented, and routing 
properties, in particular, initial results about permutation routing, are shown. 

Least Common Ancestor Networks (LCANs) [1, 4] comprise levels of switches that are capable of 
connecting bi-directional links in a permutation pattern permitting bi-directional routing. LCAN s 
exploit locality of communication through the communication hierarchy imposed by the actual 
implementation of massively parallel computers. Traditional implementation of MINs does not 
take advantage of this hierarchy. The hierarchy is exemplified by the MasPar MP-1: the MP-1 
is constructed with a number of boards attached to a backplane; each board holds a number of 
chips; and each chip holds a number of PEs [3]. Due to physical limitations, this construction leads 
to a natural hierarchy with respect to communication time: on-chip communication is performed 
the quickest, then on-board communication, and lastly, communication requiring the backplane. 
Connecting boards to the backplane is also expensive in terms of pinouts; this is because of physical 
limitations upon the number of pinouts per board. 

Typical usage of a MIN for interconnection forces every permutation to require backplane 
communication since each source-destination pair utilizes a switch in every stage. LCANs force 
off-chip and off-board communication only when necessary. As an extreme example, consider the 
identity permutation: why should each PE need to find a path through the entire network to its 
destination? Using an LCAN, each source-destination pair of the identity permutation need only 
route to the first level of the network and back - only on-chip communication is necessary. 

LCANs are a generalization of important pioneering work done by Leiserson [11], Lipovski and 
Malek (14], Wu and Feng [21], and Menezes and Jenevein (15]. Their networks can be classified as 
particular instances of LCANs. The work in this paper presents a general framework for research­
ing bi-directional routing and investigates permutation routing properties. Prior work is briefly 
reviewed with discussion relevant to the LCAN generalization in the following: 

1 Bi-directional routing was termed full communication in [21 ]. 
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Fat-trees reduce root contention by increasing the "capacity" of the links between switches 
(i.e. each link has more bandwidth) closer to the root switch in a binary tree [11] . . However, 
they require switches that proportionally increase in size; for a large number of PEs this can be 
impractical. Fat-trees are instances of LCANs with switch sizes that vary by level. 

SW-banyans are MINs described in [14]. Bi-directional routing procedures for SW-banyans are 
given without an explicit switch definition; SW-banyans are instances of LCANs. Later in this 
paper, after considering LCANs in general, SW-banyans are shown to be an interesting subclass of 
LCANs, and their permutation routing properties are considered. 

In [21], bi-directional routing is called full communication, a network's ability to connect one 
terminal to any terminal on either side of the network. A routing strategy for full communication on 
a baseline network is described; with these bi-directional routing capabilities, the baseline network 
is an instance of an LCAN. A baseline network is also an instance of a SW-banyan. 

KYKLOS [15] comprises replications of k-ary trees; each replication is a particular instance of 
an LCAN. Trees are attractive to use as interconnection networks because they are highly scalable 
and require a number of switches that is linear with respect to the number of PEs. However, trees 
are unappealing because of the high degree of contention near the root of the tree. In KYKLOS, the 
isomorphic replications provide alternate paths, thus reducing the average interprocessor distance. 
KYKLOS performance was analyzed in a MIMD context. 

Three computers take advantage oflocality of communication: the Cm* [8], the TRAC [14] and 
the CM-5 [12]. In all three computers, communication between closer PEs leads to more available 
communication bandwidth. The networks and routing algorithms in the TRAC and the CM-5 are 
similar; the networks are instances of LCAN s. 

The Cm*, developed at Carnegie Mellon University, provides two levels of locality [8]. PEs 
within a cluster communicate using a "map" bus, and PEs in different clusters use "intercluster" 
busses. Thus, if more communication is intra-cluster, i.e. local, then there is less contention for the 
intercluster busses. The TRAC 2.0 is an MSIMD computer developed at the University of Texas 
at Austin [14]. It uses an SW-banyan network and bi-directional routing. Thinking Machines 
Corporation's CM-5 is an MIMD computer that uses a router network called a "hyper-tree" [18]. 
In [12], the network is described as a "4-ary fat tree." The routing of their packets is bi-directional, 
and the switches have buffers. The exact configuration in terms of LCAN parameters is described 
later in this paper. 

