Replication of Uniformly Accessed Shared Data for
Large-Scale Data-Parallel Algorithms*

Chung-Ming Chen
Center for Biomedical Engineering
National Taiwan University
Taipei, Taiwan, R.0.C.

Abstract
In this paper, we show how to mintmize data shar-
ing overhead required in most parallel algorithms, es-
pecially in Large-Scale Data-Parallel (LSDP) algo-
rithms, on a 2D mesh. Two specific issues are ad-
dressed in this study. One is what the optimal group

size 18, t.e., how many PEs should share a copy of

shared data. The other is where the replicated data
should be allocated.

1 Introduction

Data sharing is inevitable in most parallel algorithms.
For many problems, especially, for those problems
with rich data parallelism, the overhead due to data
sharing, i.e., data movement or data access contention
[1], is one of the major factors degrading the perfor-
mance of a parallel algorithm.

In this study, we investigate how to minimize
the overhead caused by data sharing for a class of
problems modeled as the Large-Scale Data-Parallel
(LSDP) algorithms on a wrapped-around and a reg-
ular 2D meshes. An LSDP algorithm has the foﬁ-
lowing features: (i) it has rich data-parallelism but
without exclusive task and data partitioning, which
means that some data need to be shared by multiple
PEs, (ii) a great amount of shared data is involved
(therefore, communication overhead is high), (iii) a
synchronization point is required before any use of the
si.ared data. This computation model may be found
as the only or one of the major algorithmic structures
in many applications, e.g., in an EM reconstruction
algorithm for 3D Positron Emission Tomography {)ZL

inimization of data sharing overhead for an LS
algorithm is attempted by optimizing data access pat-
terns in this study. A data access pattern specifies
when and where to access shared data for each PE.
Ouce all tasks have been assigned to PEs, the data
sharing overhead is mainly determined by the data
access pattern. In this paper, a uniform data access
pattern is assumed, i.e., every PE has the same num-
her of accesses to each of all other PEs. Our approach
is to optimally replicate the shared data and allocate
the replicated data. We also develop scheduling al-
gorithms specifying shared data access sequences to

*This work was supported in part by grant number RO1
CA51324 from the National Cancer Institute, NIH.
The authors were with School of Electrical Engineering, Cornell
University

1063-7133/95 $4.00 © 1995 [EEE

Soo-Young Lee

Department of Electrical Engineering

246

Auburn University
Auburn, AL 36849

ﬁchg—:ve the minimal (optimal) communication over-
ead.

Data replication is a widely used technique to en-
hance data locality at the expense of integrating and
broadcasting rephcated data. However, optimizing
data replication has not been attempted in most pre-
vious works.

2 Models

2.1 System Model

The system topology to be considered in this paper
is a wrapped-around and a regular (non-wrapped-
around) 2D meshes with N x N PEs. Refer to [4]
for the results on a hypercube.

A system is bi-directional if its links (i.e., the con-
nections between adjacent PEs) are capable of realiz-
ing communication in both directions simultaneously.
If each link of a system can perform communication
in both directions but only one direction at a time,
this system is considered as a uni-directional system.
We assume that all links can perform communication
independently.

In this stuciry, analysis on a 2D mesh is based on the
analysis on a linear array or a ring. For convenience,
we use W3;,t = 1,2, to denote uni- and bi-directional
wrapped-around 2D meshes, where the value of 7 indi-
cates the number of directions realizable at a time by
a link. Similarly, we use RS;, i = 1,2, to denote uni-
and bi-directional regular 2D meshes, respectively.

Throughout this paper, we use the following con-
vention to label PEs and links. For a ring or a lin-
ear array with m PEs, p; denotes the ith PE, where
0<i<(m-1)and f denotes the left link of p;,
where 0 < i < (m —1). For a wragped-around or
a regular 2D mesh with m rows and n columns of
PEs, p;; denotes the PE at the ith row and the jth

column, hl;; denotes the left (horizontal) link of p;;,
and vl;; denotes the top (vertical) link of p;;, where
0<i<(m~1),0<j<(n—1). As an example, link
labeling of a 4x 3 (m = 4 and n = 3) wrapped-around

2D mesh is illustrated in Fig. 1, where the circle with
a number #j inside represents p;;.

2.2 Computation Model

Let M denote the total number of shared data, N,
the average number of accesses to each shared datum

for each PE and Sjs the total number of shared data
accesses by each PE which is equal to Ny x M.

