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Abstract 

This paper presents and analyzes a topological ap- 
proach to providing multiple data channels using cur- 
rent technologies. The Partitioned Optical Passive 
Stars (POPS) topology is an all-optical interconnec- 
tion architecture that uses multiple non-hierarchical 
couplers. POPS topologies provide powerful config- 
urability for optimization of system complexity, net- 
work throughput, power budget, and control overhead. 
I t  is shown that high performance and utilization is 
achieved for random communication patterns. POPS 
topologies maintain. these characteristics even when 
scaled to large systems. 

I Introduction. 
The evolution of computer systems has, for the 

most part, been driven by an ever-increasing need 
for network throughput. Although the bandwidth 
wasted to control pure-electronic networks is not ex- 
cessive, relative to network capabilities and system 
loads, these networks are incapable of efficiently acco- 
niodating very large volumes of traffic due to several 
key physical link issues. These include driving power, 
rapacitive/inductive loading, and relatively low trans- 
mitter rates implied by sensitivity to noise. 

The second era in computer networking incorpo- 
rated optical fiber link technology into existing multi- 
hop network designs [11, 1, 61. An order of magnitude 
increase in link throughput was avidable Further, the 
lack of reactive factors and a high noise immunity were 
well suited to  the demands of the faster, larger, and 
more widespread environments. Such networks, how- 
ever, still suffer from throughput bottlenecks and high 
latencies resulting from electronic/optical conversions 
and processing at  intermediate hops. These disadvan- 
tages can be avoided in "all-optical" networks, where 
electronic technology 1s only present at the beginning 
and the end of the communications pathway. Certain 
topologies implemented exclusively with passive opti- 
cal technology provide enormous potential throughput 
with very low latencies. Communication protocols in- 
corporating time (TDM) [lo], wavelength (WDM) [5], 
o r  code (CDM) [81 division multiplexing have been 
developed to  increase utilization and provide more ef- 
ftcient access to this tremendous capacity. 
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Several studies have been done on innovative topo- 
logical approaches for "all-optical" networks. Power 
Optimization in multiple star networks, both hierar- 
chical and non-hierarchical, was investigated by Birk 
[2]. Networks of multiple passive stars, both totally 
and partially connected, as well as the reconfigurabil- 
ity of WDM systems operating on them, was studied 
by Ganz [4]. A multi-hop WDM method applied to  
multiple star topologies was presented by Hluchyj [7]. 

This paper studies a topological approach to pro- 
viding multiple physical data channels. The Parti- 
tioned Optical Passive Stars (POPS) topology is an 
interconnection architecture that uses multiple non- 
hierarchical stars to achieve single-hop networks. It 
is an  "all-optical" topology constructed exclusively 
with passive optical technology, and benefits from all 
the corresponding characteristics discussed, i.e., no in- 
termediate electronic/optical conversions, no reactive 
factors and high noise immunity. 

A POPS topology is configured at  design time to 
provide a fixed number of physically concurrent data  
channels, each of which is capable of high capacity 
in a circuit-switched system. The number of such 
channels is not absolutely limited, and is a key en- 
gineering tradeoff. This design flexibility provides for 
a customized optimization between lower total system 
complexity versus the combination of higher system 
throughput with both lower power budgets and lower 
network control overheads. 

After the introduction, the second section will dis- 
cuss the components, parameters, and notation for a 
POPS topology. The third section will discuss the 
routing and scheduling of messages in a POPS topol- 
ogy. The fourth section will discuss the performance of 
POPS topologies in detail. The fifth section discusses 
issues related to scalability for very large system sizes. 
A conclusion summarizes key points about a POPS 
topology. 

2 Description of The POPS Topology. 
A small POPS network is shown in Figure 1. Source 

nodes relay messages through optical links to  passive 
optical couplers. These couplers send the message 
through other optical links to the destination nodes. 
A minimal set of two independent parameters com- 
pletely determines a POPS network implementation. 
The first parameter, a measure of the system size, is 
the number of nodes and is denoted by n. The second 
parameter, a measure of the coupler complexity, is the 
degree of each coupler and is denoted d. Each coupler 
is a d x d passive optical star which equally distributes 
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the optical power on any of its d inputs to  all of its d 
outputs. 
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Figure 1: An n = 16, d = 8 POPS network (g = 2). 