The aims of this paper are to present a generalized framework for prior work and other bi­
directional routing networks, and to investigate the usefulness of bi-directional routing for permu­
tation routing. Section 2 presents the LCAN generalization and properties of important subclasses. 
Section 3 covers routing, and Section 4 concludes. 

2 Characterization 

An LCAN comprises switches with bi-directional connectors that facilitate communication up and 
down the network (see Figure 3). The least common ancestor of two nodes in a tree is the node 
at greatest depth which counts both nodes among its descendants [7, 19]. Analogously, two PEs 
communicating using an LCAN need only utilize switches as high as one of their least common 
ancestor switches. 

3 



0 B 
O 1 u-1 0 1 u-1 O 1 u-1 

I ~~ +'.1~h ~~ I or 

I ~~+w~ I 
0 1 d-1 0 1 d-1 0 1 d-1 

A C 

Figure 1: LCAN switch 
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Figure 2: LCAN switch showing crosspoints 

In this section, first the LCAN switch is defined, then the network parameters are described. 
Two significant subclasses of LCAN s are identified and some of their properties are stated. Lastly, 
the import of the level interconnect on routing is discussed. 

2.1 Switch description 

Each switch has d bi-directional links (labeled 0, 1, · · ·, d- 1) called downers that connect to switches 
in the next lower level and u bi-directional links (0, 1, · · ·, u - 1) called uppers that connect to 
switches in the next higher level (see Figure 1). The term connectors refers to both uppers and 
downers. 

A bi-directional link actually represents two links, each link carrying information in opposite 
directions. Let the uppers be partitioned into two groups, B and D, that represent links carrying 
information to and from the switch, respectively, and the downers also be partitioned into two 
groups, A and C, that represent links carrying information to and from the switch. In order to 
achieve connections between links in A, B, C and D, they need to be connected by crosspoint 
switches detailed in Figure 2. In Figure 2 each intersection of two lines represents a crosspoint. 

The switch operates in two modes. In the first mode, data from B and A are used to set the 
internal crosspoints of the switch. The interpretation of the data by the switch to setup the internal 
crosspoints is dependent on the routing strategy. In the second mode, information is passed through 
the switch using the internal crosspoint setup. 

2.2 Network parameters 
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Figure 3: LCAN structure 

LCANs are parameterized by (d, u, I, II)-tuples for N PEs. For purposes of analysis in this section, 
only LCANs with identical switches are considered (to parameterize LCANs with switch sizes that 
vary by level, u and d need to be vectors of size N). There are / levels of switches in the network, 
labelled 0 through I - 1. 

A switch in level i has d bi-directional downers that connect to switches in the next lower level, 
level i - 1, and u bi-directional uppers that connect to switches in the next higher level, level i + 1 
(see Figures 1 and 3). Thus, switches in level i are only connected to switches in levels i - 1 and 
i + 1. The exceptions are level l - 1 (the highest level in the network), in which case the uppers do 
not connect to anything, and level 0 (the lowest level in the network), in which case the downers 
connect to the PEs. When d > u, the number of switches per level decreases as the number of 
levels grows; d = u, the number of switches per level is constant; d < u, the number of switches 
per level increases. 

Let U be the set of all uppers of the switches in some level i, and let D be the set of all downers 
of the switches in level i + 1. Then, II describes the mapping of D to U; the mapping is one-to-one 
and onto. Note that IDI = IUI· II is called the level interconnect. 

Let Si be the number of switches in level i. S0 = Jt- since each switch has d connectors connecting 
to lower levels. The ~ switches in level 0 each have u uppers connecting to higher levels, thus there 
are u1J connectors going up from level 0. Repeating the same reasoning, S1 = uN / d2• 

In general, 
u 

Si+l = d Si, where So= N/d. 

