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Abstract 
Explicitly parallel programs have the poieniial for 

greater performance than their implicitly parallel coun- 
terparts. However, this benefit can be accompanied by 
additional programming difficulties. This paper ad- 
dresses one particular problem thai has implications 
for  both scalabiliiy and portability: the need for pro- 
grams t o  accommodate diverse data decompositions. 
We explain why programs with explicit communicaiion 
have dificulties in handling changes in data decom- 
position, and we present our solution to ihis problem 
which involves the notions of derivative functions and 
configuration parameters. W e  illustrate our iechnique 
by using three different data decompositions t o  solve 
the Modified Gram-Schmidi method on four parallel 
machines. 

1 Introduction 

Implicitly parallel languages are favored for their 
programming convenience. By contrast, explicitly 
parallel languages, particularly those with explicit 
communication, tend to provide both superior per- 
formance and additional programming pitfalls. The 
performance benefit stems from the ability to control 
details of communication and granularity [8, 111. The 
programming difficulties come from the need to spec- 
ify such “low-level details.” In message passing lan- 
guages, the programmer controls both data decompG 
sition and communication. Since these two aspects 
of a program are intimately related, it would seem 
that message passing programs must be significantly 
rewritten when a different data decomposition is de- 
sired. Hence, programs with explicit communication 
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appear to be less flexible] and thus less scalable and 
portable. This paper refutes this claim by showing 
how the Phase Abstractions programming model pro- 
vides flexibility with respect to data decompositions. 

We first show that different execution environ- 
ments require different data decompositions in order 
to achieve scalability and portability. Next, we explain 
why it is hard for explicitly parallel programs to han- 
dle changes in data decompositions. We then describe 
our solution in the context of the Phase Abstractions 
programming model, which is to specify a general pro- 
gram that is customized at loadtime. In our solu- 
tion flexibility comes from two constructs: derivative 
functions and configuration parameters. We show how 
derivative functions provide the illusion that bound- 
ary conditions do not exist, thus isolating the source 
code from the details of the data decomposition. Con- 
figuration parameters help eliminate the overhead of 
using a general solution. We illustrate these concepts 
by using the Modified Gram-Schmidt method (MGS) 
as an example. 

2 The Need for Polymorphism 

To choose the best data decomposition, many fac- 
tors should be considered, including characteristics of 
the problem size, the hardware and the application. 
Supporting changes to these factors requires that pro- 
grams support different] or polymorphic, data decom- 
positions. 

Issues of Scale. Consider, for example, linear alge- 
bra algorithms that manipulate 2D matrices. These 
matrices can be partitioned across one dimension 
(strips) or two (blocks). Schreiber shows that for 
sparse Cholesky factorization of N x N matrices, col- 
umn decompositions are not as scalable as block de- 
compositions because as P grors the algorithm is lim- 
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ited to O ( N )  parallelism rather than O(N2) paral- 
lelism [14]. This same argument applies to other ma- 
trix computations, including the MGS method. 

Hardware Factors. Machines with high message 
startup cost favor a small number of =ages; those 
with a large per-byte communication eoet favor a small 
communication volume. In general, the former situa- 
tion suggests a strips decomposition while the latter 
suggests blocks: Strips have fewer neighbors and thus 
fewer messages, while blocks have lower perimeter-to- 
area ratios, and hence less overall data volume. 

Software Factors. Applications are typically com- 
posed of multiple phases. For example, MGS is just 
one phase of the Car-Parrinello (CP) molecular dy- 
namics simulation. As we show later, MGS typically 
performs better with a block decomposition, but other 
computationally more expensive phases of the CP al- 
gorithm prefer strips, so it is more efficient for MGS 
to adopt a 1D decomposition rather than force data 
conversion between phases. 

