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Abstract 
In this paper, we  show how t o  minimize data shar- 

ang overhead required in most  pamllel a1 oriihms, es- 
pecially in Large-scale Data-Parallel &SDP) algo- 
n thms,  on  a 2D mesh. T w o  s ecific issues are ad- 
dressed in this study. O n e  is w!at the optimal group 
s u e  as, i .e . ,  how many PES should share a copy of 
shared data. The  other is where $he replicated data 
should be allocated. 

1 Introduction 
Data sharing is inevitable in most arallel algorithms. 
For many problems, especially, E r  those problems 
with rich data parallelism, the overhead due to data 
sharing, i.e., data movement or data access contention 
[l], is one of the major factors degrading the perfor- 
mance of a parallel algorithm. 

In this study, we investigate how to minimize 
the overhead caused by data sharin for a class of 
problems modeled as the Large-Scak Data-Pamllel  

algorithms on a wrapped-around and a re - $:?:h meshes. An LSDP algorithm has the f j -  
lowing features: (i) it has rich data-parallellsm but 
without exclusive task and data partitioning, which 
rtieans that some data need to be bhared by multiple 
PES,  (ii) a great amount of shared data is involved 
(therefore, communicatioii overhead is high), (hi) a 
s nchronization point i.; required before any use of the 
dared data. This computation model may be found 
as the only or one of the: major algorithmic structures 
i n  many applications, e.g., in an E:M reconstruction 
algorithm for 3D Positron Emission Tomography 2 

algorithm is attempted by optimiziiig data access pat- 
terns in this study. A data acces>i pattern specifies 
when and where to access shared data for each PE. 
Once all tasks have been assigned to PES, the data 
sliaring overhead is mainly determined by the data 
a1 cess pattern In this paper, a uniform data access 
p tttqern is assumed, 1.e , every PE has the same num- 
ticr of accesses to each of all other PES. Our ap roach 
is to optimally replicate the shared data and aiocate 
the replicated data. We also develop scheduling al- 
gorithms specifying shared data access sequences to 

Minimization of data sharing overhead for an LS Ab 
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achieve the minimal (optimal) communication over- 
head. 

Data replication is a widely used technique to en- 
hance data locality at the expense of integrating and 
broadcasting replicated data. However, optimizing 
data replication has not been attempted in most pre- 
vious works. 

2 Models 
2.1 System Model 
The system topology to be considered in this paper 
is a wrapped-around and a regular (non-wrapped- 
around) 2D meshes with N x N PES. Refer to [4] 
for the results on a hypercube. 

A system is bi-directional if its links @e-, the con- 
nections between adjacent PES) are capable of realiz- 
ing communication in both directions simultaneously. 
If each link of a system can perform communication 
in both directions but only one direction at a time, 
this system is considered as a uni-directional system. 
We assume that all links can perform communication 
independent1 . 

In this stud;., analysis on a 2D mesh is based on the 
analysis on a linear array or a ring. For convenience, 
we use WS,, i = 1,2, to denote unr- and bi-directional 
wrapped-around 2D meshes, where the value of i indi- 
cates the number of directions realizable at a time by 
a link. Similarly, we use RSi, i = 1,2,  to denote uni- 
and bi-directzonal regular 2D meshes, res ectively. 

Throughout this paper, we use the folfbwing con- 
vention to label PES and links. For a rin or a lin- 
ear array with m PES, pi denotes the ith f E ,  where 
0 5 i 5 (m - 1) and l i  denotes the left link of p i ,  
where 0 < i 5 (m - 1 . For a wra ped-around or 
a regular-2D mesh with m rows ani n columns of 
PES, pi, denotes the PE at the ith row and the j t h  
column, hl,, denotes the left (horizontal) link of p i j ,  
and vlij denotes the top (vertical) link of pi,, where 
0 5 i 5 ( m  - l), 0 5 j 5 (n - 1). As an example, link 
labelin of a 4 x 3 ( m  = 4 and n = 3) wrapped-around 
2D me& is illustrated in Fig. 1, where the circle with 
a number ij inside represents pi,. 

