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A Language for Conveying the Aliasing Properties of
Dynamic, Pointer-Based Data Structures

Joseph Hummel" Laurie J. HendrenJ and Alexandru Nicoiau^

September 20, 1993

Abstract

High-performance architectures rely upon powerful optimizing and parallelizing compilers to maximize
performance. Such compilers need accurate program analysis to enable their performance-enhancing
transformations. In the domain of program analysis for parallelization, pointer analysis is a difficult
and increasingly common problem. When faced with dynamic, pointer-based data structures, existing
solutions are either too limited in the types of data structures they can analyze, or require too much
effort on the part of the programmer.

Recently we proposed a compromising approach, in which the programmer supplies some small
amount of information, and the compiler performs the remaining analysis [HHN92a]. However, the
language for conveying this information is unable to accurately describe a number of important data
structures, and does not easily support the compiler's underlying alias analysis. In this paper we present
a more powerful description language that also directly supports alias analysis. Ultimately, this will lead
to more accurate program analysis for a larger class of programs, and hence the increased application of
performance-enhancing transformations on these programs.

1 Introduction

High-performance architectures rely upon powerful optimizing and parallelizing compilers to increase pro

gram performance. In turn, these compilers depend upon accurate program analysis to enable various
optimizingand parallelizing transformations. A good deal of work has been done in the area of array analy

sis (see [ZC90, Ban93] for extensive references), but much less work has been focused on pointer analysis. In
particular, this paper is concerned with the problem of analyzing programs involving dynamic, pointer-based

data structures.

The problem of analyzing these kinds of programs, and those using pointers in general, continues to grow

in importance. This can be attributed to the increasing use of C in the parallel processing community(also
C-f-f and F90 to a lesser extent), alongwith the realization that dynamicdata structures are important tools

for achieving high performance. For example, octrees are important data structures in N-body simulations
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[App85, BH86, HHN92b, WS92] and computational geometry [Sam90], as are sparse matrices in circuit

simulations [Kun86, SWG91].

The preferred method of analysis is an automatic one, in which the compilerdeduces the properties of the

data structures and transforms the program accordingly. However, such approaches [JM81, LH88, ISY88,

Har89, HPR89, CWZ90, HN90, Deu92, HA92, LR92, CBC93, PKC93] require interprocedural analysis and'

are currently quite limited in the types of data structures they can recognize (typically one and two-way

linked-lists, and trees). A second analysis approach is the manual one, in which the programmer must

annotate their program with directives, thereby directly supplying the compiler with analysis information

(e.g., see [Cor91, McN93]). These directives are typically at a very low semantic level, and must be placed

throughout the program to maximize effect.

Unhappy with either method, we recently proposed a third, compromising approach: the programmer

annotates only the type declarations for their data structures, and the compiler then uses this informa

tion to guide the remaining program analysis [HHN92a]. This requires only a small effort on the part of

the programmer, but can result in dramatic improvements in accuracy of analysis and hence performance

[HHN92b, HHN93]. The disadvantage is that the compiler may not be able to verify the type annotations.
As with program correctness, this is currently the responsibility of the programmer.

The ADDS description language we proposed in [HHN92a] is intuitive and fairly powerful in its descrip

tive abilities. However, it is unable to accurately describe a number of important data structures, and does

not easily support a direct method of alias analysis testing. In this paper we present a new description lan

guage called ASAP that is both more powerful and provides direct support for alias analysis. Furthermore,

ASAP's flexibility allows ADDS descriptions to be directly translated into equivalent ASAP descriptions,

thereby giving programmers the flexibility to use either language (or both) as appropriate or preferred.

The format of this paper is as follows. In the next section we present our language for conveying the
properties of data structures that are important for program analysis, nEimely aliasing properties. Then

in Section 3 we will discuss related work, followed in Section 4 by examples of using our new language.

Finally, in Section 5 we present our conclusions. For the interested reader. Appendix A outlines the process

of translating ADDS descriptions into ASAP descriptions.

2 Overview of Language

First we motivate our language and its design, then we supply its definition, and lastly we discuss the problem

of verification.

2.1 Motivation

One of the most critical features of optimizing and parallelizing compilers is accurate program dependence

analysis [Ken90]. In the case of pointers, this requires accurate alias analysis, i.e. answering questions of the

form: "At a program point S, what memory locations might be (are) pointed to by the pointer variable p?".