Recursively substituting, 

(1) 
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Definition 1 Let LCAN( d,u,l,II) denote a least common ancestor network comprising l levels 
of switches, labelled 0 through l - 1, with interconnectivity defined by II; a switch in level i has d 
downward connectors to switches in level i - 1 and u upward connectors to switches in level i + 1. It 
is assumed there are N processors connected to the switches in level 0, one per downward connector 
and there exists at least one possible path in the network between any two processors. · It is also 
assumed there are also no unused connectors between consecutive levels. 

The following theorem holds for all LCANs: 

Theorem 1 Given an LCAN(d,u,l,II), l must be less than or equal to a, where a is the smallest 
integer such that ~( 1 )a-l is an integer and ~( 1 r is not an integer. 

Proof: 

Assume l >a. By Definition 1, there exist levels a - 1 and a. Using Equation 1, level a - 1 has 
Sa-1 = 1d ( ~ )a-l switches, and uSa-1 upward connectors to level a. To fully use every one of these 
connectors, there need be exactly jSa-1 switches in level a. However, 1Sa-l = ~(j)a, which is 
not an integer by assumption. It follows that there must be unused downward connectors in level 
a, contradicting Definition 1. DQ.E.D. 

Now two subclasses of LCANs are defined in terms of their II: 

Definition 2 Given an LCAN(d,u,l,II), let II = (d/u)-ary tree iff the switches are arranged in 
a (d/u)-ary tree fashion where each edge of the tree represents u connectors. Clearly, this is only 
possible when d is a multiple of u. 

Definition 3 Given an LCAN(d,u,l,ll}, let II = complete bipartite if the interconnectivity is as 
follows: 

Label the PEs consecutively using logd N digits based: < p1o9d N-1Ptogd N-2 ···Po >, and label the 
switches in level i consecutively using ( logd N - I) digits such that the ( l ogd N -1-i) most significant 
digits are based and the i least significant digits are base u: < w1o9d N-2w1o9d N-3 · · · WiWi-1 · · · wo >. 

A PE labelled< Plogdn-lPlogdn-2 ···po> is connected to switch< Plogdn-lPlogdn-2 · · ·p1 > via 
the Poth downer of the switch. 

To connect switches in level i labelled< W/ogdn-2w1o9dn-3 · · ·Wi+1iWi-1 · · ·Wo >, where j = 
0, 1, ... ,d- 1, to switches in level i + 1, remove the rightmost based digit (j) and append a base u 
digit to the right of the switch label, call it k. The d switches in level i connect to u switches in 
level i + 1 - those labelled< w1o9d n-2w1o9d n-3 · · · Wi+1 Wi-1 ···wok >, where k = 0, 1, ... , u - 1, via 
the k +1st upper of the switch in level i and the j + 1st downer of the switch in level i + 1. 

LCANs with Il = complete bipartite are topologically the same as SW-banyans. Definition 3 is 
more rigorous than the definition in [14], and leads to the following lemma: 

Lemma 1 A processor can connect to ui unique switches in level i. 

6 



3 

2 

1 

0 

level 

PEs (one PE per downer in level 0) 

Figure 4: A CB-LCAN(2 ,2) 

Proof: Observe that the u uppers of a switch in level 0 connect to u different switches in 
level 1 because single base u digit in the switch label represents u distinct values . Likewise, the u 
level 1 switches connect to u2 different switches in level 2 because the two base u digits represent u2 

distinct values. It follows that a processor can connect to ui distinct switches in level i. DQ.E.D . 

With the definition of these two Ils, I can be defined as a function of N, d and u for both 
subclasses of LCAN s: 

Corollary 1 (to Theorem 1) Given an LCAN(d,u,l,complete bipartite) , N = d1, or I= logdN. 

Proof: By Lemma 1, the number of switches in level I - 1 that a processor can reach is u1- 1 , 

the total number of switches in that level. Equation 1 states that S1_ 1 = !f C;l)1- 1 . Equating the 
two, 

1-1 = N (~)1-1 
u d d . 