The set of n source nodes are partitioned into 
g = n/d equal-sized source groups. Similarily, the 
set of n destination nodes are partitioned into g des- 
tination groups. Each source roup and each desti- 
nation group consists of d = nfg nodes. ‘Typically, a 
soiirce node and the corresponding destination node 
art the same processing element. These n nodes are 
denoted No, NI, ..., N,,- 1. Consequently, the source 
groups and the corresponding destination groups con- 
tain the same set of nodes. These 9 groups of nodes 
arc denoted GNo, GNl, .., GN,-l. 

A set of c = g2 = n2/d2 couplers is partitioned 
into g groups of g couplers each. These g groups of 
couplers are denoted by GCo, GCI,  ..., GC,-1. The 
g couplers in coupler group GC, are denoted by 
C, Cc.l ,  ..., C*, 1,  where 0 5 z < g. The d inputs 
for a given coupf&, C%,,, are connected to the d nodes 
in source group G N , ,  and the d outputs of C, are 
connected to the d nodes in destination group 8Nc 

Each source node, N,, has g transmitters, denoted 
T , , , , , ~ , 1 , . . . , ~  1, where 0 5 i < n. For a given 
source node, each transmitter, T,, , is connected 
to a coupler in GC,, and thus is usei to communi- 
cate with nodes in destination group GN,. Similar- 
ily each destination node N, has g receivers, denoted 
R, o 1  ..., p*r,g-l, and receiver R,,, is connected to 
a coupler which provides communication with nodes 
in .;ource group GN, 

The optical links in a POPS network fall into one 
of two classes. In the first class, called source links, 
each link connects a transmitter a t  a source node to 
an input of a coupler. For each coupler, a t  most one 
source link should be active at  a given time to prevent 

collisions. In the second class, called destination links, 
each link connects an output of a coupler to  a receiver 
at a destination node. For each coupler, all destination 
links are either simultaneously active or inactive. 

Given a fixed system size , n , the choice of coupler 
degree , d , allows for a wide range of system charac- 
teristics. As the coupler degree approaches n, the sys- 
tem assumes the nature of a single passive star which 
includes low system cost and complexity, restricted 
throughput, and increased power dissipation. As the 
coupler degree approaches one, the system becomes a 
completely-connected topology, with very high system 
cost and optimal performance. The example POPS 
topology shown in Figure 1 has a fairly large coupler 
degree. In Figure 2, another example POPS topology, 
with the same number of nodes as in Figure 1, but a 
smaller coupler degree, is given for comparison. 
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Figure 2: An n = 16,d = 4 POPS network ( g  = 4). 

3 Communication Using POPS. 
In a POPS network, the determination of the route 

for a specified message is a simple process. The source 
node determines the appropriate transmitter for com- 
munication with the required destination group, and 
the destination node determines the appropriate re- 
ceiver for communication with the required source 
group. Specifically, consider a single message, denoted 
Mz,w,  which originates a t  source node x in source 
group GN,e, where 0 5 x < n and z’ = Lx/d . This 
message terminates at destination node y in d estina- 
tion group GN,t, where 0 5 y < n and y’ = l y / d ] .  
Source node x uses transmitter T,,wf to  send the mes- 
sage. Coupler Cw~+1 transports the message, and des- 
tination node y uses receiver Ry,zl to  get the message. 

In a given POPS network, any specific Lemma 1 
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message Mx,y has a unique path composed of a trans- 
mztter, a coupler, and a receiver, (Tx,yf, CYfrE~,  %,,!). 
L e m m a  2 For any two given messages, Mx,,y, and 
Mx,,y, , where x, # x, and y, # y, , the only possible 
point of conflict in the path of the two messages as 
the cnp le r .  No conflict occurs i f  either x: # xi or 

Thus, the conflicts during delivery of a set of mes- 
sages in a POPS can be determined. Subsequently, 
the minimal schedule of delivery for a set of messages 
can also be readily calculated as described next. 
Defini t ion 1 A Message Set i s  a set of m mes- 

sages, denoted by M = {MX,,,,, , M,, ,y f  , ..., 
AYxm-, ,7,m- , }, where 20,  z1, ..., zn,- 1 are the m mes- 
sage source nodes, and yo, y l ,  .. , y,,,-1 are the m mes- 
sage destinatzon nodes. 