The computation model employed in this study, the
Large-Scale Data-Parallel (LSDP) algorithm, con-
sists of a large number of data-parallel computations.
With multiple PEs, it is assumed that each PE per-
forms a set of data-parallel computations beginning
and ending with a synchronization point, respectively.
Each data-parallel computation produces a partial re-
sult for a sgared datum.

All PEs are divided into groups and all groups have
the same number of PEs. Let n, denote the group
size, i.e., the number of PEs in a group. The shared
data are replicated such that a copy of replicated data
shared (which may be a subset of the entire shared
data) by a group of PEs is evenly distributed amon,
these PEs. All computations and associated share
data accesses are distributed over N, pairs of compu-
tation and communication bands. Within each com-
putation band, all PEs perform the same number of
data-parallel computations.

To make the cost for each computation band inde-
pendent of data replication for ease of analysis, all
partial results computed by a PE are temporarily
stored in the local memory of the PE. In the follow-
ing communication band, each PE sends those partial
results of which associated shared data are not in its
local memory to the PEs which hold the associated
shared data. Then, each PE modifies the shared data
in its local memory using the partial results at the
end of each communication band.

The overall time required for each communication
band, defined as updating time and denoted by Ty,
may be decomposeg into two components. One com-
ponent, denoted by T\,,, is the time for all PEs to
perform modifications using the partial results. The
other component, denoted by 7., is the time re-
quired for all PEs to send the partial results to all
other PEs in the same group.

If the shared data are replicated, before the syn-
chronization point at the end, the }modiﬁed) repli-
cated data in all PEs are tntegrated to ensure data
coherence. Also, the integrated shared data are droad-
cast to all PEs. Note that the size of shared data in-
volved in a broadcasting is n, times larger than that
in an integration.

The overall time required for integrating and broad-
casting shared data is defined as integration and
broadcasting time. Like the updating time, the in-
tegration and broadcasting time, denoted as Tj, is
composed of two parts. One part, denoted as T},
is the time for transmitting data and the other part,
denoted as Ty, is the time for performing the mod-
ifications on the replicated data. We use the inte-
%ation and broadcasting algorithms proposed in [2].

he time required by the integration and broadcast-
ing with Ny PEs is O((1 — 1/N;)M) using the inte-
gration and broadcasting algorithms [2].

The goal of this study 1s to minimize the data shar-
ing overhead, including updating time as well as in-
tegration and broadcasting time. It needs to be noted
that all time measurements used in the following dis-
cussions are normalized by the time to transfer one
datum between two adjacent PEs during integration
and broadcasting. Let T,, denote the time required
for one modification and T, the time required for

247

transferring one datum between two adjacent PEs in
a communication band.

3 Data Replication

In the following, we first discuss how the replicated
data should be allocated. Then, the optimal group
size is derived for the best type of allocation.

Due to the limited space, most of the propositions
will be given without proofs. Refer to [4] for the proofs.

3.1 Two Types of Data Allocation

Two t,)g)es of allocations may be considered for repli-
cated data, namely, aggregate and scatter, as i]ﬁls—
trated in Fig. 2 for a 2D mesh. If all PEs in each
group, represented in the same pattern in Fig. 2 form
a continuous region, it is called the aggregate type
allocation. If each group is further divided into su
groups of the same size and the corresponding sub-
groups of all groups form a cluster as shown in Fig. 2,
1t is called the scatter type allocation.

For a 2D mesh, let the group size be z x y where

> z and N is divisible by z and y. In this example
gFlg. 2), PEs are divided into 9 groups indicated by

different patterns, each group with 4 PEs.

With a uniform data access pattern, the size of each
packet of data, denoted as s, is equal to N, M/(Nyzy)
on a 2D mesh.

We have performed a detailed formal comparison
between the two allocations [4], which cannot be pre-
sented here due to the limited space. It has been
shown under our system and computation modelsthat
the aggregate type allocation is not worse than the
scatter type allocation.

3.2 T,, and Tj, with The Aggregate
Type Allocation on A Mesh

To derive the optimal T, for RS;, RS;, WS; and
WS, types of systems for the aggregate type alloca-
tion, we first compute the optimal 7,,, for the 1D case
and then extend the results to the 2D case. The gen-
eral procedure to prove the optimality of T, and T},
for each system is to first find out the lower bound
of the optimal Ty, and T}, respectively, and then
to show that these lower bounds are achievable by
designing a scheduling algorithm.