Reducing, we obtain N = d1, or I= logdN. DQ.E.D. 

Definition 4 Let an LCAN(d,u,l,complete bipartite) be denoted CB-LCAN{d,u). 

Figure 4 is a CB-LCAN(2,2). 

Corollary 2 (to Theorem 1) Given an LCAN(d,u,l, (d/u)-ary tree), N = f~ 1 , or!= log.11.(':). 
u u 

Proof: By Definition 2, S1-1 = 1; by Equation 1, S1-1 = ~ {JJ)1- 1 . Equating the two, 

Therefore, N = j~1, and it follows that l =logs_':. DQ.E.D. 
u 
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Definition 5 Let an LCAN{d,u,l,{d/u)-ary tree) be denoted T-LCAN(d,u). 

Note that a T-LCAN where u = 1 is a limiting case of a CB-LCAN. I.e. T-LCAN(d,1) is 
equivalent to CB-LCAN(d,1). 

Given these properties and definitions, networks from prior research can classified by LCAN 
parameters: 

• A baseline network with full communication capability is equivalent to CB-LCAN(2,2). 

• A (f,s,logdN) SW-banyan is equivalent to a CB-LCAN(f,s ). 

• The TRAC network is a CB-LCAN(3,2). 

• A fat-tree has the form of a binary tree, but the switch size varies by level; they are similar to 
T-LCANs. An exact description requires a vector of d's and u's, a vector element per level. 

• The CM-5 router network is composed of a CB-LCAN(4,4) and many CB-LCAN(4,2)s. 

2.3 Level interconnectivity 

In this section, initially some definitions are given, then the importance of II with respect to routing 
is discussed. 

Definition 6 A least common ancestor (LCA) switch of two processors is a switch in level i, 
such that: 

1) it can be connected to both processors using only switches in levels 0 through i - 1, and 

2) there is no switch in a level j, j < i, that satisfies property 1). 

Note that two PEs may have more than one LCA switch. 

Definition 7 The LCA level of two processors is the level to which their LCA switch(es) belong. 

Lemma 2 In a CB-LCAN, two processors whose LCA level is i have exactly u i LCA switches. 

Proof: Assuming the LCA level of two PEs, a and b, is i, it follows from Lemma 1 that a 
is connectable to ui switches in level i , and b is connectable to ui switches in level i . Due to the 
recursive nature of the interconnect, the two sets of switches are either disjoint or identical. If the 
former, then there are no switches in level i that can connect a and b, and thus the LCA level could 
not be i. Therefore, it follows from the latter that the number of LCA switches is ui. DQ.E.D. 

Lemma 3 In a T-LCAN, any two processors have exactly one LCA switch. 

Proof: In a k-ary tree, given any two leaves (PEs) there is exactly one least common ancestor 
(LCA switch), the root of the smallest subtree containing both leaves. DQ.E.D. 
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Definition 8 A path between two processors consists of an alternating series: connector, switch, 
connector, switch,···, connector, such that two processors may communicate in a circuit-switched 
fashion. 

A non-redundant switch path is a path that does not pass through any switch more than once. 

Theorem 2 The number of non-redundant switch paths between any two processors in a CB-LCAN 
is exactly the number of LCA switches of the two processors. 

Proof: Each LCA switch is the root of a subtree of switches, the leaves are PEs. The subtrees 
share the same leaves due to the recursive nature of the CB-LCAN interconnect. In a tree, there is 
only one path between any two nodes. Utilizing switches in levels above an LCA switch does not 
add additional non-redundant switch paths because the LCA switch lies within a tree containing 
those switches and the path taken upwards must be the same path as that taken back down (thus 
the LCA switch is passed through twice). Therefore, the number of non-redundant switch paths 
between any pair of leaves is exactly the number of trees, or in this case, the number of LCA 
switches. DQ.E.D. 

