
Accommodating Polymorphic Data Decompositions in Explicitly
Parallel Programs *

Calvin Lin Lawrence Snyder

Dept. of Computer Science and Engr., FR-35
University of Washington

Seattle, WA 98195

Abstract
Explicitly parallel programs have the poieniial for

greater performance than their implicitly parallel coun-
terparts. However, this benefit can be accompanied by
additional programming difficulties. This paper ad-
dresses one particular problem thai has implications
for both scalabiliiy and portability: the need for pro-
grams t o accommodate diverse data decompositions.
We explain why programs with explicit communicaiion
have dificulties in handling changes in data decom-
position, and we present our solution to ihis problem
which involves the notions of derivative functions and
configuration parameters. W e illustrate our iechnique
by using three different data decompositions t o solve
the Modified Gram-Schmidi method on four parallel
machines.

1 Introduction

Implicitly parallel languages are favored for their
programming convenience. By contrast, explicitly
parallel languages, particularly those with explicit
communication, tend to provide both superior per-
formance and additional programming pitfalls. The
performance benefit stems from the ability to control
details of communication and granularity [8, 111. The
programming difficulties come from the need to spec-
ify such “low-level details.” In message passing lan-
guages, the programmer controls both data decompG
sition and communication. Since these two aspects
of a program are intimately related, it would seem
that message passing programs must be significantly
rewritten when a different data decomposition is de-
sired. Hence, programs with explicit communication

*This research was supportedin part by ONR Grant ”14-
89-J-1368, ARPA Grant N00014-92-J-1824 and NSF Grant
CDA-9211095

appear to be less flexible] and thus less scalable and
portable. This paper refutes this claim by showing
how the Phase Abstractions programming model pro-
vides flexibility with respect to data decompositions.

We first show that different execution environ-
ments require different data decompositions in order
to achieve scalability and portability. Next, we explain
why it is hard for explicitly parallel programs to han-
dle changes in data decompositions. We then describe
our solution in the context of the Phase Abstractions
programming model, which is to specify a general pro-
gram that is customized at loadtime. In our solu-
tion flexibility comes from two constructs: derivative
functions and configuration parameters. We show how
derivative functions provide the illusion that bound-
ary conditions do not exist, thus isolating the source
code from the details of the data decomposition. Con-
figuration parameters help eliminate the overhead of
using a general solution. We illustrate these concepts
by using the Modified Gram-Schmidt method (MGS)
as an example.

2 The Need for Polymorphism

To choose the best data decomposition, many fac-
tors should be considered, including characteristics of
the problem size, the hardware and the application.
Supporting changes to these factors requires that pro-
grams support different] or polymorphic, data decom-
positions.

Issues of Scale. Consider, for example, linear alge-
bra algorithms that manipulate 2D matrices. These
matrices can be partitioned across one dimension
(strips) or two (blocks). Schreiber shows that for
sparse Cholesky factorization of N x N matrices, col-
umn decompositions are not as scalable as block de-
compositions because as P grors the algorithm is lim-

68

0-8186-5602-6/94 0 1994 IEEE

ited to O (N) parallelism rather than O(N2) paral-
lelism [14]. This same argument applies to other ma-
trix computations, including the MGS method.

Hardware Factors. Machines with high message
startup cost favor a small number of =ages; those
with a large per-byte communication eoet favor a small
communication volume. In general, the former situa-
tion suggests a strips decomposition while the latter
suggests blocks: Strips have fewer neighbors and thus
fewer messages, while blocks have lower perimeter-to-
area ratios, and hence less overall data volume.

Software Factors. Applications are typically com-
posed of multiple phases. For example, MGS is just
one phase of the Car-Parrinello (CP) molecular dy-
namics simulation. As we show later, MGS typically
performs better with a block decomposition, but other
computationally more expensive phases of the CP al-
gorithm prefer strips, so it is more efficient for MGS
to adopt a 1D decomposition rather than force data
conversion between phases.

The implication of the above points is that code
must be flexible if it is to be portable and reusable.
The code must accommodate changes in scale, and
the code must be able to adapt to different hardware
and software contexts.

cesses whose dependencies are with their four nearest
neighbors, decomposition by rows implies communi-
cation with North and South neighbors, decomposi-
tion by columns implies East and West neighbors, and
decomposition across both rows and columns implies
communication with all four neighbors. Because of
boundary conditions, different processes may have dif-
ferent neighbors, e.g., procases on the top edge of the
process array have no northern neighbors, while those
in the interior have four neighbors. (See Figure 1).