The implication of the above points is that code 
must be flexible if it is to be portable and reusable. 
The code must accommodate changes in scale, and 
the code must be able to adapt to different hardware 
and software contexts. 

cesses whose dependencies are with their four nearest 
neighbors, decomposition by rows implies communi- 
cation with North and South neighbors, decomposi- 
tion by columns implies East and West neighbors, and 
decomposition across both rows and columns implies 
communication with all four neighbors. Because of 
boundary conditions, different processes may have dif- 
ferent neighbors, e.g., procases on the top edge of the 
process array have no northern neighbors, while those 
in the interior have four neighbors. (See Figure 1). 

Figure 1: Proliferation of Special Cases When Decom- 
position Changes. 

3 Problems with Polymorphism 

There are many ways to specify data decomposi- 
tions. Paralleliring compilers perform this task au- 
tomatically, though at times with suboptimal perfor- 
mance. With more recent approaches such aa HPF 
[SI and Vienna Fortran [4], the programmer describes 
the data decomposition but not other aspects of paral- 
lelism, such as communication. However, explicit com- 
munication plays a fundamental role in many parallel 
algorithms. For example, communication is the distin- 
guishing feature of Batcher's sort and various matrix 
multiplication algorithms. Since compilers cannot be 
expected to infer high level communication abstrac- 
tions from low level data dependencies, these algo- 
rithms must be specified with explicit communication. 
In recognition of this shortcoming, MetaMP [13] pro- 
vides a set of canned communication operations that 
includes global combining and matrix rotation. Our 
approach goes one step further and allows fully general 
communication as specified by the programmer. 

Together, a program's data decomposition and 
data dependencies define how processes communicate. 
When the data decomposition changes, the commu- 
nication pattern also changes. For example, for pro- 
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Figure 2: Data Decomposition Affects Assignment of 
Processes to Processors. 

Without language support there are two ways to 
handle this variable number of neighbors. One so- 
lution would have the source code explicitly test for 
neighbors before transmitting messages. This leads 
to cluttered code that can severely hinder readability 
[12]. A second solution is to write different programs 
for each process. For example, a process on the top 
edge would assume no northern neighbors, while those 
in the interior would assume all four neighbors exist. 
This has two problems. First, there is a large number 
of programs to write. Figure 1 shows that 12 different 
codes are needed to scale from 3 to 9 processes. Sec- 
ond, when the data decomposition changes the map- 
ping of programs to processes must also change. Fig- 
ure 2 shows that different decompositions can require 



different code-tGproceasor assignments even when the 
number of processes do not change. In the ideal solu- 
tion programmers would write an SPMD program that 
deals only with the “common case” and works for any 
data decomposition. Such a solution would help de- 
couple data decomposition from communication while 
yielding the performance benefits of explicit commu- 
nication. The next section explains how our model 
supports such a programming style. 

P2oP21F22P23F24p2J 
P30 P31 P32 P33 €94 P35 
P40 P41 P42 P43 P44 P45 
P50 PS1 P52 P53 P54 P55 

4 Our Solution 

;::mm zmm 

Our solution is based on the The Phase Abstrac-‘ 
tions programming model [I, 5 ,  151 and the Orca C 
language [9, lo]. Figure 8 sketches the structure of 
an Orca C program with an emphasis on the config- 
uration parameters. These parameters are computed 
once at load time to adapt to different architectural 
or input conditions. Once computed, these values are 
constants in the remainder of the program. 

The Phase Abstractions model consists of two m a  
jor components: the XYZ programming levels and the 
ensembles. The XYZ levels are a means of structuring 
a parallel computation: 

The X, or process, level is the composition of in- 
structions into processes 

the Y, or phase, level is the composition of p r e  
cesses into phases 

the Z, or problem, level is the composition of 
phases into a problem solving program. 

Further layers of composition could be added, but they 
seem to be conceptually unnecessary. 

The X level provides the primitive units from which 
concurrent activity is defined. Processes encapsulate 
units of computation that can execute concurrently. 
This allows grain size to be parametrically controlled, 
which is critical for portability and scalability. 

The Y level corresponds to our informal notion of a 
parallel algorithm. A phase is most easily thought of 
as a graph, with vertices representing processes and 
edges indicating interprocess communication. The 
processes execute concurrently to collectively accom- 
plish a single computation such as an FFT or matrix 
multiplication. A phase describes the scalable concur- 
rency of a parallel algorithm: Additional concurrency 
manifests itself as additional nodes in the graph. 