Given a message set M, let a coupler's usage, de- 
noted by U ,  , where 0 < z < c ,  be the number of indi- 
vidual messages that will use the z t h  coupler. That is, 
c"la/q],z mod 9. 

Defini t ion 2 A C o u p l e r  Prof i le  f o ~  a gzven mes- 
sage set M 2s an ordered c-tuple of coupler usages, 
denoted C ( M )  = ( u g ,  ui, ..., u , - I ) .  

Lemma 1 states that the coupler used by a given 
message is a function of the message's source and des- 
tination. Applied to  the elements of a message set, 
Lemma 1 yields a unique coupler profile 
Theorem 1 I n  a given POPS network, for any gzven 
message set, the schedulrng of any speczfir cozrplw zs 
zndependent of all other couplers. 

Proof Any given message set yields a unique (ou- 
pler profile. From Lemma 2, it follows that the subset 
of messages requiring a given coupler all have conflict- 
ing paths. However, no element of this subset of the 
messages conflicts with any other message Thus, the 
subset can be independently scheduled. 0 

Only a single message per coupler can be delivered 
in a fixed time period, which we call a time slot. 'Thus, 
a maximum of c messages can be delivered by a POPS 
network implementation rn a single time slot. When 
rnultiple messages require the samt: coupler, a series of 
consecutive time slots, called a sequence, is required. 
Thring each time slot in a sequence, some non-zero 
number of couplers will deliver one message each 

A scheduling algorithm chooses, for each coupler, 
the order and timing of delivery for the pending mes- 
sages requiring that coupler. A greedy scheduling al- 
gorithm is defined to be one that, by some selection 
criteria in each time slot, assigns one message to each 
coupler where messages are pending. For example, 
a random greedy scheduling randomly selects one of 
the messages pending for a specific coupler The next 
result follows directly from Theorvm 1. 

Any  greedy schedulzng algorzthm has 
the manzmum posszble sequence length, 
IL,,, = maz{ug, u1, ..., u,.-1}. 

Network traffic can be either static or dynamic. A 
static communications pattern is known apriori, while 
a dynamic pattern is not. In a POPS network, as seen 
i n  Lemma 1, route determination is trivial. Further, 
('orallary 1 demonstrates that, as a result of thr  in- 

Y: # Y;. 

Corol lary 1 

dependent nature of the couplers, scheduling is both 
easy and efficient. For dynamic message traffic, it is 
still necessary to specify an arbitration protocol on 
a per coupler basis. Established wavelength-division 
multiplexing protocols, such as those surveyed in [9], 
might be adaptable. In [3 , a time-division multiplex- 

The focus of this paper is the study of performance 
in a POPS network for static communications pat- 
terns. That  is, a predetermined message set , M , 
of size m is generated and delivered. Only random 
message sets that are permutations or subsets of per- 
mutations are studied. 

ing protocol is presented ) or the POPS topology. 

4 Permutation Capabilities of POPS. 
Certain key aspects concerning the performance 

of a POPS network are examined. First, we define 
permutation-based random message sets as follows: 
Defini t ion 3 A Permutation-Based Message 

Set is a message set of m messages, 1 5 m 5 n, 
where the m source nodes xo, X I ,  ..., xm-l are distinct, 
and the m destination nodes yo, y1, ..., ynlnl-1 are also 
distinct. 
4.1 Absolute Bounds for Message Sets. 

Assume a fixed POPS topology and a specific mes- 
sage set M of size m, with coupler profile C ( M k  and 
a maximum coupler usage of U,,,,. If s is t e se- 
quence length that a greedy algorithm yields, then, 
from Corollary 1, s = umaZ. Clearly, for a given M, 
U,,, depends on m and on the message distribution 
in M. For a given m, however, the valuv of umaX is 
bounded as defined below. 

The G r e a t e s t  Lower Bound for 
a given message set size m, denoted b y  glb(m), is 
the minimum value of s over the sample space of all 
permutation- based message sets of size m. Similarily, 
the Least U p p e r  Bound for a given message set size 
m, denoted by lub(m), as the maxzmum value of s over 
the sample space of all permutation- based message sets 
of size m. 

