
UC Irvine
ICS Technical Reports

Title
Least common ancestor networks

Permalink
https://escholarship.org/uc/item/96h7p73c

Authors
Scherson, Isaac D.
Chien, Chi-Kai

Publication Date
1992-10-27

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/96h7p73c
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Least Common Ancestor Networks

Isaac D. Scherso~ and Chi-Kai Chien

Department of Information and Computer Science
University of California, Irvine

Irvine, California 92717
(714) 856-8144

isaac@ics.uci.edu
chikai@ics.uci .edu

Technical Report #92-105

October 27, 1992

/}I?-(! fl r tJF _,

z
0f9
t3
nfJ- f .J- ~/tJ5

. .v

Least Common Ancestor Networks*

Isaac D. Scherson and Chi-Kai Chien
Department of Information and Computer Science

University of California, Irvine
Irvine, California 92717

(714) 856-8144
isaac@ics. uci .edu

Abstract

Least Common Ancestor Networks {LCANs} comprise levels of switches that enable com­
munication in two directions. LCANs are a generalization of previously developed networks
including fat-trees, baseline networks, SW-banyans and the router networks of the TRAC and
the CM-5. In this paper, LCANs are characterized and the routing capabilities of important
subclasses are analyzed.

Keywords: SIMD, interconnection networks, routing, permutation routing

•This research was supported in part by the Air Force Office of Scientific Research under grant number AFOSR-
90-0144 and NSF under grant number MIP9106949.

1

1 Introduction

There have been many multistage interconnection networks (MINs) proposed for effecting com­
munication between processing elements (PEs) in SIMD machines, as well as MIMD machines
(2, 5, 6, 20]. SIMD communication takes the form of permutation routing where given a unique
labelling of the PEs, source-destination pairs are obtained from a one-to-one mapping of the set of
labels onto itself. Past research suggests that determining switch settings to route permutations in
MINs capable of routing any permutation in one network cycle takes at least O(N log N) sequential
time (13, 16, 21]. Because of this high set-up cost, it is important to analyze networks that could
take multiple network cycles to route a permutation; in each cycle, a subset of the permutation's
source-destination pairs are set up and data is transmitted.

Routing a source-destination pair in a MIN typically progresses in only one direction through
the network (this is called uni-directional routing) and must utilize a switch in every stage.

Most research concerning MINs has involved studying uni-directional routing; however, proce­
dures for routing in both directions (this is called bi-directional routing) in two MINs, SW-banyans
and baseline networks, are described in [14] and [21]1. Bi-directional routing requires a different
switch definition. KYKLOS (15] and fat-trees [11] both use tree topologies to facilitate bi-directional
routing; in [11] a switch is explicitly defined that permits this form of routing. In this paper, a gen­
eralization of bi-directional routing that considers all network topologies is presented, and routing
properties, in particular, initial results about permutation routing, are shown.

Least Common Ancestor Networks (LCANs) [1, 4] comprise levels of switches that are capable of
connecting bi-directional links in a permutation pattern permitting bi-directional routing. LCAN s
exploit locality of communication through the communication hierarchy imposed by the actual
implementation of massively parallel computers. Traditional implementation of MINs does not
take advantage of this hierarchy. The hierarchy is exemplified by the MasPar MP-1: the MP-1
is constructed with a number of boards attached to a backplane; each board holds a number of
chips; and each chip holds a number of PEs [3]. Due to physical limitations, this construction leads
to a natural hierarchy with respect to communication time: on-chip communication is performed
the quickest, then on-board communication, and lastly, communication requiring the backplane.
Connecting boards to the backplane is also expensive in terms of pinouts; this is because of physical
limitations upon the number of pinouts per board.

Typical usage of a MIN for interconnection forces every permutation to require backplane
communication since each source-destination pair utilizes a switch in every stage. LCANs force
off-chip and off-board communication only when necessary. As an extreme example, consider the
identity permutation: why should each PE need to find a path through the entire network to its
destination? Using an LCAN, each source-destination pair of the identity permutation need only
route to the first level of the network and back - only on-chip communication is necessary.