Only computer scientists are interested in isolated 
algorithms such as the FFT. Sophisticated applica 
tions such as weather prediction and seismic analy- 

Figure 3: A 6 x 6 Matrix and its Ensemble 

4.1 Derivative Functions 

Section 3 discussed problems with polymorphic 
data decompositions. The Phase Abstractions model 
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solves this problem by separating common case code 
from boundary condition code through the use of 
derivative functions: This allows the port ensembles 
to scale, provides a clean SPMD style, and handles 
boundary conditions at the Y level where they natu- 
rally belong. Essentially, derivative functions insulate 
the X level code from changes in the data decompo- 
sition by allowing the X level code to behave as if 
all ports exist. For each boundary condition the pro- 
grammer writes a derivative function and binds it to 
the appropriate ports. These functions execute locally 
in each process to simulate the behavior of ports. For 
example, a simple derivative function might return the 
value of a variable whenever 8 process receives a mea- 
sage from that port (representing a boundary condi- 
tion that is a reflection). As another example, sends 

' to an otherwise unconnected port can invoke a no- 
op derivative function. More complicated derivative 
functions are possible [l, 91, but the key point is that 
from the perspective of the process code, all ports ezist 
and there are no special cases. 

The following Y level declaration shows how deriva- 
tive functions might be bound to unconnected ports. 
Phase1 is the name of a phase; i and j specify the 
section's coordinates; I and S are port names; and 
n o a p 0  is a user-written stub that simply returns. 
Section 5.3 shows bow this declaration scales automat- 
ically as the number of rows and columns changes. 

PhaselCi][jl . p o r t . I  sond <-> no,opO mboro i-0 
Phasel[i]Cj].port.S sond <-> no-opo whore i=rovs-l 

5 MGS Example 

This section illustrates our ideas using the MGS 
application. We describe the sequential algorithm, 
sketch three parallel algorithms, and compare their 
performance on various machines. After showing how 
our model allows a single program to implement d l  
three algorithms, we measure the overhead of our so- 
lution and show that this overhead can be removed 
with the help of configuration parameters. 

5.1 The Modified Gram-Schmidt Method 

The MGS method is one way to perform QR factor- 
ization, a computation that factors an M x N matrix 
into two matrices, Q and R, such that Q is orthonor- 
mal (Q*Q = 1) and R is upper triangular. Figure 4 
shows the sequential MGS algorithm [lS]. Initially, a 
contains the input matrix. Upon completion, a con- 
tains Q and r contain8 R. The algorithm processes 

5.2 Parallel MGS Algorithms 

Our parallel algorithms follow the structure of Fig- 
ure 4. We describe three parallel algorithms that d+ 
compose the a and r matrices in three different ways. 
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one column of the a matrix at  a time. For each col- 
umn, the FindMax phase computes the pivot: the min- 
imum of all elements of the d array whose index is 2 
k. SuapCols then swaps the pivot column with the 
kth column for a, r and d. Orthogonalize divides el- 
ements of the kth column of a by the pivot. Finally, 
the last phase normalizes a by computing the inner 
product of the kth column with all remaining columns 
of a, and updating all remaining columns of a with the 
appropriate inner product. 

f o r  (k-0; k<I;  k++) c 
P = k; 
f o r  ( i=k+l;  i < D ;  i++)  

if (dCp1 < d c i l )  
p = i ;  

/* FindHax Phase*/ 

if (dCp]==O) 1 
rank = k ;  
break; 

swap (dCkl, dCp1) ; 
f o r  (i-0; i<H; i++) { 

} el.. c 
/+ SuapCols Phase*/ 

soap (aCil Ckl , dil  Cpl) ; 
swap (r [il Ckl , r Cil [PI) ; 

3 
1 
r[kl[k] = sqrt(dCk1); 

f o r  (i-0; i<H; i++) 