When considering dynamic data structures, alias analysis mostoften involves two pointers p and q, and the
question: "Could (do) p and q point to the same node in the data structure?". In other words, could p = g?

type BinsuryTree.t {
Data_t d;

BinaryTree.t *left;
BinaryTree.t »right;

};
lef^
o o o o

Figure 1: A binary tree: type declaration and example data structure.

The idea then ofour description language is to allow the specification of axioms which define under what
conditions it is guaranteed^ that p <> q — i.e. that no alias exists between p and q. It is these properties
which must be expressed, since the goalof the compiler during dependence analysis is to prove that aliases
are not possible. Thus, our language focuses on the communication of the (non) aliasing properties of a
data structure to the compiler. Viewing a data structure as a directed graph where edges are labeled by

their respective pointer fields, such aliasing properties can be expressed by stating the relationships between
pointer fields. For example, one ofthe important properties ofa binary tree (Figure 1) is that for all nodes in
the tree, traversing left leads to a different node than traversing right. This can be stated by the following

forall nodes p, p.left <> p.right.

The same is true for distinct nodes; left and right traversals from different nodes always lead to different

nodes (as well as left and left, or right and right, traversals). This implies the following axiom:

forall distinct nodes p and q, p.(left 1right) <> q.(left Iright).

Finally, we know that binary trees are acyclic; the left and right fields never form a cycle, neither inde
pendently nor together. This can be specified as follows:

forall nodes p, p.(left Iright)+ <> p.

In general, axioms are ofthe form uari .pathi <> vari.pathzt where pathi and path2 are regular expres
sions. The alphabet of these expressions is theset containing theempty string e, which denotes no traversal,
and all available pointer fields (qualified by type name if name clashes arise, and with array indices if nec
essary). Regular expressions are a natural choice for expressing aliasing properties, since the information
collected during standard compiler analyses can sdso be mapped into this form: a sequence of statements

^Assuming that the axioms are true of course.



can be expressed through concatenation, selection through alternation, and iteration through kleene star.
Ultimately, this allows for a straightforward application of the axioms during dependence analysis [HHN93].
For example, consider the following code fragment in which p and root are variables of type pointer to

BinaryTree.t:

p = root;

if (...)

then p = p->left;

else p = p->right;

while (...)

do p = p->left;

p->d = ... ; /♦ stmt S ♦/

... = root->d; /♦ stmt T •/

Is statement T dependent on statement S? To answer this question, the compiler needs to know the relation

ship between p and root. When statement S is reached, standard analysis techniques are able to at least

partially summarize their relationship with the following access path:

p = root.(left I right)left«

In other words, we know that p can be accessed from root by following any path in the set denoted by

the regular expression (left I right)left*. To prove that statement T is not dependent on statement S,

it must be shown that p and root refer to different nodes at T. Given the above access path for p (which
still holds at T), this can be shown through a proof that root, (left I right)left» <> root. Since this

is trivially true using the acyclicness axiomfor binary trees, the compiler can conclude that no dependence
exists between S and T^.

2.2 Definition

Since our language supports the abstract ^ecification of biasing properties, we shall refer to it as ASAP.

The syntax of ASAP is straightforward: a valid ASAP specification consists of one or more axioms, of which

there are three forms. These are defined by the following BNF:

<spec>

<axioms>

<axiom>

<saffie-noalia8>

<diaj-no2d.ia8>

<same-alias>

<var>

<rei>

=5 <axioms>

- <axlom> <axioiQs> 1 <axiom>
s <sajne-iioalias> I <disj-no3dias> I <8ane-alia8>
= forall nodes <var> , <var> . <rel> <> <var> . <r«2>

= forall distinct nodes <var> and <var> ,

<vetr> . <rel> <> <var> . <re2>

= forall nodes <var> , <v2ur> . <rel> = <var> . <re2>

= IDEHTIFIER

= <re>

^Detiuls onhow access pathsarecollected, £tnd how general dependence testing is then'performed, canbefound in [HHN93].



<li6lds>

<field>

<kleene>

= <re>

= <lields> I ( <re> ) 1 ( <re> ) <kl6en6> I <re> 'I' <re>
= <lield> <lields> I <lield>

= IDEHTIFIER I _E_
r * I +

For simplicity of presentation, we assume that all field names are unique (even across types), and that a field

denotes a single pointer value (not an array of pointers); these limitations are easily lifted. The is used

to denote the empty string f.