2.2 Computation Model 
Let M denote the total number of shared data, N,  
the average number of accesses to each shared datum 
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for each PE and SM the total number of shared data 
accesses by each PE which is equal to N, x M. 

The computation model employed in this study, the 
Large-Scale Data-Parallel (LSDP) algorithm, con- 
sists of a lar e number of data-parallel com utations. 
With multiJe PES, it is assumed that eaci PE per- 
forms a set of dateparallel computations beginning 
and ending with a synchronization point, respectively. 
Each data, arallel computation produces a partial m- 
sult for a siared datum. 

All PES are divided into groups and all groups have 
the same number of PES. Let ng denote the group 
size, i.e., the number of PES in a group. The shared 
data are replicated such that a copy of replicated data 
shared (which may be a subset of the entire shared 
data) by a group of PES is evenly distributed amon 
these PES. All computations and associated sharef 
data accesses are distributed over Nb pairs of compu- 
tation and communication bands. Within each com- 
putation band, all PES perform the same number of 
data-parallel computations. 

To make the cost for each computatton band inde- 
pendent of data replication for ease of analysis, all 
partial results computed by a PE are temporarily 
stored in the local memory of the PE. In the follow- 
ing communication band, each PE sends those partial 
results of which associated shared data are not in its 
local memory to the PES which hold the associated 
shared data. Then, each PE modifies the shared data 
in its local memory using the partial results at the 
end of each communication band. 

The overall time required for each communication 
band defined as U dating t ime and denoted by Tu, 
may be decomposei into two components. One com- 
ponent, denoted by Tu,, is the tune for all PES to 
perform modifications using the artial results. The 
other component, denoted by &, is the time re- 
quired for all PES to send the partial results to all 
other PES in the same group. 

If the shared data are replicated 
chronization point at the end, the 
cated data in all PES are integrate 
coherence. Also, the integrated shared data are broad- 
cast to all PES. Note that the size of shared data in- 
volved in a broadcasting is ng times larger than that 
in an integration. 

The overall time required for integrating and broad- 
casting shared data is defined as integration and 
broadcasting t ime .  Like the updating time, the in- 
tegration and broadcastin time, denoted as Ti, is 
composed of two parts. &e part, denoted as TlX,  
is the time for transmitting data and the other part, 
denoted as T I m ,  is the time for performing the mod- 
ifications on the replicated data. We use the inte- 

ation and broadcasting algorithms pro osed in [2]. 
!he  time required by the inte ation an8 broadcast- 
ing with NI PES is O((1 - l f i 1 ) M )  using the inte- 
gration and broadcastin4 algorithms [2]. 

The goal of this study is to minimize the data shar- 
ing overhead, including updating t ime as well as in- 
tegration and broadcasting time. It needs to be noted 
that all t ime measurements used in the following dzs- 
cussions are normalized by the l ime lo transfer one 
datum between two adjacent PES during integration 
and broadcasting. Let Tm denote the t m e  required 
for one modification and T, the time required fur 

transferring one datum between two adjacent PES in 
a communication band. 

3 Data Replication 
In the following, we first discuss how the replicated 
data should be allocated. Then, the optimal group 
size is derived for the best type of allocation. 

Due t o  the limited space, most  of the propositions 
will be given without proofs. Refer to [4] for the proofs. 

3.1 Two Types of Data Allocation 
Two ty es of allocations may be considered for re li- 
cated &a, namely, aggregate and scat ter ,  as il&s- 
trated in Fig. 2 for a 2D mesh. If all PES in each 
group, represented in the same pattern in Fig. 2 form 
a continuous region, it is called the aggregate ty e 
allocation. If each group is further divided into sui-  
groups of the same size and the correspondin sub- 
groups of all groups form a cluster as shown in $5,. 2, 
it is called the scatter type allocation. 

We have performed a detailed formal comparison 
between the two allocations [4], which cannot be pre- 
sented here due to the limited space. It has been 
shown under our system and computation models that 
the aggregate type allocation is not worse than the 
scatter type allocation. 