Because of these LCA switches, all LCANs exhibit the following feature: given _a source­
destination pair, there are one or more LCA switches, and communication need progress upwards 
only to an LCA switch. At this point, routing can return downwards to the destination. Thus, 
given a network, there clearly exist source-destination pairs that do not require routing through 
every level of the network; whereas with the typical usage of MIN s all source-destination pairs must 
route through every stage. 

This LCAN feature is important because it complements the physical partitioning of the network 
into chips and boards. Permutations requiring only on-chip and on-board communication are 
performed quickly. Determination of these permutations depends on a given partitioning and 
quantitatively relates the physical construction of the network to the expected permutation traffic. 

In order to exploit this routing feature, network parameters that permit routing to and from an 
LCA switch need to be identified. Ideally, this routing would be based solely on local knowledge 
(source and destination labels). 

Certain MINs, delta networks [17] are capable of "self-routing," i.e. require only a destination 
address to route, uni-directionally across the network. A subclass of delta networks, bide/ta networks 
[9] are also self-routing if the network is reversed. CB-LCA N s are topologically similar to delta and 
bidelta networks. However, because of the added switch functionality, CB-LCANs additionally allow 
bi-directional routing using only source and destination labels; T-LCANs also allow bi-directional 
routing. Currently, no routing algorithms that only use local knowledge have been identified for 
other LCAN s. 

One focus of any comparison between CB-LCANs and T-LCANs should be their routing capa­
bilities. One metric that affects routing is spreadout. The spreadout of II in an LCAN( d,u,l,II) is 
the number of different switches in level i + 1 to which the uppers of a switch in level i connect. 
II= complete bipartite affords maximal spreadout, i.e. u, and II= (d/u)-ary tree yields minimal 
spreadout, i.e. one. These two IIs are regular in the sense that every switch has the same spreadout. 

9 



Figure 5: LCAN labelled A 

Given a CB-LCAN and a T-LCAN with the same N , d and u , observe that I in the CB-LCAN 
is always less than or equal than I in the T-LCAN. This follows from Corollaries 1 and 2. In 
the limiting case, u = 1 and the networks are identical; assume u > 1. Intuitively, the maximal 
spreadout of the CB-LCAN allows a processor to communicate with more processors "faster," 
i.e. with less levels. From Equation 1, since N, d and u are the same for both networks, the total 
switch cost for the CB-LCAN is less than that of the T-LCAN. 

3 Routing 

Attention is focused on CB-LCANs in this section because routing on T-LCANs is essentially a 
limiting case of routing on CB-LCANs. LCAN switches are assumed to have no buffers, thus the 
results in this section apply to circuit-switched packet routing. 

In this section, uni-directional and bi-directional routing methods are restated from prior work 
and an interesting perspective relating bi-directional routing to uni-directional routing is presented. 
Then, routing on CB-LCANs given global knowledge is discussed . Finally, permutation routing is 
explored. 

3.1 PE-to-PE routing 

CB-LCANs facilitate uni-directional routing upwards using routing tags in base u and downwards 
with routing tags in base d. The switches in a given level use a unique digit of the destination tag 
to determine which link to use. 

Lipovski and Malek describe a procedure for bi-directional routing [14]; for the specific case of 
d = u = 2, it is the same as the procedure in [21]. The procedure is summarized here: Bi-directional 
routing uses an LCA level computation. A source-destination pair needs to route to its LCA level. 
Any switch in the source-destination pair's LCA level that is reachable from the source is guaranteed 
to have a path to the destination because of the recursive nature of the II = complete bipartite 
interconnect. The routing procedure provides some degree of freedom: randomly route upwards 
anyway possible to the LCA level, then deterministically route downwards to the destination PE 
using part of the destination label2 • The LCA level is the place of the most significant digit where 
the source and destination labels differ. 