The semantics of a valid ASAP specification S are likewise straightforward. For all data structures DS

which will be built, each of the axioms in S is guaranteed to hold. An axiom of the form <8aiDe-noalias>

specifies that forall nodes p in DS, the set of nodes® reachable from p along any path in the set <rel>

will be disjoint from the set of nodes reachable from p along any path in the set <re2>. The meaning of a

<disj-noalias> axiom is defined similarly. However, a <same-2J.ia8> axiom specifies the opposite: V nodes

p in DS, the set of nodes reachable from p along any path in the set <rel> and the set of nodes reachable

from p along any path in the set <re2> all in fact refer to the same node n. The motivation for this last

form of axiom will become clear in Section 4.

2.3 Verification

Given the expressive power of ASAP, it is likely that a compiler will be unable to verify an ASAP specifica

tion in the context of all possible programs. Thus, as with progreim correctness, the correctness of an ASAP

specification must ultimately be the responsibility of the programmer. One workable solution is to limit the

use of ASAP to abstract data types, which are small enough to be proven correct (by hand if necessary).

Another is the availability of ASAP-aware tools for code analysis, debugging, run-time checking, and visual

ization. However, regardless of the approach taken, the problem of verification should not necessarily deter

the use of ASAP, much the same way it does not deter programming in general.

Note that visualization tools can also help ensure that a given ASAP specification accurately reflects

what the programmer had in mind, as can compiler support for predefined collections of axioms (e.g. left

and right define a "tree") or a higher-level language such as ADDS.

3 Related Work

First we will present the work from which ASAP grew, namely ADDS, and then we will discuss other related

^A node is a memory location with a non-NULL address.



3.1 ADDS

type TofTs.t [Down][Across][Sub] {
Data.t d;

TofTs_t ♦!, ♦r are uniquely iorwsurd along Down;
TofTs_t ♦n is uniquely forward along Across;
TofTs.t ♦p is backward along Across;
TofTs_t #8 is uniquely forwaurd along Sub;

}- where Sub is independent;

IDown

Across

Figure 2: IVee of trees: ADDS declaration and example data structure.

Our work on ASAP is a generalization of our earlier work on ADDS [HHN92a], a data structure description

language based on a notion of directions and dimensions. In ADDS, pointer fields can be declared as

traversing in one of five directions—forward, uniquely forward, combined uniquely forward, backward,

and unknown—as well as along a programmer-defined dimension. Dimensions can be declared as either

independent, or by default, dependent. A quick example should suffice to define the meaning of these

terms; for more information, the reader is referred to [HHN92c].

Figure 2 illustrates a tree of trees, in which all trees are independent from one another. However, within

a given tree, note that the leaves are linked together in a two-way fashion. An appropriate ADDS-based type

declaration is also shown in Figure 2. The type TofTs.t is declared as having 3 dimensions: Down, Across,

and Sub. The Down and Across dimensions are dependent since it is possible for a node to be reached

by traversing along either dimension; the Sub dimension is independent, however, since any substructure

reached by traversing along Sub is disjoint from all others. The direction forward declares acyclicness,

uniquely forward declares that at most one pointer labeled with this field ever points to a node (implying a

linked-list), and combined uniquely forward generalizes the notion of uniquely forward to hold for two or more

fields (thereby implyinga tree). Hence, lookingat Figure 2, wesee that the fieldn traverses uniquelyforward

along Across, s traverses uniquely forward along Sub, and 1 and r traverse combined uniquely forward along



Down. Finally, the field p is said to traverse backward along Across, given the cyclic relationship between n

and p and the fact that n traverses forward.

ADDS is a simple yet powerful language for describing pointer-based data structures. However, as the

complexity of a data structure grows, the accuracy of ADDS can diminish. For example, the fields 1, r,

and n of Figure 2 form an acyclic substructure, but such acyclicness cannot be conveyed by this (or any

other) ADDS declaration. As we tried to increase the accuracy of ADDS, and in general enlarge the class

of describable data structures, the language quickly became more complicated and much less intuitive. So,

instead of trying to extend (and possibly ruin) ADDS, we studied the underlying information that ADDS

was conveying to the compiler, and designed a language that allowed this information to be expressed

directly. This lead to the development of ASAP. ASAP has more descriptive power than ADDS, which

we will demonstrate in Section 4 by presenting several important data structures that ADDS is unable to

describe accurately. The apparent disadvantage in using ASAP over ADDS is the lower-level nature of

ASAP's axioms, making the language less intuitive. However, since an ADDS description can automatically

be translated into an equivalent ASAP specification (see Appendix A), a programmer can use ADDS when

s/he wishes, and use ASAP only when necessary. Thus, the use of ASAP does not necessarily imply a loss

of intuitiveness.