The greatest lower and least upper bounds repre- 
sent absolute limits to the sequence length for a greedy 
algorithm. These absolute bounds to  the sequence 
length are a function of the message set size and the 
POPS topology parameters, as specified by the follow- 
ing theorem whose proof is omitted. 
Theorem 2 For a given POPS network and message 
set M containing m messages, 
glb(m) = I(? - l)/c] + 1, and lub(m) = min{m, d } .  

For any given message set M of size ranging from 
m = 1 (a single message) to m = n (a permuta- 
tion message set), possible sequence lengths are rep- 
resented by integral values of s that lie in the range 
glb(m) 5 s 5 Iub(m). The probability distribution of 
s in that range is an important measure of the perfor- 
mance of a POPS network. It determines the average 
and variance of the communications delay for sets of 
messages of size m. 
4.2 Sequence Length Probability. 

Assume a POPS topology with fixed n and d, and 
consider a set M of m messages with distinct source 
nodes and distinct destination nodes. Denote by N ,  

Defini t ion 4 

6 



the set of all possible message sets containing m mes- 
sages. Further, denote by N,, the set of all message 
sets containing m messages that require a sequence of 
length s for delivery. Thus, N = UgQ(m)<a<lub(m) N,. 

The probability that a random message 
set M of size m will require a sequence of length s for 
dehvery is p ( m ,  a )  = I N r /  / [NI. 

The number of ways to choose the source nodes 
for a message set M is C z  = n!/(n - m)!m!, the 
number of unordered ways to select m nodes from n 
nodes. For each of these choices, the number of ways 
to  select the destination nodes for the message set is 
P: = n!/(n - m)!, the number of ordered ways to 
select m nodes from n nodes. Thus, IN1 = P:Cl  = 
(n!)’/((n - m)!)’m!. 

‘Po determine p ( m ,  s), the calculation of IN, I is still 
required. It is possible to enumerate all the message 
sets in N, ,  but typically, the number of these message 
sets makes this impractical. A more efficient approach, 
based on the enumeration of coupler rofiles is given. 

Ilenote by C(N) = { C ( M ) I M  E NT, the set of all 
possible coupler profiles for message sets containing m 
messages. Also, denote by C(N,) = { C ( M ) I M  E N8}, 
the set of all possible coupler profiles for message 
sets containing m messages that require a sequence 
of length s for delivery. It follows that the POPS 
topology imposes several constraints on the elements 

Each element, C ( M )  = (U(), ..., u c - t ) ,  
of the set of message sets, C ( N , ) ,  containtng m mes- 
sages and requiring a sequence of length s for delzvery, 
should satisfy the following conditions. 

I .  V i , O < i < c - l  , t h e n u , S s < d  

2. 3i, 0 5 i 5 c - 1 , such that U ,  = s 

Lemma 3 

of C(N,). 
Lemma 4 

3.  Vi, 0 5 i 5 g - 1 , then E,”;,’ u ; ! ~ + ~  5 d 

4. Vj ,  0 < i 5 g - 1 , then u , ~ + ~  5 d 

5. E::,’ E,”:: u , ~ + , ~  = m. 
The first condition says that the number of mes- 

sages through any coupler is a t  most s, else a sequence 
length of s could not deliver that coupler’s messages. 
Further, s is a t  most d, since only one message in 
a message set can arrive at  each of a coupler’s in- 
put ports. The second condition says that a t  least 
one coupler must handle s messages, else a sequence 
length of s would not be required for the message 
set. The third condition says that the total number of 
messages through couplers connected to any specific 
source group is a t  most d ,  since each node can initiate 
a t  most one message. Similarily, the fourth condition 
says that the total number of messages through cou- 
plers connected to  any specific destination group is a t  
most d. Finally, the fifth condition says that the total 
number of messages through all couplers must be m. 

Jn general, each coupler profile C E C N,) supports 

consider a message set where two of the messages use 
a single given coupler. Another message set supported 
by f he same coupler profile, would have the same two 

more than one message set M E N,. b or example, 

destinations reversed. The set of message sets sup- 
ported by a specific element, C, of the set of cou ler 
profiles, C(H,), is denoted Mc.  The elements of C&,) 
yield a partitioning of N, by the messa e sets M c .  