Figure 1: Proliferation of Special Cases When Decom-
position Changes.

3 Problems with Polymorphism

There are many ways to specify data decomposi-
tions. Paralleliring compilers perform this task au-
tomatically, though at times with suboptimal perfor-
mance. With more recent approaches such aa HPF
[SI and Vienna Fortran [4], the programmer describes
the data decomposition but not other aspects of paral-
lelism, such as communication. However, explicit com-
munication plays a fundamental role in many parallel
algorithms. For example, communication is the distin-
guishing feature of Batcher's sort and various matrix
multiplication algorithms. Since compilers cannot be
expected to infer high level communication abstrac-
tions from low level data dependencies, these algo-
rithms must be specified with explicit communication.
In recognition of this shortcoming, MetaMP [13] pro-
vides a set of canned communication operations that
includes global combining and matrix rotation. Our
approach goes one step further and allows fully general
communication as specified by the programmer.

Together, a program's data decomposition and
data dependencies define how processes communicate.
When the data decomposition changes, the commu-
nication pattern also changes. For example, for pro-

09

Figure 2: Data Decomposition Affects Assignment of
Processes to Processors.

Without language support there are two ways to
handle this variable number of neighbors. One so-
lution would have the source code explicitly test for
neighbors before transmitting messages. This leads
to cluttered code that can severely hinder readability
[12]. A second solution is to write different programs
for each process. For example, a process on the top
edge would assume no northern neighbors, while those
in the interior would assume all four neighbors exist.
This has two problems. First, there is a large number
of programs to write. Figure 1 shows that 12 different
codes are needed to scale from 3 to 9 processes. Sec-
ond, when the data decomposition changes the map-
ping of programs to processes must also change. Fig-
ure 2 shows that different decompositions can require

different code-tGproceasor assignments even when the
number of processes do not change. In the ideal solu-
tion programmers would write an SPMD program that
deals only with the “common case” and works for any
data decomposition. Such a solution would help de-
couple data decomposition from communication while
yielding the performance benefits of explicit commu-
nication. The next section explains how our model
supports such a programming style.

P2oP21F22P23F24p2J
P30 P31 P32 P33 €94 P35
P40 P41 P42 P43 P44 P45
P50 PS1 P52 P53 P54 P55

4 Our Solution

;::mm zmm

Our solution is based on the The Phase Abstrac-‘
tions programming model [I, 5 , 151 and the Orca C
language [9, lo]. Figure 8 sketches the structure of
an Orca C program with an emphasis on the config-
uration parameters. These parameters are computed
once at load time to adapt to different architectural
or input conditions. Once computed, these values are
constants in the remainder of the program.

The Phase Abstractions model consists of two m a
jor components: the XYZ programming levels and the
ensembles. The XYZ levels are a means of structuring
a parallel computation:

The X, or process, level is the composition of in-
structions into processes

the Y, or phase, level is the composition of p r e
cesses into phases

the Z, or problem, level is the composition of
phases into a problem solving program.

Further layers of composition could be added, but they
seem to be conceptually unnecessary.

The X level provides the primitive units from which
concurrent activity is defined. Processes encapsulate
units of computation that can execute concurrently.
This allows grain size to be parametrically controlled,
which is critical for portability and scalability.

The Y level corresponds to our informal notion of a
parallel algorithm. A phase is most easily thought of
as a graph, with vertices representing processes and
edges indicating interprocess communication. The
processes execute concurrently to collectively accom-
plish a single computation such as an FFT or matrix
multiplication. A phase describes the scalable concur-
rency of a parallel algorithm: Additional concurrency
manifests itself as additional nodes in the graph.

Only computer scientists are interested in isolated
algorithms such as the FFT. Sophisticated applica
tions such as weather prediction and seismic analy-

Figure 3: A 6 x 6 Matrix and its Ensemble

4.1 Derivative Functions

Section 3 discussed problems with polymorphic
data decompositions. The Phase Abstractions model

70

solves this problem by separating common case code
from boundary condition code through the use of
derivative functions: This allows the port ensembles
to scale, provides a clean SPMD style, and handles
boundary conditions at the Y level where they natu-
rally belong. Essentially, derivative functions insulate
the X level code from changes in the data decompo-
sition by allowing the X level code to behave as if
all ports exist. For each boundary condition the pro-
grammer writes a derivative function and binds it to
the appropriate ports. These functions execute locally
in each process to simulate the behavior of ports. For
example, a simple derivative function might return the
value of a variable whenever 8 process receives a mea-
sage from that port (representing a boundary condi-
tion that is a reflection). As another example, sends

' to an otherwise unconnected port can invoke a no-
op derivative function. More complicated derivative
functions are possible [l, 91, but the key point is that
from the perspective of the process code, all ports ezist
and there are no special cases.