LCANs are a generalization of important pioneering work done by Leiserson [11], Lipovski and
Malek (14], Wu and Feng [21], and Menezes and Jenevein (15]. Their networks can be classified as
particular instances of LCANs. The work in this paper presents a general framework for research­
ing bi-directional routing and investigates permutation routing properties. Prior work is briefly
reviewed with discussion relevant to the LCAN generalization in the following:

1 Bi-directional routing was termed full communication in [21].

2

Fat-trees reduce root contention by increasing the "capacity" of the links between switches
(i.e. each link has more bandwidth) closer to the root switch in a binary tree [11] . . However,
they require switches that proportionally increase in size; for a large number of PEs this can be
impractical. Fat-trees are instances of LCANs with switch sizes that vary by level.

SW-banyans are MINs described in [14]. Bi-directional routing procedures for SW-banyans are
given without an explicit switch definition; SW-banyans are instances of LCANs. Later in this
paper, after considering LCANs in general, SW-banyans are shown to be an interesting subclass of
LCANs, and their permutation routing properties are considered.

In [21], bi-directional routing is called full communication, a network's ability to connect one
terminal to any terminal on either side of the network. A routing strategy for full communication on
a baseline network is described; with these bi-directional routing capabilities, the baseline network
is an instance of an LCAN. A baseline network is also an instance of a SW-banyan.

KYKLOS [15] comprises replications of k-ary trees; each replication is a particular instance of
an LCAN. Trees are attractive to use as interconnection networks because they are highly scalable
and require a number of switches that is linear with respect to the number of PEs. However, trees
are unappealing because of the high degree of contention near the root of the tree. In KYKLOS, the
isomorphic replications provide alternate paths, thus reducing the average interprocessor distance.
KYKLOS performance was analyzed in a MIMD context.

Three computers take advantage oflocality of communication: the Cm* [8], the TRAC [14] and
the CM-5 [12]. In all three computers, communication between closer PEs leads to more available
communication bandwidth. The networks and routing algorithms in the TRAC and the CM-5 are
similar; the networks are instances of LCAN s.

The Cm*, developed at Carnegie Mellon University, provides two levels of locality [8]. PEs
within a cluster communicate using a "map" bus, and PEs in different clusters use "intercluster"
busses. Thus, if more communication is intra-cluster, i.e. local, then there is less contention for the
intercluster busses. The TRAC 2.0 is an MSIMD computer developed at the University of Texas
at Austin [14]. It uses an SW-banyan network and bi-directional routing. Thinking Machines
Corporation's CM-5 is an MIMD computer that uses a router network called a "hyper-tree" [18].
In [12], the network is described as a "4-ary fat tree." The routing of their packets is bi-directional,
and the switches have buffers. The exact configuration in terms of LCAN parameters is described
later in this paper.

The aims of this paper are to present a generalized framework for prior work and other bi­
directional routing networks, and to investigate the usefulness of bi-directional routing for permu­
tation routing. Section 2 presents the LCAN generalization and properties of important subclasses.
Section 3 covers routing, and Section 4 concludes.

2 Characterization

An LCAN comprises switches with bi-directional connectors that facilitate communication up and
down the network (see Figure 3). The least common ancestor of two nodes in a tree is the node
at greatest depth which counts both nodes among its descendants [7, 19]. Analogously, two PEs
communicating using an LCAN need only utilize switches as high as one of their least common
ancestor switches.

3

0 B
O 1 u-1 0 1 u-1 O 1 u-1

I ~~ +'.1~h ~~ I or

I ~~+w~ I
0 1 d-1 0 1 d-1 0 1 d-1

A C

Figure 1: LCAN switch

D C

Figure 2: LCAN switch showing crosspoints

In this section, first the LCAN switch is defined, then the network parameters are described.
Two significant subclasses of LCAN s are identified and some of their properties are stated. Lastly,
the import of the level interconnect on routing is discussed.

2.1 Switch description

Each switch has d bi-directional links (labeled 0, 1, · · ·, d- 1) called downers that connect to switches
in the next lower level and u bi-directional links (0, 1, · · ·, u - 1) called uppers that connect to
switches in the next higher level (see Figure 1). The term connectors refers to both uppers and
downers.