3.2 Tu, and TI, with The Aggregate 
Type Allocation on A Mesh 

To derive the optimal Tu, for RS1, RS2, WS1 and 
WS2 types of systems for the aggregate type alloca- 
tion, we first compute the optimal Tu, for the 1D case 
and then extend the results to the 2D case. The gen- 
eral procedure to prove the optimality of Tu, and TI, 
for each system is to first find out the lower bound 
of the optimal Tux and TI,, respectively, and then 
to show that these lower bounds are achievable by 
designing a scheduling algorithm. 

3.2.1 Optimal Tu, for a linear array 
Suppose that there are 2 PES in a linear array. The 
optimal Tux is derived in Proposition 3.1. 

Proposition 3.1 The opiimal Tu, on a linear ar- 
ray  is /3r(z2 - 9/41sT,, where /3 is  1 and 2 for a 
bi-direcdronal an a uni-directional linear arrays, re- 
spectively. 

1D Updating Algorithm for a uniform DAP on a lin- 
ear array 

1. At step 0, po sends different packets of data to 
all other PES in the sequence of p,-1, p z - 2 ,  ..., 
p1.  The size of each packet is s. While the data 
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from PO to pz- l  are being sent, all other PES 
except , - I  also send a packet of data to p,-1 
in pardel. 

2. At step i ,  where i < [2/21, pi sends a dif- 
ferent packet of data to  each remaining PE in 
the sequence of p x - l - i ,  p , -2- i ,  ..., pi+l. While 
the data from pi  to ~ ~ - 1 - i  are being sent, all 
PI, i < IC < (z - 1 - i), also send a packet of data 
to ~ ~ - 1 - i  in parallel. 

This algorithm only describes the schedulin from left 
to right. Data accesses from right to lek may be 
performed by using this algorithm but in a reversed 
direction. 

3.2.2 
On a re ular 2D mesh with z rows and y columns of 
PES a n f  2 z, each datum is sent either horizontally 
followed gy vertically or vertically followed by hori- 
zontally. Therefore, transferring data for updatin on 
a regular 2D mesh is basically composed of two fata 
transfers, each on linear arrays. 

Proposition 3.2 The opttmal TuT on a regular mesh 
wrth z x y PES, 2s Pzr(y2 - 1)/4 ls”Tz, where y 2 c 
and p is 1 and 2 f o r  an RS2 an an RSI systems, 
respectively. 

ZD Updating Algorathm f o r  a uniform D A P  on a reg- 
ular 8 0  mesh 

1. Divide each packet of data into two subpackets, 
namely, the first-half and the second-half sub- 
packets, each with s / 2  data. 

2 .  Each row and colurnn of PES perform 1 D  Up- 
datmg Algorithm for a uniform D A P  on a h e a r  
a w a y  twice for the corresponding linear arrays. 

0 In the first phase, for all i and j, pij com- 
bines all first-half subpackets for all p o k ,  a = 
0, ..., 2 - 1  and L j ,  into asuperpacket and 

combines all second-half sub ackets for all 
P k b , b  = 0, . . . , y  - 1 ancl k pi, into a su- 
perpacket and sends it to P k ,  along the j t h  
colum. 
In the second phase, for all i and j ,  pi, takes 
out the kth first-half subpackets of all su- 
perpackets received from the ith row, puts 
them in a new superpacket, and sends it to 
pk,  along the j t h  column, Also, p,, takes 
out the kth second-half subpackets of all 
superpackets received frlom the j t h  column, 
puts them in a new superpacket, and sends 
it to pik along the ith row. The time re- 
quired for shuffling subpackets is assumed 
to be negligible. 

Optimal Tu, for RS1 and RS2 

sends it to ptk aong f the ith row. Aha, pi, 

3.2.3 
A s  for a regular mesh, to derive the optimal Tu, for a 
wrapped-around mesh, we first derive that for a ring. 
Consider a ring with z PES. For sending data from pi 

Optimal T,,, €or a ring 

to p j  , define left-distance as the number of links in the 
left-path, {Pi, P(i- l+r)modr,  ..., P j ) ,  and define right- 
distance as that in the right-path, { p i ,  P(i+l)modz,  ..., 
p j } .  To fully utilize the wrapped-around feature, each 
packet is sent through the path of min{leff-dis tance,  
right-distance}.  If the left-distance is e ual to the 
ri ht-distance for a acket, this packet is s&t into two 
sutpackets and ea$ of the left- and right- aths car- 
r i a  one subpacket. Therefore, the maximi$ distance 
between every send-receive pair of PES is lz/2]. 