The partitioning of N, implies N, = bcEc(H.) M c .  

The determination of IN, 1, and thus of p ( m ,  s ) ,  can be 
achieved by summing the values of I M c I during an 
enumeration of the C in C(N,). The value of IMcJ is 
now specified. 
Lemma 6 Given n and d for a POPS topolo y ,  and 

a coupler profile C = (w,u1, ..., ~ ~ - 1 )  E C(N,T. The 
number of message sets supported b y  C is, 

Where CY = C;:,’ U I ~ + ~  , and P = Cizt utg+l. 

combinatoric form is derived as follows: 
Proof: The enumeration of the message sets by the 

0 n,”,;: considers each coupler group in the POPS. 

0 n,”;: considers each coupler in the group. 

e The large brackets enumerate the contribution of 

- CU”,, considers the ways to  choose the 
uy2+3 inputs from the d source group nodes, 
minus the total of previous usage of that 
source group. 

inputs selected to the d destination group 
nodes, minus the total of previous usage of 
that destination group. 0 

Combining the above results, the probability that a 
random message set of size m will require a sequence 
of length s for delivery, p ( m ,  s), can be specified. 
Theorem 3 (The Probability Calculation The- 
orem) 

a single coupler. 

- P$f, considers the ways to map the 

Where CY = xi:,’ U I ~ + ~  , and P = Ciii ~ ; ~ + l .  0 
The coupler profile approach, which enumerates the 

profiles in C(N,), is more efficient than a complete enu- 
meration of all message sets in N,. Moreover, proba- 
bilities of the g l b  and the lub for certain special values 
of m can be directly calculated by the coupler profile 
approach. This is due to various additional restric- 
tions being appropriate a t  these positions. A couple 
of these special degenerate cases will be considered. 

When the message set size is a multiple of the num- 
ber of couplers, the greatest lower bound occurs when 
the messages are evenly distributed among the cou- 
plers. In each of these cases, where all coupler us- 
ages are identical, only one coupler profile is possible. 
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This restriction provides for a major simplification of 
Lemma 5, and consequently, The Probability Calcula- 
tion Theorem. 
Corollary 2 Given n and d for a POPS topology, 

Vm, such that m = t c ,  wheTe 1 5 z 5 n / c ,  

For small message sets, m <: d, the least upper 
bound increases linearly with the message set size. Un- 
der these conditions, all the messages in a message set 
pass through a single coupler. In each of these cases, 
where only one coupler usage is not zero, c coupler pro- 
files are possible. This restriction provides for another 
major simplification of Lemma 5 ,  and consequently, 
The Probability Calculation Theorem. 
Corollary 3 Given n and d f o r  a POPS topology, 

Vm, 1 5 m 5 d ,  then 
i N i u q m )  I = (n/d)2Cz.PA = n2(d!)’/d2((d - m)!)2m!. 

4.3 Probability Experiments. 
For POPS topologies of low complexity (relatively 

small n or large d ) ,  a program based on The Proba- 
bility Calculation Theorem is practical. For a given 
POPS topology, this calculator program enumerates 
all coupler profiles of a specific message set size, 
and is more efficient than an enumeration of all pos- 
sible message sets. After the profile enumeration, 
p(m,s),Vs,glb(m) 5 s 5 lub m) are tabulated. 

gram is not practical for more complex systems (for 
example, when c > 32). A program which estimates 
the sequence length probability was also developed. 
lor  a given POPS topology, random message sets of 
il specific size (permutations, or subsets thereof) are 
generated, then resulting coupler profiles are used to 
estimate p ( m ,  s),V’s such that g l b ( m  5 s 5 luh(nr). 

probabilities is extremely consistant in the range of 
POPS topologies considered. Three characteristics are 
clbserved across a wide range of system sizes, cou- 
pler degrees, and message set sizes. First, the se- 
yuence length extremes, gib and lub, have extrrmely 
low probabilities. Second, all non- trivial probabilities 
occur in a small range of sequence lengths. Third, 
sequence lengths with non-trivial probabilities consti- 
tute a small fraction cif the possible sequence lengths, 
these being among the very shortest. 