A bi-directional link actually represents two links, each link carrying information in opposite
directions. Let the uppers be partitioned into two groups, B and D, that represent links carrying
information to and from the switch, respectively, and the downers also be partitioned into two
groups, A and C, that represent links carrying information to and from the switch. In order to
achieve connections between links in A, B, C and D, they need to be connected by crosspoint
switches detailed in Figure 2. In Figure 2 each intersection of two lines represents a crosspoint.

The switch operates in two modes. In the first mode, data from B and A are used to set the
internal crosspoints of the switch. The interpretation of the data by the switch to setup the internal
crosspoints is dependent on the routing strategy. In the second mode, information is passed through
the switch using the internal crosspoint setup.

2.2 Network parameters

4

level 1-1

level 1-2

level 0

PEs

Figure 3: LCAN structure

LCANs are parameterized by (d, u, I, II)-tuples for N PEs. For purposes of analysis in this section,
only LCANs with identical switches are considered (to parameterize LCANs with switch sizes that
vary by level, u and d need to be vectors of size N). There are / levels of switches in the network,
labelled 0 through I - 1.

A switch in level i has d bi-directional downers that connect to switches in the next lower level,
level i - 1, and u bi-directional uppers that connect to switches in the next higher level, level i + 1
(see Figures 1 and 3). Thus, switches in level i are only connected to switches in levels i - 1 and
i + 1. The exceptions are level l - 1 (the highest level in the network), in which case the uppers do
not connect to anything, and level 0 (the lowest level in the network), in which case the downers
connect to the PEs. When d > u, the number of switches per level decreases as the number of
levels grows; d = u, the number of switches per level is constant; d < u, the number of switches
per level increases.

Let U be the set of all uppers of the switches in some level i, and let D be the set of all downers
of the switches in level i + 1. Then, II describes the mapping of D to U; the mapping is one-to-one
and onto. Note that IDI = IUI· II is called the level interconnect.

Let Si be the number of switches in level i. S0 = Jt- since each switch has d connectors connecting
to lower levels. The ~ switches in level 0 each have u uppers connecting to higher levels, thus there
are u1J connectors going up from level 0. Repeating the same reasoning, S1 = uN / d2•

In general,
u

Si+l = d Si, where So= N/d.

Recursively substituting,

(1)

5

Definition 1 Let LCAN(d,u,l,II) denote a least common ancestor network comprising l levels
of switches, labelled 0 through l - 1, with interconnectivity defined by II; a switch in level i has d
downward connectors to switches in level i - 1 and u upward connectors to switches in level i + 1. It
is assumed there are N processors connected to the switches in level 0, one per downward connector
and there exists at least one possible path in the network between any two processors. · It is also
assumed there are also no unused connectors between consecutive levels.

The following theorem holds for all LCANs:

Theorem 1 Given an LCAN(d,u,l,II), l must be less than or equal to a, where a is the smallest
integer such that ~(1)a-l is an integer and ~(1 r is not an integer.

Proof:

Assume l >a. By Definition 1, there exist levels a - 1 and a. Using Equation 1, level a - 1 has
Sa-1 = 1d (~)a-l switches, and uSa-1 upward connectors to level a. To fully use every one of these
connectors, there need be exactly jSa-1 switches in level a. However, 1Sa-l = ~(j)a, which is
not an integer by assumption. It follows that there must be unused downward connectors in level
a, contradicting Definition 1. DQ.E.D.

Now two subclasses of LCANs are defined in terms of their II:

Definition 2 Given an LCAN(d,u,l,II), let II = (d/u)-ary tree iff the switches are arranged in
a (d/u)-ary tree fashion where each edge of the tree represents u connectors. Clearly, this is only
possible when d is a multiple of u.

Definition 3 Given an LCAN(d,u,l,ll}, let II = complete bipartite if the interconnectivity is as
follows:

Label the PEs consecutively using logd N digits based: < p1o9d N-1Ptogd N-2 ···Po >, and label the
switches in level i consecutively using (logd N - I) digits such that the (l ogd N -1-i) most significant
digits are based and the i least significant digits are base u: < w1o9d N-2w1o9d N-3 · · · WiWi-1 · · · wo >.