Proposition 3.3 The optimal Tu, on a ring is  
Pr(z2 .- y 4 1  sT,/2, where p i s  1 and 2 f o r  a bi- 
drrectrona and a una-directional rings, respectively. 

3.2.4 Optimal Tu, for WS1 and WS2 
Like for a regular mesh, for a rectangular wrapped- 
around mesh with z rows and y columns of PES and 
y 2 z, transferring data is also composed of two data 
transfers, each on rings. 

Proposition 3.4 The optimal Tu, on a wmpped- 
around mesh with c x y PES, is pzr(y2 - 1’ 4]sTx/2, 
where y 2 x and /3 is 1 and 2 for an JL 2 and an 
WS1 systems, respectively. 

For comparison, in [3], the optimal Tu, has been 
shown to be Q(p2I3) for a square wrapped-around 
mesh with p x p PES. 

Althou h a group (a submesh) in a wrapped- 
around 2 8  mesh is a regular mesh, the updating a o- 

each group due to the wrapped-around feature of the 
whole mesh. Each submesh can actually be consid- 
ered as a wrapped-around submesh by incorporating 
the rule: each PE in a roup, without loes of gener- 
ality, communicates witf Ly/2J PES to its right and 
y - Ly/21 - 1 PES to its left on its row m well as 
12/21 PES above it and y -  2/2 1 PES below it on 

optimal Tu, as if it were a wrapped-around submesh. 

rithm for a wrapped-around 2D mesh may be used l% y 

its column. As a result, eac h su k- mesh hw the same 

3.2.5 Optimal Trz for RS1 and RS2 
For a regular 2D mesh, integration and broadcasting 
are done through a ring communication pattern. It 
is assumed that all corresponding PES among groups 
on a regular 2D mesh can form a ring. 

As an example, Fig. 3 illustrates one of the rings 
for integration. There are N2/(zy) PES involved in 
the inte ration in each ring. It is easy to see that 
some li&s are shared by y rings, e.g., the central 
link on the first row in Fig. 3. It means that the 
data transferred in these y rings will pass through 
this central link during integration. The effective size 
of data passing through this central link in each ring 
is (1 - zy/N2)s [2], where s is the packet size which is 
M/(2zy) for an RS2 system and M/(zy) for an RS1 
system. Therefore, the time required by the integra- 
tion is y(l-zy/N2)sT,. For broadcasting, all PES are 
involved in the same broadcasting and the packet size 
is M / 2 N 2  and M / N 2  for an RS2 and an RS1 system, 
respectively. As a consequence, by using the Linear 
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integration and broadcasting a1 orithm, the optimal 
TI, normalized by M for a regutar mesh, denoted as 
TI,,, 18 

between adjacent PES, for a re ular 2D mesh with 
a group size of z x . Recall tfat the overall data 
sharin time is Nb E m  + Tux) + TI,,, + TI,, where 
Turn, 28,,, Tim and io have been derived in the pre- !r 

P 1  zY Y 1 vious sections. Then, 
2 x  TI,, = --(-(I - F))  + 5 ( 1  - (1) 

1 1  y2 - 1 NaTz 
where /? = 1 for an RS2 system, p = 2 for an RS1 Tr = f l r T 1 r  i- + NaTm + (- zu - -ITm Na 
system. 

3.2.6 Optimal TI, for WSI and WS2 
For a wrapped-around 2D mesh, a ring pattern may 
be used for integration and broadcasting in each row 
and column. To fully utilize the wmpped-around c,har- 
acteristic of WS2 and WS1 systems, during integra- 
tion, the data to be inte rated are divided into two 
parts with sizes of s1s an8 92s satisfying s1 + s2 = 1, 
where s = M/ zy). While one part is integrated ver- 

be inte rated horizontally followed by vertically. Sim- 
ilarly, &ring broadcasting, each packet is divided into 
two parts of the same size, i.e., M / 2 N 2 .  For a WS2 
system, each part may be further divided into two 
subparts of the same size, which are sent in two op- 
posite directions of a ring. Then, normalized by M ,  

tically followe 6 by horizontally, the other part may 

Proposition 3.5 TI, for a wrapped-around 2D mesh 
is minimized when (SI, s2) = ( ~ 1 1 ,  szl), where 

x ( N  - X )  

