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In this thesis, a discrete Markov chain model for analyzing memory interference in 

multiprocessors, is presented. Each memory module is either hot or favorite or neither 

of these two. Since the state space of such a Markov model for an N x M system, 

where N and M are respectively the number of processors and memory modules, 

becomes exorbitant for large N and M, we restrict our analytical solutions to 2 x M 

and N x 2 systems. The general case is analyzed using simulation. In all cases, the 

effective memory bandwidth, mean memory-queue-length and mean-waiting-time for 

a memory request are derived. A heuristic is presented, using a probabilistic model, 

which finds the number of hot modules beyond which there is hardly any bandwidth 

change. 
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CHAPTER 1 

INTRODUCTION 

Processor memory interconnection in shared memory multiprocessor systems plays 

a vital role in characterizing the system performance. A shared memory multipro-

cessor consists of a set of processors {P0, Pi, ...P;v_i} and a set of memory modules 

{Mo, MI, ...MM-I}- The processor- memory communications are established either 

through a set of switches (e.g. crossbar or multistage interconnection network) or 

through global shared (multi) bus. In this work, both types of connections between 

the processors and memories will be called under the generic name interconnection 

network. A logical diagram of such a shared memory system is shown in Figure 1.1. 

INTERCONNECTION MECHANISM 

M, M M . M 
M - l 

SHARED MEMORY 

Figure 1.1: Logical diagram of Processor Memory Interconnection 

The interconnection mechanism should allow efficient resource sharing among the 

processors. Conflict arises when more than one processor attempt to access memory 

modules using the same path or switching module in the network. The primary goal of 

any interconnection network is to minimize this conflict, leading to higher acceptance 

rate of memory requests by the processors. The effective memory bandwidth, BW, 

1 



is defined as the average number of busy memory modules in each memory cycle. 

Of course, the BW is also dependent on the request rate of the processors. Other 

performance indices of such a network include processor and memory utilization, 

expected queue length, fault tolerence, cost etc. 

At one end of the bandwidth spectrum are the single shared bus systems. Although 

they provide extremely low transfer rates and minimal fault tolerence, they are very 

cost effective. However the scalability of such a system is poor in the sense that the 

number of processors that can be supported on a single bus is rather limited without 

degrading the performance. At the other extreme are the cross-bar systems which 

provide complete connection among processor-memory pairs. But the total cost of 

the cross-bar switches increases rapidly as the number of processor and/or memory 

modules increase. Multistage interconnection networks (MINs) have been developed 

as a resort to trade-off between the high BW and fault-tolerence of crossbar switches 

and the low cost of single bus systems. MINs provide a unique path between each 

processor-memory pair, reducing the number of switching modules considerably than 

a cross-bar system connecting the same number of processors and memories. Also a 

natural extension of the single bus system, with the same goal, is the multiple bus 

interconnection networks, called MBIN. For details on MBINs, refer to [19,20,21,22]. 

In a processor-memory system, contention may occur either in the interconnection 

mechanism (e.g. bus or MIN switches) itself or while accessing an actual memory 

module. By some arbitration policy (usually random), one of the conflicting requests 

is granted, while others are either rejected (the case of a non-buffered system), or 

queued for future processing (the case of a buffered system). 

In the past two decades, the performance of processor-memory interconnections 

has been studied widely using various analytical models, some of which are exact 

[1,2,4,5,7] while others are approximate [3,8,9]. An exact analysis assumes that a 

rejected memory request from a processor is not discarded but is queued up until it 

is serviced by the requested memory module (buffered systems). The exact models 



use Petri nets [25], Markov chains [1,2], queuing networks [22] and so on. An approx-

imate analysis, on the other hand, assumes that the rejected requests are discarded 

(non-buffered systems). This suggests using probabilistic approach to analyze the 

performance of the system [3,8]. 