3.2 Graph Types

Graph types [KS93] and ASAP take a similar approach to describing data structures, namely using regular

like expressions to specify the relationships between pointer fields. With graph types, pointer fields are

separated into two types, tree and routing fields. The tree fields must create a spanning tree for the data

structure; the routing fields are then defined in terms of the tree fields and the underlying spanning tree.

The primary disadvantage to graph types is that they only support data structures with a spanning

tree backbone. However, the class of describable structures is even smaller, since a structure must also

be deterministic—the relationship between a routing field and the underlying backbone must be precisely

known at compile-time^. For example, a sktpltst [Pug90] is a data structure in which some pointers skip

ahead z number of nodes in order to reduce search time. Since x cannot be predicted at compile-time, this

type of structure cannot be described using a graph type. The same is true for orthogonal lists [StaSO], an

important data structure used to implement sparse matrices and thus commonly found in circuit simulations

[Kun86]. We will discuss sparse matrices, and other data structures that graph types are unable to describe,

in more detail in Section 4; these same structures will be described accurately using ASAP.

There are some cases, however, in which graph types can yield a more accurate description than ASAP.

For example, with graphs types it is possible to accurately describe a post-order threaded tree; one can

predict, at compile-time and for all nodes, exactly which node will be reached after traversal of the threading

field. In ASAP, one can accurately describe the tree, but at best can only convey that the threading field

may reach some node in the tree, not precisely which one. Though it is not clear for just how many data

structures this holds, both languages can describe common structures such as one-way linked lists, two-way

^In fact, not even all deterministic relationships can be specified, see (KS931.



linked-lists, and binary trees equally well.

It should be noted that graph types typically involve more complicated regular expressions than does

ASAP, which one would expect since the programmer must state exactly which node will be reached after a

given traversal. A nice feature of graph types is that the compiler is able to guarantee the well-formedness of

the regular-like expressions. However, the latter does not guarantee that the structure described is the same

one the programmer had in mind (a problem shared by all languages, not just graph types). It should also

be pointed out that the compiler is not guaranteeing the correctness of imperative-style code which might

build this kind of data structure. Graph types are intended for functional languages, i.e. languages without

assignment statements. This guarantees the treeness of the backbone, since without assignment one can only

build trees. The compiler is thus responsible for generating the code to compute and maintain the values

of the routing fields, which is possible (though potentially expensive) using the regular-like expressions from

the graph type.

3.3 Other Related Work

IDL, the Interface Description Language, allows the programmer to define various properties of a data

structure by way of assertions supplied in its declaration [Sno89]. Unlike ASAP however, these assertions do

not aid analysis since the compiler does not understand their implication; the purpose of these assertions is to

ensure validity at run-time (in particular, as the structure is passed from one running program to another).

Larus [Lar89] discussed a technique for describing acyclic structures in LISP; these were code annotations

which conveyed the acyclicness of a data structure to the compiler. Another code annotation approach

is that taken by Klappholz et al. in Refined-C [KKK90], where explicit statements such as distinct are

inserted into the program to guide analysis. Finally, a very different but related language-based approach

is the effect system of FX [LG88], in which the effect of a statement must be explicitly associated with a

region of memory; this enables the compiler e.g. to perform a coarse-grain alias analysis.

4 Examples

When describing simple data structures such as linked-lists and trees, the programmer will likely find it

easier to use ADDS or graph types. In this case we view ASAP as a lower-level language into which ADDS

or graph type descriptions can be "compiled" and the resulting jixioms fed to a dependence analysis frame

work [HHN93]; this separates the description language of choice from the underlying analysis algorithms.

However, as this section will demonstrate, there exist important data structures for which neither ADDS nor

graph types suffice. In these situations the programmer can use ASAP directly to provide a more accurate

description, thus enabling more accurate program analysis.