A PE labelled< Plogdn-lPlogdn-2 ···po> is connected to switch< Plogdn-lPlogdn-2 · · ·p1 > via
the Poth downer of the switch.

To connect switches in level i labelled< W/ogdn-2w1o9dn-3 · · ·Wi+1iWi-1 · · ·Wo >, where j =
0, 1, ... ,d- 1, to switches in level i + 1, remove the rightmost based digit (j) and append a base u
digit to the right of the switch label, call it k. The d switches in level i connect to u switches in
level i + 1 - those labelled< w1o9d n-2w1o9d n-3 · · · Wi+1 Wi-1 ···wok >, where k = 0, 1, ... , u - 1, via
the k +1st upper of the switch in level i and the j + 1st downer of the switch in level i + 1.

LCANs with Il = complete bipartite are topologically the same as SW-banyans. Definition 3 is
more rigorous than the definition in [14], and leads to the following lemma:

Lemma 1 A processor can connect to ui unique switches in level i.

6

3

2

1

0

level

PEs (one PE per downer in level 0)

Figure 4: A CB-LCAN(2 ,2)

Proof: Observe that the u uppers of a switch in level 0 connect to u different switches in
level 1 because single base u digit in the switch label represents u distinct values . Likewise, the u
level 1 switches connect to u2 different switches in level 2 because the two base u digits represent u2

distinct values. It follows that a processor can connect to ui distinct switches in level i. DQ.E.D .

With the definition of these two Ils, I can be defined as a function of N, d and u for both
subclasses of LCAN s:

Corollary 1 (to Theorem 1) Given an LCAN(d,u,l,complete bipartite) , N = d1, or I= logdN.

Proof: By Lemma 1, the number of switches in level I - 1 that a processor can reach is u1- 1 ,

the total number of switches in that level. Equation 1 states that S1_ 1 = !f C;l)1- 1 . Equating the
two,

1-1 = N (~)1-1
u d d .

Reducing, we obtain N = d1, or I= logdN. DQ.E.D.

Definition 4 Let an LCAN(d,u,l,complete bipartite) be denoted CB-LCAN{d,u).

Figure 4 is a CB-LCAN(2,2).

Corollary 2 (to Theorem 1) Given an LCAN(d,u,l, (d/u)-ary tree), N = f~ 1 , or!= log.11.(':).
u u

Proof: By Definition 2, S1-1 = 1; by Equation 1, S1-1 = ~ {JJ)1- 1 . Equating the two,

Therefore, N = j~1, and it follows that l =logs_':. DQ.E.D.
u

7

Definition 5 Let an LCAN{d,u,l,{d/u)-ary tree) be denoted T-LCAN(d,u).

Note that a T-LCAN where u = 1 is a limiting case of a CB-LCAN. I.e. T-LCAN(d,1) is
equivalent to CB-LCAN(d,1).

Given these properties and definitions, networks from prior research can classified by LCAN
parameters:

• A baseline network with full communication capability is equivalent to CB-LCAN(2,2).

• A (f,s,logdN) SW-banyan is equivalent to a CB-LCAN(f,s).

• The TRAC network is a CB-LCAN(3,2).

• A fat-tree has the form of a binary tree, but the switch size varies by level; they are similar to
T-LCANs. An exact description requires a vector of d's and u's, a vector element per level.

• The CM-5 router network is composed of a CB-LCAN(4,4) and many CB-LCAN(4,2)s.

2.3 Level interconnectivity

In this section, initially some definitions are given, then the importance of II with respect to routing
is discussed.

Definition 6 A least common ancestor (LCA) switch of two processors is a switch in level i,
such that:

1) it can be connected to both processors using only switches in levels 0 through i - 1, and

2) there is no switch in a level j, j < i, that satisfies property 1).

Note that two PEs may have more than one LCA switch.

Definition 7 The LCA level of two processors is the level to which their LCA switch(es) belong.

Lemma 2 In a CB-LCAN, two processors whose LCA level is i have exactly u i LCA switches.