The following Y level declaration shows how deriva-
tive functions might be bound to unconnected ports.
Phase1 is the name of a phase; i and j specify the
section's coordinates; I and S are port names; and
n o a p 0 is a user-written stub that simply returns.
Section 5.3 shows bow this declaration scales automat-
ically as the number of rows and columns changes.

PhaselCi][jl . p o r t . I sond <-> no,opO mboro i-0
Phasel[i]Cj].port.S sond <-> no-opo whore i=rovs-l

5 MGS Example

This section illustrates our ideas using the MGS
application. We describe the sequential algorithm,
sketch three parallel algorithms, and compare their
performance on various machines. After showing how
our model allows a single program to implement d l
three algorithms, we measure the overhead of our so-
lution and show that this overhead can be removed
with the help of configuration parameters.

5.1 The Modified Gram-Schmidt Method

The MGS method is one way to perform QR factor-
ization, a computation that factors an M x N matrix
into two matrices, Q and R, such that Q is orthonor-
mal (Q*Q = 1) and R is upper triangular. Figure 4
shows the sequential MGS algorithm [lS]. Initially, a
contains the input matrix. Upon completion, a con-
tains Q and r contain8 R. The algorithm processes

5.2 Parallel MGS Algorithms

Our parallel algorithms follow the structure of Fig-
ure 4. We describe three parallel algorithms that d+
compose the a and r matrices in three different ways.

71

one column of the a matrix at a time. For each col-
umn, the FindMax phase computes the pivot: the min-
imum of all elements of the d array whose index is 2
k. SuapCols then swaps the pivot column with the
kth column for a, r and d. Orthogonalize divides el-
ements of the kth column of a by the pivot. Finally,
the last phase normalizes a by computing the inner
product of the kth column with all remaining columns
of a, and updating all remaining columns of a with the
appropriate inner product.

f o r (k-0; k<I; k++) c
P = k;
f o r (i=k+l; i < D ; i++)

if (dCp1 < d c i l)
p = i ;

/* FindHax Phase*/

if (dCp]==O) 1
rank = k ;
break;

swap (dCkl, dCp1) ;
f o r (i-0; i<H; i++) {

} el.. c
/+ SuapCols Phase*/

soap (aCil Ckl , dil Cpl) ;
swap (r [il Ckl , r Cil [PI) ;

3
1
r[kl[k] = sqrt(dCk1);

f o r (i-0; i<H; i++)

/* Comput. Pivot */

a[i] [k] = a[i] [k]/rCk] [k] ; /* Orthogonalize */

/* Iornalize Phase*/ f o r (j=k+l; j < I ; j++) {
rCkICj1 = 0;
f o r (i -0; i<H; i++)

r[kl [j] += a[il Ckl*aCil Cfl:

dCj] = dcj] - rCk1 Cjl*rCklCjl;

f o r (i -0; i<H; i++)
aCil Cjl = aCi1 Cjl - aCi1 CkI*rCkl [jI ;

1
3

Figure 4: The Modified Gram Schmidt Method
>

d[O:k-1] d[k:.?J-ll dfZk3k-11

Cached Rows. The Cached Rnws algorithm uses
a blocked rows decomposition (see Figure 5a). This
decomposition inducee communication in only two
phases, InitD and lormaliza, where values of the a
matrix must be summed and broadcast along a single
column (see Figure sa). Each element of the d array
corresponds to one column of the a matrix, so dis-
tributing the d array would lead to communication in
the FindHax and Swapcola phasea. Thus we replicate
the d array at the small coat of additional. storage.

Figure 5: Data Decomposition: (a) Blocked Rows (b)
Interleaved Columns

In a naive parallelization of the sequential code, a
row decomposition requires a global sum and broad-
cast for each iteration of the Normalize phase. We
move these operations outside the inner loop so that
only O(M) communication operations are needed; par-
tial values must be cached to perform this optimiza-
tion.