Y ( N  - Y )  + 4 N  - x) s21 = 

Therefore, the optimal TI= normalized by M for a 
wrap ed-around mesh with a group size of x x y, de- 
noteaas TI,,, is 

%(+(I - R) + +(I - 6))  + + ( I  - +) if SI 2 ~2 
& l  ( ~ ( l - ~ ) + ~ ( l - - ~ ) ) + ~ ~ ~ - ~ )  i fs1 <sZ 

(2) 
where p = 1 for a WS2 system and 4 = 2 for a WS1 
system. 

3.3 0 timal Data Replication on A 
d s h  

In this section, we would like to determine the optimal 
group size for data re lication with a uniform data 
amess pattern, using tEe a gregate type allocation. 

Let T, denote the overay1 data sharing time, nor- 
malized by M and the time for transferring one datum 

where P = 1 for an RS2 s stem, P = 2 for an R S 1  
system, and TI,, as definedrin E . (1). Similarly, let 
T, denote the overall normalize1 data sharing time 
for a wrapped-around 2D mesh with a group size of 
x x Y, 

where P = 1 for a WS2 s stem, P = 2 for a ws1 
system and TI,, as definedfin Eq. (2). 

3.3.1 

Pro osition 3.6 The optimal group site for a 2 0  
m e s f s a t i s f i e s  x = y. 

The Optimal Group Size on A Mesh 

proof: 
It can be shown that a T r / d x  and aT,/dx are all 

negative. Therefore, the optimal group size should 
satisfy x = y since x _< y. 

Q.E.D. 

When = y, all of T, and T, reduce to 

T O  

(3) 

where a, is 1, 2,0.5 and 1 for an RS2, an RS1, a WS2 

is also applicable when x = y = N .  The optima i and a WS1 systems, respectively. Note that Eq. (3 

group size, x o p t ,  for To may be determined by solv- 
ing dTo/dx = 0. Suppose that To is minimized at x, 
and to  when 2 is even and odd, respectively. With- 
out giving a lengthy derivation, we have the following 
proposition. 
Proposition 3.7 Let X e h  = rxel, xel = [x,J, d o h  = 
rzol and x,? = LcoJ, where 
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54NaN2T,Tm2 - a 2 N 2  - 108Tm2 
432(N2NaT= - 2)Tm2 + a2N2(NaT= - 2 ) 3 .  

4Tm2 2N2 /? - 27( N 2  N,T, - 2) 

N2(NaT,  - 2)3 
1 0 8 ( N 2 N a T z q  

The optimal group size, xopt, for data replication 
with a uniform data access pattern would be xOpt E 
{ L T , ~  , x e l ,  s o h ,  x , ~ }  for which To is minimal. 

From Proposition 3.7, we can see that for a smaller 
a, the optimal group size tends to be larger. The 
reason is that as a decreases, TI, becomes more in- 
fluential in determining the optimal group size. Since 
TI, decreases as the group size increases, a larger 
group size would be preferred for a smaller a. 

4 Conclusions 
In this paper, we have presented how to optimally al- 
locate the re licated data and what the best group 
sizes are for t!e Large-scale Data-Parallel algorithms 
on a mesh with a uniform data access pattern. Also, 
scheduling a1 orithms which specify data access se- 
quences of P%s for the minimal data sharing time 
have been developed. 

The significance of these results is that given an 
LSDP algorithm, one can easily determine the opti- 
mal data replication and allocation, and how to con- 
trol the access sequence, so that the data sharing over- 
head is minimized when the data access pattern is 
uniform. Moreover, it may serve as a guideline for 
parallel compilers to determine the best data distri- 
bution, for example, in parallelizing a sparse matrix 
computation. 
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Figure 1: An illustration of the System Model 
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Figure 2: Illustrations of the aggregate and the scatter 
type allocations on a mesh 
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Figure 3: A ring for integration and broadcasting 
when N/y is even 
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