/* Comput. Pivot */ 

a[i] [k] = a[i] [k]/rCk] [k] ; /* Orthogonalize */ 

/* Iornalize Phase*/ f o r  (j=k+l;  j < I ;  j++) { 
rCkICj1 = 0; 
f o r  ( i -0;  i<H; i++) 

r[kl [j] += a[il Ckl*aCil Cfl: 

dCj] = dcj] - rCk1 Cjl*rCklCjl; 

f o r  ( i -0;  i<H; i++) 
aCil Cjl = aCi1 Cjl - aCi1 CkI*rCkl [jI ; 

1 
3 

Figure 4: The Modified Gram Schmidt Method 
> 
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Cached Rows. The Cached Rnws algorithm uses 
a blocked rows decomposition (see Figure 5a). This 
decomposition inducee communication in only two 
phases, InitD and lormaliza, where values of the a 
matrix must be summed and broadcast along a single 
column (see Figure sa). Each element of the d array 
corresponds to one column of the a matrix, so dis- 
tributing the d array would lead to communication in 
the FindHax and Swapcola phasea. Thus we replicate 
the d array at the small coat of additional. storage. 

Figure 5: Data Decomposition: (a) Blocked Rows (b) 
Interleaved Columns 

In a naive parallelization of the sequential code, a 
row decomposition requires a global sum and broad- 
cast for each iteration of the Normalize phase. We 
move these operations outside the inner loop so that 
only O(M) communication operations are needed; par- 
tial values must be cached to perform this optimiza- 
tion. 

Figure 6: (a) Global Sum & Broadcast across Rows 
(b) Swap Columns (c) Broadcast for Columns 

Interleaved Columns. Blocked columns would 
lead to severe load imbalance, so we interleave columns 
as shown in Figure 5b. This decomposition induces 
communication when swapping columns (Swapcols) 
and when broadcasting the pivot (Normalize) (see 
Figures 6b and 6c). In the Orthogonalize phase all 
processes are idle except the owner of the kth col- 
umn. We distribute the d array, which results in addi- 
tional communication in the Findnax phase but avoids 
costly global sums and broadcasts of dCj1 inside the 
inner loop of the Normalize phase. This algorithm 
has O ( N )  broadcasts and swaps. 

I 0 
0 
0 

Replicated 
Aaoss Rows 

Figure 7: Data Decomposition for 2D Algorithms 

2D CRIC. A two-dimensional decomposition in- 
duces communication across both rows and columns. 
The best 2D algorithm for MGS is a combination 
of Cached Rows and Interleaved Columns. We call 
this algorithm the Cached Rows/Interleaved Columns 
(CRIC) algorithm [7]. Columns of a and r are inter- 
leaved and rows are blocked (see Figure 7). As with 
Interleaved Columns, the d array is distributed across 
columns; as with Cached Rows, the columns of the d 
array are replicated across rows. 

Experimental Results. We implemented the 
above algorithms by hand compiling the concepts of 
the Phase Abstractions. Details of the experimental 
methodology and additional results can be found else- 
where [7]. Figure 10 compare the algorithms on four 
machines. Our main observation is that even com- 
paring the two 1D decompositions, neither is best for 
ail machines. Thus, a portable solution to this prob- 
lem should have the flexibility to accommodate either 
decomposition. 

5.3 Our MGS Solution 

The above results compared separate implementa- 
tions of the three algorithms. Our proposed approach 
creates a single implementation of the 2D CRIC algo- 
rithm that can degenerate to either Cached Rows or 
Interleaved Columns by changing load time parame- 
ters. The program sketch in Figure 8 shows three con- 
figuration parameters - rows, cols and Processors. 
The user-defined parse0 function reads the com- 
mand line arguments and sets the appropriate values 
of shape and Processors. The partition2DO func- 
tion computes a 2D array for a given number of proces- 
sors. This program can now execute on the Butterfly, 
for example, where Cached Rows'is best, by invoking 
the program as follows: 

A columns decomposition is invoked as follows: 