2The CM-5 router network uses this routing algorithm. 
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Figure 6: A unfolded into Ai and A2 showing virtual links 

Bi-directional routing on LCANs can also be viewed from another perspective. Let A be an 
LCAN (see Figure 5); let A1 comprise the PEs, the switches and the upward-going wires of the 
bi-directional links. Let A2 comprise the downward links of the bi-directional connectors, and 
duplicates of the PEs and the switches (except those in level 0). Unfold A2 in a mirror-like fashion 
(see Figure 6). Each switch in A1 effectively has an extra link to its corresponding mirrored switch 
in A2 (represented by the thick edges in Figure 6). These are virtual links, and are costless to 
traverse. Communication in the unfolded LCAN occurs uni-directionally; however, in the folded 
LCAN A, communication moves forward then backward. 

. The added functionality provided by the virtual links allows certain connections to be made 
without utilizing a switch in every level, i.e. some middle levels need not be traversed. Given that 
the switch that is the least common ancestor of two communicating PEs belongs to some level k, 
to connect the PEs, 1 + 2(k - 1) levels in A can be skipped by utilizing the virtual links between 
A1 and A2· 

3.2 Global routing knowledge 

To route a set of packets, possibly a permutation, with the minimal amount of network cycles, 
global knowledge is usually required. Either all PEs know all source-destination pairs and act in 
unison, or a central controller knows all source-destination pairs and directs the PEs. Leiserson 
developed excellent off-line routing results for fat-trees in [11]. In this section, routing with global 
knowledge is considered on CB-LCANs by examining their "equivalent" fat-trees. First, Leiserson's 
results are restated (see [11] for further details). 

Recall that a fat-tree takes the form of a binary tree and the switch size can vary by level. The 
set of connectors between two switches is called a channel. Given a message set M, the load factor, 
.X(M, c), of a channel c due to Mis 

.X(M, c) = load(M, c). 
cap( c) 

Theorem 3 A lower bound on the number of network cycles required to route M is d ~ .X(M), 
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Figure 7: A CB-LCAN(3 ,3) and its equivalent 3-ary fat-tree 

where ,\(M) is the maximum ,\(M, c) over all channels. 

Theorem 4 On a fat tree, for any message set M with ..\(M) > 1, there is an off-line schedule of 
d network cycles such that d = O(..\(M) log N). 

Leiserson provides a method for computing this schedule. To compare CB-LCANs· with fat­
trees, the definition of a fat-tree is extended: 

Definition 9 Let k-ary fat-trees be LCANs such that if there are Si switches in stage i, then 
Si+I = kSi-

Thus, 2-ary fat-trees are equivalent to Leiserson 's fat- trees. It is conjectured that a schedule of 
O(,\(M) log N) cycles can be scheduled off-line for a message set M on a k-ary fat-tree. 

Definition 10 Let the equivalent d-ary fat-tree of a CB-LCAN(d,u) be recursively constructed 
using a combine operation that replaces a group of smaller switches with one large switch; connector 
number and connectivity is maintained - combining m LCAN switches with d downers and u uppers 
yields an LCAN switch with {md} downers and (mu) uppers. The construction is as follows: 
combine the u1- 1 switches in level l - 1, then divide the switches in level l - 2 into d consecutive 
evenly sized groups. Apply the combine operation recursively to each group (see Figure 7). 

Given two processors in a CB-LCAN there can be many LCA switches; in the equivalent d-ary 
fat-tree there is only one bigger LCA switch (as a result of the combine operation). 

It is conjectured that given global knowledge about a message set M, the minimum number of 
network cycles necessary to route M in a CB-LCAN( d,u) is the exactly the same as the .minimum 
number in its equivalent d-ary fat-tree. If the two conjectures in this section prove correct, then 
Leiserson's off-line results can be directly applied to CB-LCANs. 
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Figure 8: Routing a "worst-case" permutation in a CB-LCAN(2,2) 

3.3 Permutation routing 

Routing the identity permutation takes only one network cycle in any LCAN since all source­
destination pairs need only route to level 0. To compare this permutation to other permutations 
based on network cycles, the average number of cycles necessary to route a permutation must be 
used since the routing algorithm is random (see Section 3.1). 