In this section we shall present three data structures which pose problems for both ADDS and graph

types. In the case of ADDS, all three of the structures can be described to some degree, just not as accurately

as ASAP. With graph types, the first structure can be described as accurately as ASAP, but the remaining

two cannot be described at all.



type Tree_t {.
Data_t d;

Tree_t *cliild;

Tree_t »sib;

Tree_t ♦parent;

};

o^o

parent

Figure 3: A general tree: type declaration and example data structure.

4.1 General Trees

A general tree is one in which nodes may have any number of children. As shown in Figure 3, this can be

done by forming a linked-list out of the children nodes; the child field points to the first child, and the rest

of the children are reached by traversing along the sib field. In this example a third field, parent, allows

easy access to the parent from any child.

In ADDS parlance (see Section 3 for a quick overview of ADDS), a general tree would be declared with a

single Down dimension, where the fields child and sib traverse Down in a combined uniquely forward direction

(i.e. in a tree-like manner). The problem lies in describing the behavior of the pearent field. Since this field

does not form a direct cycle with each field traversing in the forward direction—the cycle actually involves

both the child and sib fields—this cyclic relationship cannot be expressed using the ADDS backward

keyword. Since this is the only available means in ADDS for accurately describing cycles, we conclude that

ADDS cannot accurately describe this type of data structure.

A general tree can, however, be accurately described using ASAP. The first step is to express the treeness

of the data structure; we shall mirror the approach discussed earlier in Section 2. For all nodes in the tree,

we know that traversing child and sib will lead to different nodes. We state this with the following axiom:

forall nodes p, p.child <> p.sib.

Likewise, traversing these fields from distinct nodes will never lead to the same node. In fact, notice this

holds for each field individually as well; traversing child and child from different nodes will not lead to the

same node, as is the case for sib and sib traversals. Thus:

forall distinct nodes p and q, p.(child!sib) <> q.(child!sib).

Finally, we specify the acyclicness of the tree:

forall nodes p, p.(child!sib)+ <> p,



The next step is to consider the pairent field, and its relationship to the other fields child and sib. We

know that from a given node, traversing psurent will lead to a different node than traversing either child

forall nodes p, p.pcurent <> p. (childjsib).

However, when traversing from different nodes it is possible for a parent field to lead to the same node as

a child or sib field, thus no axiom is appropriate. On the other hand, if we consider only the parent field,

it is true that different nodes cannot reach the same node. Hence;

forall distinct nodes p and q, p.parent <> q.paurent.

Next, we state the acyclicness of the parent field:

forall nodes p, p.(parent)+ <> p.

Finally, and perhaps most importantly, we want to convey the cyclic relationship that parent forms with

the child and sib fields. This can be stated as follows:

forall nodes p, p.child(sib)*parent s p.

This ASAP specification describes a general tree more accurately than an ADDS declaration. In this

case it is also true that a graph type could be used to achieve the ssime accuracy as our ASAP specification.

However, this will not be true for the examples that follow.

4.2 Developing an ASAP Specification

Before proceeding, it might be helpful to summarize a technique for developing ASAP specifications. Firstly,

one should consider the relationships between pointer fields when originating from a single node. Then repeat

this process, except consider the relationships when originating from distinct nodes; in this case consider not

only how a given field relates to other fields, but also how this field relates to itself. Next, state which fields

(and combinations of fields) are acyclic. Finally, express any cyclic relationships.

The low-level nature of ASAP axioms can lead to somewhat lengthy specifications. If this becomes a

determent, note that higher-level languages such as ADDS can be used and the description translated into

ASAP; the result can then be supplemented with ASAP axioms as necessary. Also, note that it can usually

be assumed that pointer fields of different types cannot lead to the same node®; thus there is no need to

restate the obvious.

^Though this is a safe assumption in ANSI C, older C code will require special checks before this can be assumed.



type Group_t {
GName.t g;

. Group_t ♦ngroup;

};

type Element.t {
ENane.t e;

Group.t ♦Igroup;

Element_t *nezt;

>;

fgroup;

ngroup^

Figure 4: A union-find tree: type declaration and example data structure.

4,3 Union-Find Trees

Union-find trees are a data structure used to support efficient find and union operations on data elements

[AHU74, Man89]. The find operation searches for the group in which an element resides, while the union
operation unions two existing groups into a new group. Initially, each element resides in a group by them

selves. Various forms of search trees are well-known to allow efficient searching; the problem is to support

efficient unions as well. The union-find tree shown in Figure 4 highlights one approach for fast unions®; note

that this is not a tree in the typical sense, since the pointers flow from the "leaves" to the "root", but we

shall remain consistent with the literature. The find of element x is accomplished by traversing from x to

the root of its tree; e.g., Finrf(5) is D. Unions are thus performed by simply linking trees (i.e. root nodes)

together. For example, D = Union{B, C) is brought about by simply creating a new node D and having the

nodes B and C point to D. By adding just two links, six elements have been unioned together.