Corollary 2 calculates the probability that, given 
a random permutation-based message set whose size 
i:, some multiple of the number of couplers, the mini- 
mum possible sequence length for delivery is required. 
Similarily, Corollary 3 calculates the probability that, 
given a random permutation-based message set of 
some fixed size (m 5 d ) ,  the maximum possible se- 
quence length for delivery is required. A short survey 
of  the probability that the sequence length will be thr  
greatest lower bound or the least upper bound for sev- 
eral POPS topologies indicates that such probabilities 
are very low. 

In general, estimator program data  shows that all 
non-trivial Probabilities occur in a very narrow range 

The exhaustive nature o f t  6 e calculation-based pro- 

The nature of the distribution o f’ sequence length 

of sequence lengths. Further, the distribution in- 
volves relatively few of the total number of possible 
sequence lengths, and those involved are the shortest 
ones. For example, the small POPS network where 
n = 32, d = 16 , and m = 32 , delivers more than 98% 
of the possible message sets in four sequence lengths 
(8 through 11). These represent the lowest possible 
sequence lengths ( g l b  = 8 5 s 5 16 = lub). 

11 = 2 5 6  

m = 1 2 8  0 . 8  

0 . 7  

0 . 3  

0 . 2  

0 1  

8 12 16 2 0  2 4  3 2  4 0  4 8  5 6  64 
g l b  SecpencP L e n g t h  ( s )  lub  

Figure 3: Typical Sequence Length Probabilities with 
n = 256,d = 64 and m = 128 (g = 4 , c  = 16). 

4 8 12 1 6  2 0  2 4  2 8  3 2  
Message Set Size (m) 

Figure 4: Avg. Seq. Length for 1 5 m 5 n. 

These distribution characteristics become even 
more pronounced in higher-complexity POPS net- 
works. Figure 3 shows a typical distribution of se- 
quence length probabilities for a fairly-large POPS 
topology. For the specified n , d and m, possible se- 
quence lengths range from 8 to  64. The most probable 
sequence length of 13 delivers over 25% of the possible 
message sets. In fact, over 88% of the message sets can 
be delivered by one of only five sequence lengths (11 
through 15), more than 98% in ten sequence lengths 
(8 through 17). This represents the shortest 18% of 
the valid sequence lengths. 
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For a given POPS topology and a message set M 
of size m, let the average sequence length be the 
probability-weighted arithmetic mean of all possible 
sequence lengths, saug = ~ ~ ~ ~ ~ ~ m ,  s . p(m, 8 ) .  The 
consistent nature of the non-trivial part of the proba- 
bility distribution as described above, makes the aver- 
age sequence length a suitable and adequate measure 
of the performance of a POPS topology. 

Figure 4 shows the g i b ,  the Iub , and the average se- 
quence length sang in the range m = 1, ..., nfor a small 
POPS network. In this example, for any size message 
sei, the average sequence length is always less than 
two, and often only one, unit larger than the great- 
est lower bound. Typically, this is only about 10% 
of the sequence length range. Similar and even more 
pronounced behaviour is observed in larger systems. 
Figure 5 shows the average sequence length for seven 
large POPS networks involving n = 128,256,512,1024 
and d = 64,128. 

128 

1 1 2  

9 5  

U 0  

6 4  

4 8  

7 2  

1 6  

O l l d  1s ci = 6 4  , m = I I R  
lashed is d = 1:R , m = 25.6 

Figure 5: Avg. Seq. Length for Various POPS. 

As an example of high performance in a very large 
POPS topology, consider a system with 1024 nodes 
and a coupler degree of 64 (16 groups, 256 couplers), 
and message sets containing 512 messages. In this 
system, message sets require sequence lengths of at 
least 2 and a t  most 64. Simulation results showed the 
most probable sequence length to be 7. This sequence 
length delivers 45.1% of the possible message sets. 

5 Scalability Issues for POPS. 
Given a fixed system size n, the choice of d in 

a POPS topology determines the maximum network 
throughput available. Lower d yields more couplers 
and a higher potential application throughput, but a t  
the cost of higher system complexit,y (more couplers 
and links). 