Proof: Assuming the LCA level of two PEs, a and b, is i, it follows from Lemma 1 that a
is connectable to ui switches in level i , and b is connectable to ui switches in level i . Due to the
recursive nature of the interconnect, the two sets of switches are either disjoint or identical. If the
former, then there are no switches in level i that can connect a and b, and thus the LCA level could
not be i. Therefore, it follows from the latter that the number of LCA switches is ui. DQ.E.D.

Lemma 3 In a T-LCAN, any two processors have exactly one LCA switch.

Proof: In a k-ary tree, given any two leaves (PEs) there is exactly one least common ancestor
(LCA switch), the root of the smallest subtree containing both leaves. DQ.E.D.

8

Definition 8 A path between two processors consists of an alternating series: connector, switch,
connector, switch,···, connector, such that two processors may communicate in a circuit-switched
fashion.

A non-redundant switch path is a path that does not pass through any switch more than once.

Theorem 2 The number of non-redundant switch paths between any two processors in a CB-LCAN
is exactly the number of LCA switches of the two processors.

Proof: Each LCA switch is the root of a subtree of switches, the leaves are PEs. The subtrees
share the same leaves due to the recursive nature of the CB-LCAN interconnect. In a tree, there is
only one path between any two nodes. Utilizing switches in levels above an LCA switch does not
add additional non-redundant switch paths because the LCA switch lies within a tree containing
those switches and the path taken upwards must be the same path as that taken back down (thus
the LCA switch is passed through twice). Therefore, the number of non-redundant switch paths
between any pair of leaves is exactly the number of trees, or in this case, the number of LCA
switches. DQ.E.D.

Because of these LCA switches, all LCANs exhibit the following feature: given _a source­
destination pair, there are one or more LCA switches, and communication need progress upwards
only to an LCA switch. At this point, routing can return downwards to the destination. Thus,
given a network, there clearly exist source-destination pairs that do not require routing through
every level of the network; whereas with the typical usage of MIN s all source-destination pairs must
route through every stage.

This LCAN feature is important because it complements the physical partitioning of the network
into chips and boards. Permutations requiring only on-chip and on-board communication are
performed quickly. Determination of these permutations depends on a given partitioning and
quantitatively relates the physical construction of the network to the expected permutation traffic.

In order to exploit this routing feature, network parameters that permit routing to and from an
LCA switch need to be identified. Ideally, this routing would be based solely on local knowledge
(source and destination labels).

Certain MINs, delta networks [17] are capable of "self-routing," i.e. require only a destination
address to route, uni-directionally across the network. A subclass of delta networks, bide/ta networks
[9] are also self-routing if the network is reversed. CB-LCA N s are topologically similar to delta and
bidelta networks. However, because of the added switch functionality, CB-LCANs additionally allow
bi-directional routing using only source and destination labels; T-LCANs also allow bi-directional
routing. Currently, no routing algorithms that only use local knowledge have been identified for
other LCAN s.

One focus of any comparison between CB-LCANs and T-LCANs should be their routing capa­
bilities. One metric that affects routing is spreadout. The spreadout of II in an LCAN(d,u,l,II) is
the number of different switches in level i + 1 to which the uppers of a switch in level i connect.
II= complete bipartite affords maximal spreadout, i.e. u, and II= (d/u)-ary tree yields minimal
spreadout, i.e. one. These two IIs are regular in the sense that every switch has the same spreadout.

9

Figure 5: LCAN labelled A

Given a CB-LCAN and a T-LCAN with the same N , d and u , observe that I in the CB-LCAN
is always less than or equal than I in the T-LCAN. This follows from Corollaries 1 and 2. In
the limiting case, u = 1 and the networks are identical; assume u > 1. Intuitively, the maximal
spreadout of the CB-LCAN allows a processor to communicate with more processors "faster,"
i.e. with less levels. From Equation 1, since N, d and u are the same for both networks, the total
switch cost for the CB-LCAN is less than that of the T-LCAN.

3 Routing

Attention is focused on CB-LCANs in this section because routing on T-LCANs is essentially a
limiting case of routing on CB-LCANs. LCAN switches are assumed to have no buffers, thus the
results in this section apply to circuit-switched packet routing.