Graph types cannot be used to declare this type of data structure for the simple reason that no subset

of the pointer fields forms a spanning tree backbone. A union-find tree is actually a DAG, not a tree, with

multiple pointers converging on both its interior nodes and the "root." An ADDS description can capture

portions of the data structure, but overall the result is not very accurate. One likely ADDS declaration

would declare two dimensions Across and Up, where next traverses uniquely forward along Across and

the group pointers fgroup and ngroup traverse forward along Up. The problem is that ADDS is unable

to express the relationship between Igroup and ngroup—the only choices are tree (via combined uniquely

forward) or graph (the default). The fact that these fields form a DAG cannot be expressed. Thus, given

such an ADDS description, the compiler must conservatively assume that the relationship between fgroup

and ngroup could be cyclic. Note that declaring additional ADDS dimensions will not help, since none of

these dimensions will be independent, and dependent dimensions are likewise conservatively assumed to be

cyclically related.

ASAP, however, can be used to generate an accurate description. We start by first considering the

®For simplicity, we show the elements in a llnked-Ust form, even though a more efficient structure is needed by the find

operation in order to locate elements quickly. Replacing the linked-list by a more efficient structure can easily be accommodated,

and does not change the outcome of this discussion.



simpler group nodes. There is only one pointer field in the node, so axioms of the form iorall nodes p. . .
do not make sense. Considering disjoint nodes, it is possible for disjoint nodes to lead to the same node by
traversing ngroup fields (consider nodes Band Cin Figure 4), so an axiom of this form is not appropriate.
Lastly, we consider acyclicness, which we postpone since it can be more accurately stated at the end.

Next we consider the element nodes. Since next and fgroup are of different types, their leading to
different nodes is a given (from the same node and from distinct nodes). However, we know that from any
two distinct nodes, next fields will not lead to the same node. We specify this with the following axiom:

forall distinct nodes p and q, p.next <> q.next.

Note that the same does not hold for fgroup fields (consider nodes 1 and 2). Next, since fgroup and ngroup
are of the same type, we consider their relationship in the case of distinct nodes (traversing from a single
node does not make sense, since these fields will never be part of the same node). However, from distinct
nodes it is possible for these to lead to the same node (consider nodes Aand 3), so once again an axiom is
not appropriate.

Finally, we consider the acyclicness of the element nodes, and in fact the group nodes as well. This can
be stated by the following single axiom:

forall nodes p, p. (nextlfgrouplngroup)'i> <> p.

Note this axiom states that all substructures are acyclic as well, e.g. the list of elements, traversing from an
element to a group node, etc.

Thus, an ASAP specification consisting of only two axioms describes the union-find tree more accurately
than ADDS, and describes a structure which graph types ciuiDot d^cribe at all.

4.4 Sparse Matrices

Sparse matrices, an example of which is shown in Figure 5, are implemented using orthogonal lists [StaSO].
Sparse matrices are an important data structure in scientific computing, and are commonly used e.g. in
circuit simulations [Kun86, SWG91]. The elements of the matrix form linked-lists by row and by column,
with a header node at the front of each such list. These header nodes are in turn linked into one of two lists,

depending on whether they head a row or a column. Finally, the pointers to these row and column lists are

stored in a single header node, which serves to denote the entire sparse matrix.

The key distinguishing characteristic of this data structure is that the row and column element lists are

intertwined, allowing elements to be accessed by row and column. However, equally important is the fact that

individual rows are disjoint; the same is true for individual columns. This fact is crucial for parallelization of
many sparse matrix algorithms, since such algorithms frequently operate row by row or column by column.

Thus, any description of a sparse matrix should include this information.