Typically, for any fixed n, many POPS topologies 
may be possible through the choice of d.  The method 
of selecting d ,  as system size increases, is called a 
scaling rule. Three varied scaling rules are presented, 
and their effects on system complexity, nrtwork per- 
formance, and efficiency are studied 

The first scaling rule, called fixed-g, maintains a 
fixed number of node groups. This results in a fixed 
node degree (number of transmitters and receivers) 
and increases the coupler degree as system size in- 
creases. The second scaling rule, called fixed-d, main- 
tains a fixed coupler degree. This results in both an 
increasing number of groups and an increasing node 
degree as system size increases. The third and final 
scaling rule, called the root-n rule, increases the cou- 
pler degree as the square root of the increasing system 
size. This also results in both an increasing number of 
groups and an increasing node degree. The following 
table summarizes these characteristics for the three 
scaling rules. 
Characteristic Fixed-g Fixed-d Root-n 

--- -- I 

# Couplers f i z e d  O ( n 2 )  O ( n )  
Coupler Deg. O(n)  f i ted  O ( 6 )  
Node Deg. f i z e d  O(n )  O(+) 

Figure 6 illustrates the performance, for permuta- 
tion message sets (m = n), of POPS topologies which 
follow one of the three scaling rules to determine the 
coupler degree. For each scaling rule, two examples are 
shown, one by a solid line and one by a dotted line. 
These curves represent the average sequence length for 
the scaling rules over a wide range of fairly large sys- 
tem sizes. Figure 7 illustrates the coupler utilizations 
for curves 1, 3, and 5 of figure 6. 
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/ 
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Figure 6: Scaling Rules Performances (Sequence 
Length Average). 

Under the fixed-g scaling rule, as system size be- 
comes very large, the coupler degree becomes im- 
practical (for n = 1024,d > 100). Though network 
complexity is minimized, and Figure 7 shows coupler 
utilization is very high, practical aspects concerning 
power dissipation and availability limit this approach. 
Further, as seen in Figure 6, the fixed-g scaling rule 
has only modest performance. 

Under the fixed-d scaling rule, as system size be- 
comes very large, the number of couplers and links 
becomes impractical (for n = 1024, c > 4000 , and # 
of links > 130,000). Commercially-availablc couplers 
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may be utilized, but the network complexity becomes 
prohibitive, and Figure 7 shows that the utilization be- 
comes unacceptably low. Nonetheless, Figure 6 does 
indicate that the fixed-d rule provides excellent per- 
formance. 

0 9 4  

0 . 6 -  
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Figure 7: Scaling Rules Utilizations. 

Using the root-n scaling rule, the coupler degree 
is practical even for very large system sizes (for n = 
1024,d 64), and the number of couplers is linearly 
related to the number of nodes. Very good perfor- 
mance which approximates the fixed-d rule is observed 
in Figure 6, and good utilization is maintained even 
for very large systems, as shown in Figure 7. 

In summary, for very large system sizes, the fixed-g 
scaling rule is limited by practical aspects of the cou- 
pler degree, and the fixed-d scaling rule is restricted by 
network complexity. However, the effect of the root- 
n scaling rule is an efficient high-performance POPS 
topology for a wide range of large system sizes. These 
root-n POPS topologies use commercially-available 
couplers and have network compl(.xities proportional 
to their system size 

6 Conclusion. 
The POPS topology is an interconnection design 

suitable for implementation using current optical tech- 
nology. It is an all-optical non-hierarchical star-based 
t1,pology. A powerful configurability is provided which 
allows a critical design tradeoff between low coupler- 
degree networks, with higher throughput and lower 
power dissipation, and high coupler-degree networks, 
with lower system complexity. 

In a POPS topology, the route determination is 
trivial and message scheduling is simple. This latter 
fact is due to the independence of individual coupler 
scheduling. These characteristics promote a very low 
control overhead. Absolute bounds of the sequence 
lvngth for delivery of a random permutation-based 
message set can be easily calculated. 

For random permu tation patterns, results consis- 
tantly show a high and narrow sequence length dis- 
tribution centered relatively close to the theoretical 
minimum. Surveys of system size, coupler degree, and 
message set size show that this iesults in an average 

sequence length close to the greatest lower bound un- 
der almost any conditions. Even when considering 
very large system sizes, scaling methods exist which 
provide powerful combinations of system characteris- 
tics. Low system complexity, high utilization and high 
throughput are all possible in a POPS topology. 
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