Figure 6: (a) Global Sum & Broadcast across Rows
(b) Swap Columns (c) Broadcast for Columns

Interleaved Columns. Blocked columns would
lead to severe load imbalance, so we interleave columns
as shown in Figure 5b. This decomposition induces
communication when swapping columns (Swapcols)
and when broadcasting the pivot (Normalize) (see
Figures 6b and 6c). In the Orthogonalize phase all
processes are idle except the owner of the kth col-
umn. We distribute the d array, which results in addi-
tional communication in the Findnax phase but avoids
costly global sums and broadcasts of dCj1 inside the
inner loop of the Normalize phase. This algorithm
has O (N) broadcasts and swaps.

I 0
0
0

Replicated
Aaoss Rows

Figure 7: Data Decomposition for 2D Algorithms

2D CRIC. A two-dimensional decomposition in-
duces communication across both rows and columns.
The best 2D algorithm for MGS is a combination
of Cached Rows and Interleaved Columns. We call
this algorithm the Cached Rows/Interleaved Columns
(CRIC) algorithm [7]. Columns of a and r are inter-
leaved and rows are blocked (see Figure 7). As with
Interleaved Columns, the d array is distributed across
columns; as with Cached Rows, the columns of the d
array are replicated across rows.

Experimental Results. We implemented the
above algorithms by hand compiling the concepts of
the Phase Abstractions. Details of the experimental
methodology and additional results can be found else-
where [7]. Figure 10 compare the algorithms on four
machines. Our main observation is that even com-
paring the two 1D decompositions, neither is best for
ail machines. Thus, a portable solution to this prob-
lem should have the flexibility to accommodate either
decomposition.

5.3 Our MGS Solution

The above results compared separate implementa-
tions of the three algorithms. Our proposed approach
creates a single implementation of the 2D CRIC algo-
rithm that can degenerate to either Cached Rows or
Interleaved Columns by changing load time parame-
ters. The program sketch in Figure 8 shows three con-
figuration parameters - rows, cols and Processors.
The user-defined parse0 function reads the com-
mand line arguments and sets the appropriate values
of shape and Processors. The partition2DO func-
tion computes a 2D array for a given number of proces-
sors. This program can now execute on the Butterfly,
for example, where Cached Rows'is best, by invoking
the program as follows:

A columns decomposition is invoked as follows:

No source code changes are necessary even though the
program specifies communication that is superfluous
for 1D decompositions. Derivative functions convert

CRIC -r -P16

CRIC - C -P16

72

tdefine Pow. 1
tdefine Cola 2
tdofine IsoD 3

program CIIC (argc, u g c)

/* Configuration Computation Soction */
p a r s e (u p , argv) ;
a s i t c h (shapo) <

case l o w s : rows = Procoslrors;
c o l s = 1;
broak ;

case Cols: rows = 1;
c o l s = Procoasors;
broak ;

broak;
cam hoD: partition2D (&rows, &cola, Processors) ;

1

(rosa, c o l s . Procosaors): /e Configuration Parautora */

/* Y l e v e l enaemblo doclarations ... */
/* X l e v e l procoss de f in i t ions ... */
/* Z l e v e l body of cod. . . . */

begin

end

Figure 8: Configuration Computation Section.

the extraneous communication invocations into no-
op’s. As defined in Section 4.1, the binding of deriva-
tive functions to ports scales properly because it uses
values of row6 and colr from the configuration sec-
tion, e.g. the South port is bound to no-op0 when-
ever the proced row ID is equal to (rour-11, which
has the correct value for any of our three data decom-
positions. Of course, the configuration section may be
more sophisticated. For example, the code itself may
compute the “best” data decomposition based on in-
put parameters and machine characteristics.

5.4 The Cost of Generality
Cost of Generality (time in “as)

11197 11140

6387 5714 11.62
8183 5218 18.49

Figure 9: Overhead of CRIC Solution for Rows De-
composition on the Intel iPSC/2

General solutions are typically less efficient than
customized ones. Figure 9 shows the cost of this gener-
ality by comparing the performance of the hand coded
Cached Rows implementation against the CRJC im-
plementation that degenerates to a rows decomposi-
tion. This overhead is incurred per process and can-

not be removed through added parallelism. Thus, in
an analog to Amdahl’s law, this overhead is significant
because it limits speedup.

5.6 Partial Evaluation

Partial evaluation (PE) can eliminate the above
overhead through techniques that convert a general
program to a more efficient, less general one [2,3]. Due
to difficulties with pointers and aliasing, PE has typi-
cally been applied to functional rather than imperative
languages. A classic problem with PE is determining
how much optimization to perform. For example, how
many recursive calls should be inlined? We avoid these
problems by using PE to remove a very restricted type
of overhead. Our basic technique is constant folding,
which is aided by the existence of configuration p&
rameters that identify “constants.” The overhead we
wish to remove often appears in conditionals that test
whether communication operations should be invoked
based on such values as the process’ row number, the
number of processes in a given row, and the existence
of neighbors. These values do not change during the
execution of the program, and these expressions are
usually computed directly from configuration param-
eters.