In this section, permutations with source-destination pairs that all have LCA level l - 1 are 
considered on CB-LCANs where d = u (the performance of permutation routing on CB-LCANs 
where d f:. u is an open question) . This set is hereafter referred to as the "worst-case" set. It is 
conjectured that the average number of cycles to route the "worst-case" set is greater than the 
average number of cycles for any other set. 

The routing of the "worst-case" set is illustrated with CB-LCAN(2,2) (see Figure 8). Choose 
any permutation from the "worst-case" set, call it P. Let A be the set of PEs labelled 0 to (N/2-1), 
and let B be the set of PEs (N/2) to (N-1). The destinations of A comprise a permutation of the 
labels of B, and vice versa; otherwise not all source-destination pairs require routing to the top 
level. After routing P to the top level, call the resultant permutation Ptopi each switch contains 
two packets - one packet must have come from A and be destined for B and vice versa for the other 
packet. 

Next, after routing back down to level 1-2, the uppers of the switches in the left half oflevel 1-2 
have a permutation of the labels of A, call it Preft, and likewise for the right half and B, call that 
permutation Pright· Observe that Preft and Pright are random permutations, since given any P, 

each possible setting of the switches in the network leads to a unique Ptop· After the first cycle, 
P1eft and Pright will be partial permutations of A and B respectively. Now the question is how 
many cycles does it take to route a random permutation uni-directionally through the n~twork? 

Routing in a butterfly is the same as routing uni-directionally in a CB-LCAN(2,2). Routing the 
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transpose permutation in a butterfly takes VN cycles (shown in Section 3.4 .9 of (9)). In a-butterfly, 
the transpose permutation is one of relatively few worst-case permutations. So if P1eft and Pright 

are transpose permutations of the labels of A and B respectively, routing P could take O(log N) 
cycles in the worst case. However, given that P is in the "worst-case" set, the likelihood of P1eft 

and Pright being transpose permutations is ( 71h )2 . The likelihood of this occurring VN times is 
even smaller. Thus it is extremely unlikely that routing P will take VN cycles, even if P is in the 
"worst-case" set. The above reasoning extends to all networks where d = u. However, keep in mind 
that the average case, not the worst case, is of prime interest since Pteft and Pright are random 
permutations. 

In a uni-directional network, the random routing problem is highly similar to permutation 
routing. Random routing is where every processor randomly chooses a destination from a uniform 
distribution; a processor could have multiple packets destined for it. It is conjectured that any 
bound on the number of passes for random routing applys to permutation routing as well. 

Problem 3.285 in (9] involves proving that random routing on a butterfly ( d = u = 2) takes 
O(log N) cycles with high probability; the proof exists (10]. It is easy to see that this extends to 
uni-directional routing on CB-LCANs with d = u = 2k, where k is an integer: replace each switch 
with an equivalent CB-LCAN comprising d = u = 2 switches; the larger switch is certainly at 
least as powerful than the equivalent CB-LCAN. It is unclear whether the proof of problem 3.285 
extends to all switch sizes where d = u. 

If the uni-directional random routing bound is an upper bound on uni-directional permutation 
routing, then routing the "worst-case" set of permutations takes O(log N) cycles with high proba­
bility. Note that this bound applies to on-line routing, no central controller or global knowledge is 
necessary. 

4 Conclusion 

In this paper, LCAN s were characterized - they were shown to be a generalization of many previously 
developed networks. Important classes of LCANs and their relationships were defined. The LCAN 
switch facilitated the bi-directional routing characteristics of these networks. It was shown that 
due to the nature of the routing and typical network implementation, locality of communication 
can be exploited to decrease routing time. 

Initial performance results for permutation routing were shown for CB-LCANs where d = u. If 
bounds on the number of network cycles necessary for the similar problem of random routing apply 
to permutation routing, then a schedule of O(log N) cycles with high probability can be achieved 
on-line for a "worst-case" set of permutations. 
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