3.2.1 Optimal 7, for a linear array

Suppose that there are z PEs in a linear array. The
optimal T, is derived in Proposition 3.1.

Proposition 3.1 The optimal T,, on a linear ar-
ray is Bf(z? - 3/4]87'1,, where 3 is 1 and 2 for a
bi-directional and a uni-directional linear arrays, re-
spectively.

1D Updating Algorithm for a uniform DAP on a lin-
ear array

1. At step 0, po sends different packets of data to
all other PEs in the sequence of p;_1, p;—2, ...,
p1. The size of each packet is s. While the data

from po to p..1 are being sent, all other PEs
except pr.1 also send a packet of data to p,_;
in parallel.

. At step i, where i < [z/2], pi sends a dif-
ferent packet of data to each remaining PE in
the sequence of pr—1-i, Pre2—i, -.., Pi41. While
the data from p; to p,_1_; are being sent, all
pr,i < k < (z — 1—1), also send a packet of data
t0 pz-1-i in parallel.

This algorithm only describes the scheduling from left
to right. Data accesses from right to left may be
performed by using this algorithm but in a reversed
direction.

3.2.2 Optimal T,, for RS; and RS,

On a regular 2D mesh with z rows and y columns of
PEs and y > z, each datum is sent either horizontally
followed ﬁy vertically or vertically followed by hori-
zontally. Therefore, transferring data for updating on
a regular 2D mesh is basically composed of two data
transfers, each on linear arrays.

Proposition 3.2 The opltimal Ty, on a regular mesh
with ¢ x y PEs, is Bz[(y® — 1)/4)sTy, where y > =
and B 15 1 and 2 for an RSy and an RS systems,
respectively.

2D Updating Algorithm for a uniform DAP on a reg-
ular 2D mesh

1. Divide each packet of data into two subpackets,
namely, the first-half and the second-half sub-
packets, each with s/2 data.

Each row and column of PEs perform 1D Up-
dating Algorithm for a uniform DAP on a linear
array twice for the corresponding linear arrays.

e In the first phase, for all 1 and j, p;; com-
bines all first-half subpackets for all pax, a =
0,...,2—1and k # j, into a superpacket and
sends it to pir along the ith row. Also, p;;
combines all second-half subpackets for all
pes,b = 0,...,y — 1 and k # 4, into a su-
perpacket and sends it to pi; along the jth
column.

In the second phase, for all 7 and j, p;; takes
out the kth first-half subpackets of all su-
perpackets received from the ith row, puts
them in a new superpacket, and sends 1t to
pr; along the jth column. Also, p;; takes
out the kth second-half subpackets of all
superpackets received from the jth column,
puts them in a new superpacket, and sends
it to p;r along the ith row. The time re-
quired for shuffling subpackets is assumed
to be negligible.

3.2.3 Optimal 7, for a ring

As for a regular mesh, to derive the optimal 7., for a
wrapped-around mesh, we first derive that for a ring.
Consider a ring with z PEs. For sending data from p;

248

to pj, define lefi-distance as the number of links in the
left-path, {pi, P(i-14z)modz; -y Pj}, and define right-
distance as that in the right-patk, {p;, p(i+)mods -
pj}. To fully utilize the wrapped-around feature, each
packet is sent through the path of min{lefi-distance,
righi-distance}. If the left-distance is equal to the
right-distance for a packet, this packet is split into two
subpackets and eacﬁ of the lefi- and right-paths car-
ries one subpacket. Therefore, the maximal distance
between every send-receive pair of PEs is |2/2].

Proposition 3.3 The optimal Ty, on a ring is
B[(z* - 1)/4']sT,/2, where 8 is 1 and 2 for a bi-
directional and a uni-directional rings, respectively.

3.2.4 Optimal 7}, for WS; and WS,

Like for a regular mesh, for a rectangular wrapped-
around mesh with z rows and y columns of PEs and
y > z, transferring data is also composed of two data
transfers, each on rings.

Proposition 3.4 The optimal T,y on ¢ wrapped-
around mesh with z Xy PEs, is Bz[(y?* —1)/4]sT, /2
where y > z and B is 1 and 2 for anV[)g and an
WS, systems, respectively.

For comparison, in [3], the optimal 7}, has been

shown to be ©(p?/3) for a square wrapped-around
mesh with p x p PEs.