We have not yet implemented this partial evaluator,
but a hand simulation of our algorithm shows that all
of the overhead shown in Figure 9 can be removed.
Of course, it is possible that the partial evaluator will
optimize additional sources of inefficiency.

6 Conclusion

Explicitly parallel languages tend to be performant
but not convenient. One aspect of convenience is the
ease with which a program can adapt to architectural
diversity. Using the MGS method as an example,
we have shown that polymorphic data decompositions
are an important aspect of portability and scalablity;
polymorphism can be built into explicitly parallel pro-
grams through derivative functions; and supporting
polymorphism can increase execution overhead, but
this overhead can be removed through the use of con-
figuration parameters and partial evaluation.

The last two points move us closer to our goal of
decoupling data decomposition from communication
while retaining the performance benefits of explicit
communication. Our partial evaluation technique can
also be used to transform SPMD code into MIMD code
so that programmers can write with the convenience
of the SPMD approach and the efficiency of an MIMD
approach. This is an avenue of future research.

73

References

... ...

[l] G. Alverson, W. Griswold, D. Notkin, and L. Sny-
der. A flexible communication abstraction. In
Proc. of Supercomputing ’90, Nov. 1990.

[2] A. Berlin. Partial evaluation applied to numerical
computation. In Proc. of the 1990 Conference on
Lisp and Functional Prog., Nice, France, 1990.

[3] A. Berlin and D. Weise. Compiling scientific pro-
grams using partial evaluation. ZEEE Computer,
23(12):23-37, Dec. 1990.

[4] B. Chapman, P. Mehrotra, and H. Zima. Vienna
Fortran - a Fortran language extension. TR 91-
72, ICASE, Sept. 1990.

W. Griswold, G. Harrison, D. Notkin, and L. Sny-
der. Scalable abstractions for parallel program-
ming. In Proc. ofthe Fifth Distributed Memory
Computing Conference, 1990. Charleston, SC.

High Performance Fortran Forum. High Perfor-
mance Fortran Specification. Jan. 1993.

[5]

[6]

[7] C. Lin. The Portability of Parallel Programs
Across MIMD Computers. PhD theais, U. Wash.,
Dept. of Computer Science and Engr., 1992.

C. Lin and L. Snyder. A comparison of program-
ming models for shared memory multiprocessors.
In Proc. of the Int ’1. Conf. on Parallel Processing,
pp. I1 163-180, 1990.

C. Lin and L. Snyder. A portable implementation
of SIMPLE. Int’l. Journal of Parallel Program-
ming, 20(5):363401, 1991.

[14] R. Schreiber. The scalability of sparse direct
solvers. In J. George, J. Gilbert, and J.Liu, eds.,
Sparse Matriz and Graph Algorithms. IMA, 1992.

[15] L. Snyder. Applications of the “Phase Abstrac-
tions.” In J. Saltz and P. Mehrotra, eds., Lan-
guages, Compilers and Run- Time Environments
for Distributed Memory Machines, pp. 79-102.
North Holland, 1992.

[16] E. Zapata, J . Lamas, F. Rivera, and G. Plata.
Modified Gram-Schmidt QR factorization on hy-
percube SIMD computers. Journal of Parallel
and Distributed Computing, 12:60-69, 1991. - 2DCRIC

0 - - - -0 Cached ROWS
-0 Interleaved Columns U--. . . .

24

20

16
a

4

0

iPSC/L S Results: 256x256
16

12

8

4

0
0 4 8 12 16 20 24 28 32

Butterfly Results: 256x256

[ll] T. A. Ngo and L. Snyder. On the influence of pro-
gramming models on shared memory computer
performance. In The Scalable High Performance
Computing Conference, 1992.

[12] D. Notkin, et al.. Experiences with Poker. In
Symp. on Parallel Programming: Experience with
Applications, Languages, and Systems, Jul. 1988.

nCUBE Results: 128x128
16

12

I : VI

0
0 4 8 12 16

Symmetry Results: 256x256
[13] S. Otto. MetaMP: A higher level abstraction for

message-passing programming. TR CS/E 91-003,
Oregon Grad. Inst. of Science and Tech., 1991.

Figure 10: Speedup vs. Number of Processors.

74