The memory reference patterns of the processors can be either uniform or non-

uniform. Memory reference pattern is said to be uniform if all the processors have 

the same probability of accessing any memory module. This is a valid assumption 

if address interleaving on the low order address bits are used. Without the address 

interleaving, however, the memory reference pattern will be non-uniform in most 

cases and will depend on the locality of reference. 

1.1. Non-Uniform Memory Access Patterns 

The non-uniform memory access patterns can be either intra-cycle or inter-cycle. In 

the intra-cycle case, the distribution of the memory requests by the processors in 

a particular memory cycle is not uniform. There are four types of intra-class non-

uniformity. In the first type, each processor may have a favorite memory module(s) 

which it accesses more frequently than the others [8]. This is quite logical considering 

the spatial locality principle of memory references where address space is sequential 

in each memory module. 

In the second type, all the processors might access a particular memory module 

or a class of memory modules more frequently than the others. This might capture 

the effect of the processors sharing a common variable or a sysnchronization primitive 

(e.g. barrier synchronization). The particular memory module or the class of memory 

modules accessed more frequently is called hot spot(s) [16]. 

The third type of non-uniformity capturing the temporal locality principle of mem-

ory reference is defined as follows [2]. If the nth request of a processor is for memory 

module M,-, then the (n + 1 )th request will be for module Mi with probability a and 

for module Mj (where j ^ i) with probability , where M is the total number of 



memory modules in the system. This assumes that A > JJ, i.e. the probability that 

the next memory request of a processor is to the same memory module is greater than 

the probability in case of uniform memory reference pattern and also greater than 

the probability that the next reference is to a different memory module. If a = 

the model reduces to the uniform reference model as a special case. 

A fourth type of non-uniformity, also called spatial non-uniformity, is defined 

when the events that a particular memory module has at least one request are not 

independent [20]. 

The inter-cycle non-uniformity of memory references occurs when the event that 

a processor requests a particular memory module is dependent on whether the same 

processor's memory request is satisfied in the previous cycle. If a processor's request 

to a particular memory module cannot be satisfied in the current memory cycle due 

to the fact that the particular module is already busy, then in the next cycle, the 

same request might be placed to the same memory module or it might be randomly 

distributed to any of the other available modules. In the former case we have to 

associate a buffer with each memory module [1,2,4], to store the rejected requests for 

the next cycle, or there should be some mechanism (sort of 'feedback') to remember 

the destinations of the rejected memory references and again place it to the same 

destination in the next cycle [7]. 

If a memory module is classified as any one of the following types, H (hot), NH 

(non-hot), F (favorite) and NF (non-favorite), then the various combinations of mem-

ory modules is given as {H , NH} x {F, NF}, which when expanded gives the following 

set of combinations of memory modules: {(H, F), (H, NF), (NH, F), (NH, NF)}. 

The system where the memory modules are of the type (NH, N F ) is analyzed in 

[1,4,5,6]. The concept of hot memory modules is introduced by Pfister and Norton 

[16]. In the context of analyzing contention in the multistage interconnection network, 

they proposed a scheme to avoid tree saturation, a phenomenon occurring in systems 

consisting of modules of type (H, NF). The analysis of systems consisting of modules 



of type (NH, F) is carried out in [2,8]. In this work, we will deal with the problem of 

contention in accessing the shared memory modules, after the request has successfully 

passed through the interconnection mechanism. See the taxonomy given at the end 

of Chapter 2 for a glimpse of the related work in this area. 

1.2. Contribution of this Thesis 

We carry out an analysis of an N x M system with memory modules of type (H , NF) 

and (H,F) in a unified manner. Our unified scheme gives analytic solutions for 

bandwidth, mean queue length and mean waiting time for a memory request by the 

processors, for 2 x M and N x 2 system. As our model is restricted to systems 

having only 2 processors in all cases excepting the N x 2 system, the number of hot 

memory modules is limited to 1 in the analysis of systems with memory modules of 

type ( H , F ) . For N x 2 system, one ( H , N F ) and another ( N H , N F ) type memory 

modules are considered. The reason for not choosing favorite memory in the later 

case is that, we are not able to distinguish between a hot and a favorite memory in 

case of only one memory module. The general case of N x M system is analyzed 

using simulation studies, and the results are compared to the analytic solutions in 

the special cases. 