The sparsityof the data structure prevents the use ofgraphtypes since the programmer cannotpredict at

compile-time exactly which node a given node will refer to via its nrowE (or ncolE) field; this depends on the



type SparseMatrix_t {
RowHdr^t ♦rows;

ColHdr_t ♦cols;

>:

type RowHdr_t {
integer row;
Element.t ♦relents;

RowHdr.t ♦nrowH;

};

type ColHdr_t {
integer col;

Element_t ♦celems;

ColHdr_t encolH;

>:

type Element.t {
Data_t d;

integer r, c;
Element_t ♦nrowE;

Element„t encolE;

>;

cols. I—nnco

relems/^ ncolEj-^reic^s

Figure 5: A sparse matrix: type declaration and example data structure.
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state of the matrix at run-time. With ADDS, a sparse matrix can at least be partially described. The idea

would be to first declare two dimensions, Down and Across. The field ncolE would traverse uniquely forward

along Across, while nrowE would traverse uniquely forward along Down. These dimensions are dependent,

since a node can be reached along either dimension. The problem is that such an ADDS declaration loses

the important information that the row lists are disjoint (likewise for the column lists). This is a result

of the fact that one must conservatively assume that the situation shown in Figure 6 is possible since the

ADDS declaration does not explicitly prevent it; an element may have both nrowE and ncolE fields coming

into its node (due to dependent dimensions), and an ncolE field can link two rows (dashed line) and still

remain uniquely forward (at most one ncolE into any node). Thus, since a better ADDS declaration does

not exist, ADDS is unable to accurately describe a sparse matrix, in particular the very property needed for

parallelization.

ASAP has the necessary flexibility to allow a more accurate description of a sparse matrix. Since an

ADDS declaration can be automatically translated into an ASAP specification (see Appendix A), we know

ASAP can do no worse than ADDS. We can however do much better. The idea is to take a bottom-up

approach, beginning with simple axioms and developing more complicated ones as necessary. Starting with

the element nodes, we see that the rows and columns are intertwined into a DAG. Thus, we follow the

specification of a tree (as done in Section 2), relaxing this specification where appropriate. As with a tree,

traversing an nrowEfield leads to a different node than traversing an ncolE field:
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Figure 6: A possible sdiasing allowed by ADDS declaration.

lorall nodes p, p.nrovE <> p.ncolE.

Unlike a tree however, it is possible for these fields to lead to the same node from different nodes (hence the

DAG). But rowsof elements, as well as columns, are list-like, yielding the following two axioms:

lorall distinct nodes p 2md q, p.nrovE <> q.nrovE.

forall distinct nodes p and q, p.ncolE <> q.ncolE.

Observe that these axioms do not prevent the situation shown in Figure 6. To correct this, we specifically

need to state that rows of elements are disjoint, as are columns. This can be done as follows:

forall nodes p, p.(ncolE)» <> p.(nrowE)+(ncolE)e.

forall nodes p, p.(nrowE)* <> p.(ncolE)+(nrowE)».

Lastly, the acyclicness of the element nodes should be specified; this is better postponed however, since it

can be done more accurately at the end.

The next step is to consider the row and column header nodes, and their accompanying element lists

as appropriate. Since the pointer fields in these nodes are of different types, many of the SLxioms can be

inferred. We need only consider the cases where fields of the same type are involved. Firstly, the row and

column header nodes each form a linear linked-list, implying that the nrowH and ncolH fields never lead to

the same node from different nodes:

forall distinct nodes p and q, p.nrovH <> q.nrowH.

forall distinct nodes p and q, p.ncolH <> q.ncolH.

Likewise, the relems and celens fields never lead to the same node from differing nodes:

forall distinct nodes p and q, p.relems <> q.relems.

forall distinct nodes p and q, p.celems <> q.celems.



It is possible however for the relems and celems fields to lead to the same node from different header nodes;

consider row two and column one in Figure 5. Thus, an axiom is not appropriate. On the other hand,

the row and column headers provide another, slightly diflferent opportunity for specifying row or column

disjointness:

forall distinct nodes p and q, p.relems(ncolE)* <> q.relems(ncolE)*.

forall distinct nodes p and q, p.celemsCnrowE)* <> q.celemsCnrowE)*.

Note that these axioms subsume the previous two. The last step is to state something about the acyclicness

of these fields, which we once agmn postpone.

The final step is to consider the main header node. Since the rows and cols fields are of different typra,

nothing must be stated concerning only these fields. But the main header node does have fields of the same

type as the row and column header nodes, and so these relationships should be considered. Given that

the main header node always points to the first row and column header node in each list, we can state the

following:

forall distinct nodes p and q, p.rows <> q.nrowH.

forall distinct nodes p and q, p.cols <> q.ncolH.