No source code changes are necessary even though the 
program specifies communication that is superfluous 
for 1D decompositions. Derivative functions convert 

CRIC -r -P16 

CRIC - C  -P16 
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tdefine Pow. 1 
tdefine Cola 2 
tdofine IsoD 3 

program CIIC (argc, u g c )  

/* Configuration Computation Soction */ 
p a r s e ( u p  , argv) ; 
a s i t c h  (shapo) < 

case l o w s :  rows = Procoslrors; 
c o l s  = 1; 
broak ; 

case Cols: rows = 1; 
c o l s  = Procoasors; 
broak ; 

broak; 
cam hoD:  partition2D (&rows, &cola, Processors) ; 

1 

(rosa, c o l s .  Procosaors): /e Configuration Parautora */ 

/* Y l e v e l  enaemblo doclarations ... */ 
/* X l e v e l  procoss de f in i t ions  ... */ 
/* Z l e v e l  body of  cod. . . . */ 

begin 

end 

Figure 8: Configuration Computation Section. 

the extraneous communication invocations into no- 
op’s. As defined in Section 4.1, the binding of deriva- 
tive functions to ports scales properly because it uses 
values of row6 and colr from the configuration sec- 
tion, e.g. the South port is bound to no-op0 when- 
ever the proced row ID is equal to (rour-11, which 
has the correct value for any of our three data decom- 
positions. Of course, the configuration section may be 
more sophisticated. For example, the code itself may 
compute the “best” data decomposition based on in- 
put parameters and machine characteristics. 

5.4 The Cost of Generality 
Cost of Generality (time in “as) 

11197 11140 

6387 5714 11.62 
8183 5218 18.49 

Figure 9: Overhead of CRIC Solution for Rows De- 
composition on the Intel iPSC/2 

General solutions are typically less efficient than 
customized ones. Figure 9 shows the cost of this gener- 
ality by comparing the performance of the hand coded 
Cached Rows implementation against the CRJC im- 
plementation that degenerates to a rows decomposi- 
tion. This overhead is incurred per process and can- 

not be removed through added parallelism. Thus, in 
an analog to Amdahl’s law, this overhead is significant 
because it limits speedup. 

5.6 Partial Evaluation 

Partial evaluation (PE) can eliminate the above 
overhead through techniques that convert a general 
program to a more efficient, less general one [2,3]. Due 
to difficulties with pointers and aliasing, PE has typi- 
cally been applied to functional rather than imperative 
languages. A classic problem with PE is determining 
how much optimization to perform. For example, how 
many recursive calls should be inlined? We avoid these 
problems by using PE to remove a very restricted type 
of overhead. Our basic technique is constant folding, 
which is aided by the existence of configuration p& 
rameters that identify “constants.” The overhead we 
wish to remove often appears in conditionals that test 
whether communication operations should be invoked 
based on such values as the process’ row number, the 
number of processes in a given row, and the existence 
of neighbors. These values do not change during the 
execution of the program, and these expressions are 
usually computed directly from configuration param- 
eters. 

We have not yet implemented this partial evaluator, 
but a hand simulation of our algorithm shows that all 
of the overhead shown in Figure 9 can be removed. 
Of course, it is possible that the partial evaluator will 
optimize additional sources of inefficiency. 

6 Conclusion 

Explicitly parallel languages tend to be performant 
but not convenient. One aspect of convenience is the 
ease with which a program can adapt to architectural 
diversity. Using the MGS method as an example, 
we have shown that polymorphic data decompositions 
are an important aspect of portability and scalablity; 
polymorphism can be built into explicitly parallel pro- 
grams through derivative functions; and supporting 
polymorphism can increase execution overhead, but 
this overhead can be removed through the use of con- 
figuration parameters and partial evaluation. 

The last two points move us closer to our goal of 
decoupling data decomposition from communication 
while retaining the performance benefits of explicit 
communication. Our partial evaluation technique can 
also be used to transform SPMD code into MIMD code 
so that programmers can write with the convenience 
of the SPMD approach and the efficiency of an MIMD 
approach. This is an avenue of future research. 
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