Since it is expected that memory requests will accumulate in the queue of a hot 

memory module leading to deterioration of memory bandwidth, multiple hot-spots 

(K many) in the multiprocessor system should lead to a definite improvement in 

the system performance. But it is also shown that the bandwidth (BW) of the 

system stops improving significantly if the number of hot memory modules is increased 

beyond a certain value, less than min(N, M). In this work, we also present a heuristic 

to find this upper bound on K. The heuristic, based on an approximate probabilistic 

model, actually estimates an asymptotic bandwidth of the system. 



1.3. Chapter summary 

Chapter 2 gives the glimpses of some of the existing work in this area. Our Markov 

model for buffered memory multiprocessors is described in Chapter 3. A step by 

step approach is taken for the development of the model, and each step is precisely 

described in various subsections. Chapter 4 presents various simulation results for 

the general case of the multiprocessor architecture. An approximate probabilistic 

analysis for the general case of the proposed model is given in Chapter 5, which 

leads to a heuristic for estimating the saturation value of K beyond which the system 

bandwidth does not show any significant improvement. Chapter 6 finally concludes 

this thesis. 



CHAPTER 2 

PREVIOUS WORK 

Processor memory interconnection networks can be broadly classified into two types 

depending on the connection mechanism. In one type of networks commonly known as 

Multistage Interconnection Networks, the interconnection is through a set of switches. 

In the other type, the interconnection mechanism is by a single or multiple shared bus. 

We discuss some of the important previous works in both types of interconnection 

networks. 

PI P2 

o o 
P3 

0 o 
P5 

o 

Ml M2 M3 M4 M5 

PI P2 P3 P4 P5 

o o o o o 

Ml M2 M3 M4 M5 

Example of MBINs : Single bus and Multiple bus 

Figure 2.1: Examples of MIN and MBINs 

2.1. Multistage Interconnection Networks 

In this section we discuss multistage interconnection networks, popularly called MINs. 

A set of processors are logically connected to a set of memory modules through an 

interconnection network which is composed of high-speed switches. This is unlike 

7 
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general interconnection networks studied for distributed systems, which have physical 

processor(s) sitting in each node. Each switching module may or may not have buffers 

to store the memory requests rejected during the current cycle. In the former case 

the memory requests in one cycle is independent of the requests in the previous cycle, 

while it is not so in case of buffered models of MIN. This latter model is, of course, 

more realistic. Again, within each memory cycle, the requests made by the processors 

may be independent which we call uniform reference model, or each processor may 

have a locality of reference which makes the memory requests non-uniform. 

2.1.1. Unbuffered MINs 

Uniform Reference models 

Patel [3] presented a new form of processor-memory interconnection network called 

Delta network. A Delta network is an an x bn switching network with n stages con-

sisting of a x 6 cross-bar modules. The link pattern between the stages is such that 

there is a unique path of constant length from any source to any destination. A 

2 x 2 crossbar switch has the capability of connecting the input I to either of the two 

outputs labelled 0 and 1 respectively, depending on the value of some control bit in 

I. Also the switch has the capability to arbitrate between two conflicting inputs. The 

network consists in construction of demultiplexer trees (also called fan-in trees) with 

every memory module as its root and the processors as leaves. Every new tree may 

use some of the already existing links. The path between a processor and a memory 

module is digit controlled such that a cross- bar module connects an input to one of 

its b outputs depending on a single base-b digit taken from the destination address. 