In this section, uni-directional and bi-directional routing methods are restated from prior work
and an interesting perspective relating bi-directional routing to uni-directional routing is presented.
Then, routing on CB-LCANs given global knowledge is discussed . Finally, permutation routing is
explored.

3.1 PE-to-PE routing

CB-LCANs facilitate uni-directional routing upwards using routing tags in base u and downwards
with routing tags in base d. The switches in a given level use a unique digit of the destination tag
to determine which link to use.

Lipovski and Malek describe a procedure for bi-directional routing [14]; for the specific case of
d = u = 2, it is the same as the procedure in [21]. The procedure is summarized here: Bi-directional
routing uses an LCA level computation. A source-destination pair needs to route to its LCA level.
Any switch in the source-destination pair's LCA level that is reachable from the source is guaranteed
to have a path to the destination because of the recursive nature of the II = complete bipartite
interconnect. The routing procedure provides some degree of freedom: randomly route upwards
anyway possible to the LCA level, then deterministically route downwards to the destination PE
using part of the destination label2 • The LCA level is the place of the most significant digit where
the source and destination labels differ.

2The CM-5 router network uses this routing algorithm.

10

physical linka
virtual link•

Figure 6: A unfolded into Ai and A2 showing virtual links

Bi-directional routing on LCANs can also be viewed from another perspective. Let A be an
LCAN (see Figure 5); let A1 comprise the PEs, the switches and the upward-going wires of the
bi-directional links. Let A2 comprise the downward links of the bi-directional connectors, and
duplicates of the PEs and the switches (except those in level 0). Unfold A2 in a mirror-like fashion
(see Figure 6). Each switch in A1 effectively has an extra link to its corresponding mirrored switch
in A2 (represented by the thick edges in Figure 6). These are virtual links, and are costless to
traverse. Communication in the unfolded LCAN occurs uni-directionally; however, in the folded
LCAN A, communication moves forward then backward.

. The added functionality provided by the virtual links allows certain connections to be made
without utilizing a switch in every level, i.e. some middle levels need not be traversed. Given that
the switch that is the least common ancestor of two communicating PEs belongs to some level k,
to connect the PEs, 1 + 2(k - 1) levels in A can be skipped by utilizing the virtual links between
A1 and A2·

3.2 Global routing knowledge

To route a set of packets, possibly a permutation, with the minimal amount of network cycles,
global knowledge is usually required. Either all PEs know all source-destination pairs and act in
unison, or a central controller knows all source-destination pairs and directs the PEs. Leiserson
developed excellent off-line routing results for fat-trees in [11]. In this section, routing with global
knowledge is considered on CB-LCANs by examining their "equivalent" fat-trees. First, Leiserson's
results are restated (see [11] for further details).

Recall that a fat-tree takes the form of a binary tree and the switch size can vary by level. The
set of connectors between two switches is called a channel. Given a message set M, the load factor,
.X(M, c), of a channel c due to Mis

.X(M, c) = load(M, c).
cap(c)

Theorem 3 A lower bound on the number of network cycles required to route M is d ~ .X(M),

11

equivalent 3-ary fat-tree

CB-LCAN(3,3)

2

1

0

'-----P_E_s ___ ___,) level

Figure 7: A CB-LCAN(3 ,3) and its equivalent 3-ary fat-tree

where ,\(M) is the maximum ,\(M, c) over all channels.

Theorem 4 On a fat tree, for any message set M with ..\(M) > 1, there is an off-line schedule of
d network cycles such that d = O(..\(M) log N).

Leiserson provides a method for computing this schedule. To compare CB-LCANs· with fat­
trees, the definition of a fat-tree is extended:

Definition 9 Let k-ary fat-trees be LCANs such that if there are Si switches in stage i, then
Si+I = kSi-

Thus, 2-ary fat-trees are equivalent to Leiserson 's fat- trees. It is conjectured that a schedule of
O(,\(M) log N) cycles can be scheduled off-line for a message set M on a k-ary fat-tree.