Finally, we need to consider the acyclicness of the fields in the main header node. Since we have reached

the end however, we consider the entire sparse matrix, which we know is acyclic. This implies the following

forall nodes p, p.(rows IcolsIrelemsIcelemsInrowHincolHInrowElncolE)+ <> p.

Note that this states that all substructures are acyclic as well, e.g. a list of elements, the row header list, etc.

The above ASAP specification accurately describes a sparse matrix, in particular conveying the important

properties of row and column disjointness necessary for parallelization. This specification is more accurate

than an ADDS declaration, and describes a data structure that graph types cannot.

5 Conclusion

ASAP is a powerful language for conveying the aliasing properties of dynamic, pointer-based data structures.

It is more powerful than existing data structure description languages, and the format of its axioms provides

direct support for alias analysis. Furthermore, ADDS declarations can be automatically translated into

ASAP specifications, allowing the programmer to use ASAP or ADDS (or both), depending on what is

appropriate or preferred.

With the ability to describe a larger class of data structures, the use of ASAP will allow more accurate

program analysis of a larger class of programs. Ultimately, this will enable the increased application of

compiler-based, performance-enhancing transformations on such programs. A dependence testing framework

based on ASAP is currently being implemented as part of an optimizing and parallelizing C compiler.
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Appendix A: ADDS to ASAP Translation

ADDS is a data structure description language based on a notion of directions and dimensions [HHN92a].

Given an ADDS-based type declaration, pointer fields can be declared as traversing in one of five directions:

lorvard, uniquely lorward, combined uniquely forward, backward, and unknown. If a pointer field

is declared as traversing a direction, then it must also be declared as traversing a programmer-defined

dimension; the exception is the unknown direction, in which a dimension may not be specified. If a pointer

field is not annotated in any way, it is assumed to traverse in the unknown direction. Finally, dimensions can

be declared as either independent, or by default, dependent.

The translation from an ADDS declaration to an ASAP specification proceeds as follows. Suppose FX,

F2, ..., Fn represent distinct pointer fields and D denotes any programmer-defined dimension, then:

1. If Fi (1 < »< n) is declared as traversing forward along D, then the following axiom holds {Fi is
acyclic):

forall nodes p, p.(Fi)+ <> p.

2. If Fi [l < i < n) is declared as traversing uniquely forward along D, then the followingaxioms hold
{Fi is acyclic and at most only one Fi ever points to a given node):

(a) forall nodes p, p.(Fi)+ <> p.
(b) forall distinct nodes p and q, p.Fi <> q.Fi.

3. If Fi, ..., Fj (1 < i < J < n) are declared as traversing combined uniquely forward along D, then
the followingaxioms hold where / and g denote all distinct pairs of Fi ... Fj {Fi ... Fj form a tree):

fa) forall nodes p, p.f <> p.g.
fb) forall distinct nodes p and q, p.(Fil...iFj) <> q.(Fij...|Fj).
(c) forall nodes p, p.(Fil...iFj)+ <> p.

4. If F't (1 < i < n) traverses backwsurd along D, then for all Fj, -. Fk {1 < j < k < n) which traverse in
some forward direction along D, the following axioms hold {Fi is acyclic, and has a cyclic relationship
with Fj ... Fk):

forall nodes
forall nodes

Furthermore, j = k and Fj traverses uniquely forward along D, then the following additional
axioms hold {Fi is uniquely backward, and cyclic relationship holds in both directions):

(a) forall distinct nodes p and q> p.Fi <> q.Fi.
(b) forsLLl nodes p, p.FiFj = p.

5. If D is an independent dimension, where for all Fi, ..Fj (I < t < j < n) which traverse forward
along D and for all remaining fields Fk, . •Ft {i < k < I <n) which traverse along other dimensions,
the following axioms hold (traversing any field of an independent dimension separates a data structure
into disjoint substructures):

(a) forall nodes p, p.(Fij...|Fj)(Fkj...1F1)» <> p.(Fkl...|F1)».
(b) forall distinct nodes p and q,

p.(Fil...IFj)(Fkl...\Fl)* <> q.(Fi!...|Fj)(Fkl...IFI)*.

Finally, if a field Fi is said to traverse in the unknown direction, no axioms are specified since Fi can

potentially alias any node in the data structure. Likewise, if a dimension D is said to be dependent, no

axioms are specified since the behavior of this dimension with respect to other dimensions is unknown.