Although a group (a submesh) in a wrapped-
around 2D mesh is a regular mesh, the updating algbo-
rithm for a wrapped-around 2D mesh may be used by
each group due to the wrapped-around feature of the
whole mesh. Each submesh can actually be consid-
ered as a wrapped-around submesh by incorporating
the rule: each PE in a group, without loss of gener-
ality, communicates with |y/2] PEs to its right and
y — |y/2] — 1 PEs to its left on its row as well as
|=/2] PEs above it and y - []:;:/21‘)— 1 PEs below it on
its column. As a result, each submesh has the same
optimal T}, as if it were a wrapped-around submesh.

3.2.5 Optimal T, for RS; and RS,

For a regular 2D mesh, integration and broadcasting
are done through a ring communication pattern. It
is assumed that all corresponding PEs among groups
on a regular 2D mesh can form a ring.

As an example, Fig. 3 illustrates one of the rings
for integration. There are N%/(zy) PEs involved in
the integration in each ring. It is easy to see that
some links are shared by y rings, e.g., the central
link on the first row in Fig. 3. It means that the
data transferred in these y rings will pass through
this central link during integration. The effective size
of data passing through this central link in each ring
is (1—zy/N?)s [2], where s is the packet size which is
M/(2zy) for an RS, system and M/(zy) for an RS;
system. Therefore, the time required by the integra-
tion is y(1—zy/N?)sT;. For broadcasting, all PEs are
involved in the same broadcasting and the packet size
is M/2N? and M/N? for an RS, and an RS system,
respectively. As a consequence, by using the Linear

integration and broadcasting al%orithm, the optimal
%:1, normalized by M for a regular mesh, denoted as
Iz, 18

Tie, =50 - 2+ 50- 50 @

where § = 1 for an RS; system, § = 2 for an RS,
system.

3.2.6 Optimal Tr, for WS, and WS,

For a wrapped-around 2D mesh, a ring pattern may
be used for integration and broadcasting in each row
and column. To fully utilize the wrapped-around char-
acteristic of WS, and WS, systems, during integra-
tion, the data to be integrated are divided into two
parts with sizes of s;5 and sys satisfying s; + s, = 1,
where s = M/ lS::y). While one part is integrated ver-
tically followed by horizontally, the other part may
be integrated horizontally followed by vertically. Sim-
ilarly, during broadcasting, each packet is divided into
two parts of the same size, i.e., M/2N?. For a W S,
system, each part may be further divided into two
subparts of the same size, which are sent in two op-
posite directions of a ring. Then, normalized by M,

5 3
T = max{G20-5) 520 - 1)
Bs1 ¥, Bs2 z
s 1

Proposition 3.5 T, for a wrapped-around 2D mesh
is minimized when (s1,82) = (811, 521), where

s = y(N - y)
. y(N —y) +z(N -2)
z(N —z)

o2 9N —y) + z(N — 7)

Therefore, the optimal 77, normalized by M for a
wrapped-around mesh with a group size of = x y, de-
noted as Ty, is

A= F)+ -)+ 50—) €525
A H) + 1= F)+ 50—) S <5,

(2)
where § = 1 for a WS, system and 8 = 2 for a WS,

system.

33 O tilinal Data Replication on A
es

In this section, we would like to determine the optimal
group size for data replication with a uniform data
access pattern, using the aggregate type allocation.
Let T, denote the overall data sharing time, nor-
malized by M and the time for transferring one datum

249

between adjacent PEs, for a regular 2D mesh with
a group size of z x qy Recall that the overall data
sharu;g time is N;,g1 wm + Tuz) + Tryn + Tz, where

uzr; Iz

Tum, Trm and have been derived in the pre-
vious sections. Then,
2
v -1, N, T, 1 1
T" = x atm = 719
Bl=——]——y + Tz, + NaT, +(:—y 73)Tm

where # = 1 for an RS, system, 8 = 2 for an RS;
system, and Ty, _ as defined in Eq. (1). Similarly, let
T,, denote the overall normalized data sharing time
for a wrapped-around 2D mesh with a group size of
z Xy,

y2 — 1, N.T:

1 1
Tw =4[3]————y +T!zw+NaTm+(;;—F;)Tm

where 8 = 1 for a WS, fiystem, B = 2 for a WS,
system and Ty, as defined in Eq. (2).