Definition 10 Let the equivalent d-ary fat-tree of a CB-LCAN(d,u) be recursively constructed
using a combine operation that replaces a group of smaller switches with one large switch; connector
number and connectivity is maintained - combining m LCAN switches with d downers and u uppers
yields an LCAN switch with {md} downers and (mu) uppers. The construction is as follows:
combine the u1- 1 switches in level l - 1, then divide the switches in level l - 2 into d consecutive
evenly sized groups. Apply the combine operation recursively to each group (see Figure 7).

Given two processors in a CB-LCAN there can be many LCA switches; in the equivalent d-ary
fat-tree there is only one bigger LCA switch (as a result of the combine operation).

It is conjectured that given global knowledge about a message set M, the minimum number of
network cycles necessary to route M in a CB-LCAN(d,u) is the exactly the same as the .minimum
number in its equivalent d-ary fat-tree. If the two conjectures in this section prove correct, then
Leiserson's off-line results can be directly applied to CB-LCANs.

12

3

routing to top:

routing down:

2

1

0

initial permutation:
'-~~~~~~~~~~~~

level

Figure 8: Routing a "worst-case" permutation in a CB-LCAN(2,2)

3.3 Permutation routing

Routing the identity permutation takes only one network cycle in any LCAN since all source­
destination pairs need only route to level 0. To compare this permutation to other permutations
based on network cycles, the average number of cycles necessary to route a permutation must be
used since the routing algorithm is random (see Section 3.1).

In this section, permutations with source-destination pairs that all have LCA level l - 1 are
considered on CB-LCANs where d = u (the performance of permutation routing on CB-LCANs
where d f:. u is an open question) . This set is hereafter referred to as the "worst-case" set. It is
conjectured that the average number of cycles to route the "worst-case" set is greater than the
average number of cycles for any other set.

The routing of the "worst-case" set is illustrated with CB-LCAN(2,2) (see Figure 8). Choose
any permutation from the "worst-case" set, call it P. Let A be the set of PEs labelled 0 to (N/2-1),
and let B be the set of PEs (N/2) to (N-1). The destinations of A comprise a permutation of the
labels of B, and vice versa; otherwise not all source-destination pairs require routing to the top
level. After routing P to the top level, call the resultant permutation Ptopi each switch contains
two packets - one packet must have come from A and be destined for B and vice versa for the other
packet.

Next, after routing back down to level 1-2, the uppers of the switches in the left half oflevel 1-2
have a permutation of the labels of A, call it Preft, and likewise for the right half and B, call that
permutation Pright· Observe that Preft and Pright are random permutations, since given any P,

each possible setting of the switches in the network leads to a unique Ptop· After the first cycle,
P1eft and Pright will be partial permutations of A and B respectively. Now the question is how
many cycles does it take to route a random permutation uni-directionally through the n~twork?

Routing in a butterfly is the same as routing uni-directionally in a CB-LCAN(2,2). Routing the

13

transpose permutation in a butterfly takes VN cycles (shown in Section 3.4 .9 of (9)). In a-butterfly,
the transpose permutation is one of relatively few worst-case permutations. So if P1eft and Pright

are transpose permutations of the labels of A and B respectively, routing P could take O(log N)
cycles in the worst case. However, given that P is in the "worst-case" set, the likelihood of P1eft

and Pright being transpose permutations is (71h)2 . The likelihood of this occurring VN times is
even smaller. Thus it is extremely unlikely that routing P will take VN cycles, even if P is in the
"worst-case" set. The above reasoning extends to all networks where d = u. However, keep in mind
that the average case, not the worst case, is of prime interest since Pteft and Pright are random
permutations.

In a uni-directional network, the random routing problem is highly similar to permutation
routing. Random routing is where every processor randomly chooses a destination from a uniform
distribution; a processor could have multiple packets destined for it. It is conjectured that any
bound on the number of passes for random routing applys to permutation routing as well.

Problem 3.285 in (9] involves proving that random routing on a butterfly (d = u = 2) takes
O(log N) cycles with high probability; the proof exists (10]. It is easy to see that this extends to
uni-directional routing on CB-LCANs with d = u = 2k, where k is an integer: replace each switch
with an equivalent CB-LCAN comprising d = u = 2 switches; the larger switch is certainly at
least as powerful than the equivalent CB-LCAN. It is unclear whether the proof of problem 3.285
extends to all switch sizes where d = u.

If the uni-directional random routing bound is an upper bound on uni-directional permutation
routing, then routing the "worst-case" set of permutations takes O(log N) cycles with high proba­
bility. Note that this bound applies to on-line routing, no central controller or global knowledge is
necessary.

4 Conclusion

In this paper, LCAN s were characterized - they were shown to be a generalization of many previously
developed networks. Important classes of LCANs and their relationships were defined. The LCAN
switch facilitated the bi-directional routing characteristics of these networks. It was shown that
due to the nature of the routing and typical network implementation, locality of communication
can be exploited to decrease routing time.

Initial performance results for permutation routing were shown for CB-LCANs where d = u. If
bounds on the number of network cycles necessary for the similar problem of random routing apply
to permutation routing, then a schedule of O(log N) cycles with high probability can be achieved
on-line for a "worst-case" set of permutations.

References

(1] B.D. Alleyne, C.K. Chien and l.D. Scherson, Lowest common ancestor interconnection net­
works, Technical Report #92-19, University of California, Irvine, February 14, 1992.

[2] V.E. Benes, Mathematical theory of connecting networks and telephone traffic, Academic, New
York, 1965.

14

[3] T. Blank and R. Tuck, Personal communications, MasPar Computer Corporation, 1991.

[4] C.K. Chien a.nd I.D. Scherson, Self-routing lowest common ancestor networks, to appear as a
poster paper, Frontiers of Massively Parallel Processing, 1992.

[5] C. Clos, A study of non-blocking switching networks, Bell System Technical Journal, Vol. 32,
1953, pp. 406-424.

[6] T. Feng, A survey of interconnection networks, Computer, Vol. 14, December 1981, pp. 12-27.

[7] D. Hare! and R.E. Tarjan, Fast algorithms for finding nearest common ancestors, SIAM J.
Comput., Vol. 13, No. 2, May 1984, pp. 338-355.

[8] K. Hwang and F. Briggs, Computer architecture and parallel processing, McGraw-Hill, 1984.

[9] F. T. Leighton, Introduction to parallel algorithms and architectures: arrays, trees, hypercubes,
Morgan Kaufmann Publishers, 1992.

[10] F.T. Leighton, Personal communication, 1992.

[11] C. Leiserson, Fat trees: Universal networks for hardware-efficient supercomputing, IEEE Trans.
on Comp., Vol. C-34, No. 10, October 1985, pp. 892-901.

[12] C. Leiserson, et al, The network architecture of the connection machine CM-5, SPAA '92, June
1992, pp. 272-285.

[13] G.F. Lev, N. Pippenger and L.G . Valiant, A fast parallel algorithm for routing in permutation
networks, IEEE Trans. Comput., Vol. C-30, No. 2, February 1981, pp. 93-100.

[14] G.J. Lipovski and M. Malek Parallel computing, Wiley & Sons, 1987.

[15] B.L. Menezes and R. Jenevein, The KYKLOS multicomputer network: Interconnection strate­
gies, properties, and applications, IEEE Transactions on Computers, Vol. 40, No. 6, June 1991,
pp. 693-705.

[16] D. Nassimi and S. Sahni, Parallel algorithms to set up the Benes permutation network, IEEE
Trans. Comput., Vol. C-31, No. 2, February 1982, pp. 148-154.

[17] J .H. Patel, Performance of processor-memory interconnections for multiprocessors, IEEE
Trans. Comput., Vol. C-30, No. 10, October 1981, pp. 771-780.

[18] J. Richardson, Personal communication, Thinking Machines Corporation, 1992.

[19] B. Schieber and U. Vishkin, On finding lowest common ancestors: simplification and paral­
lelization, SIAM J. Comput., Vol. 17, No. 6, December 1988, pp. 1253-1262.

[20] H.J. Siegel, Interconnection networks for large-scale parallel processing, Lexington Books, 1985.

[21] C.W. Wu and T. Feng, On a class of multistage interconnection networks, IEEE Trans. Com­
put., Vol C-29, No. 8, August 1980, pp. 694-702.

15