3.3.1 The Optimal Group Size on A Mesh

Pl‘OfOSitiOll 3.6 The optimal group size for a 2D
mesh satisfies ¢ = y.

proof:
It can be shown that 0T, /0z and 87, /dz are all

negative. Therefore, the optimal group size should
satisfy ¢ = y since z < y.

Q.E.D.

When z = y, all of T, and Ty, reduce to

z2-1. N, T, 1,1 z 1
1 1

+ NaTm + (? - 'N—Q')Tm (3)
where «, is 1, 2, 0.5 and 1 for an RS,, an RS;,a WS,
and a WS, systems, respectively. Note that Eq. (3)1
is also applicable when ¢ = y = N. The optimal
group size, Ty, for T, may be determined by solv-
ing 8T,/0z = 0. Suppose that T, is minimized at z,
and z, when z is even and odd, respectively. With-
out giving a lengthy derivation, we have the following
proposition.

Proposition 3.7 Let zep = [2.], o = (2], Ton =
[z,] and 2o = |z,], where

_ 2N 4 (2T 3
Aeven 20 Te = (m) (('—a— + reuen)
2T, H
+ (_7"— - eren) 3)
a
Acven <0 Te=2
2N? 1 (/2T $
Boaa2 0 2=y 3" ((T +Tous)
2T, 3
+ (—a - Fodd))
Dodd < 0 To=1

and

Acven = 54N¢N2T3Tm2 - azNz - 108Tm2

Doga = 432(N’N,T; — 2)Tw® + o> N* (N T: - 2)°.
r _ 4Tn? 2N?

svem T a? 21(N?N,T; - 2)

4T, 2 N2(N,T, - 2)3
Loss \/ ()

o? 108(N?N,T, - 2)

The optimal group size, z,p1, for data replication
with a uniform data access pattern would be z,,; €
{Zeh, Tel, Toh,Zot} for which T, is minimal.

From Proposition 3.7, we can see that for a smaller
«, the optimal group size tends to be larger. The
reason is that as a decreases, Ty, becomes more in-
fluential in determining the optimal group size. Since
Tt decreases as the group size increases, a larger
group size would be preferred for a smaller o.

4 Conclusions

In this paper, we have presented how to optimally al-
locate the replicated data and what the best group
sizes are for tﬂe Large-Scale Data-Parallel algorithms
on a mesh with a uniform data access pattern. Also,
scheduling algorithms which specify data access se-
quences of PEs for the minimal data sharing time
have been developed.

The significance of these results is that given an
LSDP algorithm, one can easily determine the opti-
mal data replication and allocation, and how to con-
trol the access sequence, so that the data sharing over-
head is minimized when the data access pattern is
uniform. Moreover, it may serve as a guideline for
parallel compilers to determine the best data distri-
bution, for example, in parallelizing a sparse matrix
computation.

References

{1] M. Gupta and P. Banerjee, “Demonstration of
automatic data partitioning techniques for par-
allelizing compiliers on multicomputers,” IFEE
Trans. Parallel Distributed Syst., vol. 3, pp. 179-
193, Mar. 1992.

[2] C. M. Chen and S.-Y. Lee, “Parallelization of
the EM algorithm for 3D PET image recon-
struction: Performance estimation and analy-
sis,” in Proc. 1991 Int. Conf. Parallel Processing,
vol. III, pp. 175182, Aug. 1991.

[3] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and
Distributed Computation. Prentice-Hall, 1989.

[4 C. M. Chen, On Miniminzing Data Sharing
Overhead for Large-Scale Data-Parallel Algo-
rithms: Replication and Allocation of Shared
Data. PhD thesis, Cornell University, Ithaca,
New York, 1993.

vl

00 /!

vly) 03

1 vl v
hl é hi é hi ‘
Wy, 01 02 03 03
vll vl11 vl12 le
i hl @ghllz !@ iy é
hl © »)
vi, iy, vl vi,,
hl hl hi
hi
20
U U

Figure 1: An illustration of the System Model

A Group A Cluster

250

@O

D

b S b &
5 ¢

-‘g

Aggregate Type ScatterType

Figure 2: Illustrations of the aggregate and the scatter
type allocations on a mesh

y a group
-

N PEs

SIS P U e -
e e w e wmj - -
A LR T o B

a ring for integration

Figure 3: A ring for integration and broadcasting
when N/y is even