Patel computed the total number of cross-bar modules (of size a x b) required in an 

an x bn delta network as an - bn/a - 6 if a ^ b, or nbn_1 if a = b. Patel carried 

out analysis of bandwidth and memory request acceptance probability of a processor, 

in case of a crossbar system and a delta network of the same dimension. Assuming 

a processor request generating probability of m and that the blocked requests are 
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ignored, Patel[3] came up with a closed form expression for the expected bandwidth, 

BW in a cross-bar of size M x N 

BW = N l - j v ( l - f ) M ] 

where M = number of processors, 

N = number of memory modules. 

A simple explanation for the model is that (1 — ^ ) M represents the probability that 

none of the M processors requests for a particular memory module in a particular 

memory cycle. So probability that there is at least one memory request for that 

memory module is obtained by subtracting this from 1. Multiplying by the num-

ber of memory modules, N, gives the expected number of busy memory modules per 

cycle, assuming the memory requests are uniformly distributed over all the memory 

modules in a cycle. 

Let the probability of acceptance of a memory request PA, 

be defined as the ratio of the expected bandwidth to the expected number of requests 

generated per cycle. Then 

\M 
n p — BW _ N N 

mM mM mM \ 
m 
NJ 

Applying the previous result for a M xN crossbar to any a x b crossbar module of the 

Delta network, the expected number of requests that it passes per cycle is obtained by 

setting M = a and N = b. Thus BW = b — b ( l — Dividing the above expression 

by the number of output lines in any of the a x b modules yields the rate of requests 

on any of the b output lines as 1 — (l — y ) If m, is defined as the request rate on 

an output line in stage i, then the BW of the Delta network is given as BW = bnmn 

where m,- = 1 — (l — and mo = m 

Thus 

p . bnmn 
A anm 
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Since Patel could not find a closed form solution for the BW of a Delta network, he 

could only graphically compare the two parameters BW and Pa of Crossbar and Delta 

networks for various sizes. Kruskal and Snir [27] provided asymptotic solutions for 

Patel's recurrence relation for the BW of delta network. Kumar and Jump [9] showed 

that the approximate solution obtained by Kruskal and Snir for the throughput of 

unbuffered delta networks is a strict upper bound. They also derived a strict lower 

bound on the performance of the delta network. If the output rate of the switches in 

stage i is denoted by xt then the following upper and lower bounds for x; is obtained. 

2B > t . > IB 
2B i / p 2B ^f+(B-l)i+2BEi 

Z&-2B+2 ^ 
*0 

where, Ei = g2~/2
+2 x loge 

Streker [6] developing a set of simple approximate models for a system with N 

processors and M memory modules had arrived at the same formula for BW. The 

basic assumption remained the same - memory requests at every cycle are independent 

and uniformly distributed. Another way to look at it is that the rejected requests 

at the end of every memory cycle are discarded, and are reassigned randomly among 

all memory modules in the next cycle. Ravi [28] presented a very similar model for 

the case where the request rate is 1, and his results has been shown to be exactly 

the same. Briggs and Davidson [29] have extended Streker's model to incorporate 

cases like memory cycle times greater than unity, memory access times different from 

memory cycle times etc. 

Non-uniform reference model 

For non-uniform reference, the basic assumptions are changed. Now it is assumed that 

the rejected requests are not simply discarded but are resubmitted. Also in some cases 

memory requests were assumed to be non-uniform in each memory cycle. Yen, Patel 

and Davidson [7] proposed a new model, called the rate adjusted probability model, 

which sought to adjust the memory request rate (assumed same for all the processors) 
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for the new assumption that the rejected requests are not simply discarded but are 

resubmitted as new and independent requests, thereby increasing the effective request 

rate. The resubmission follows a uniform distribution. One of the major drawbacks 

of this model is that it over-estimates BW, because multiple rejected requests to the 

same memory module will get evenly distributed to all the memory modules in the 

next cycle, thereby increasing their chance of acceptance. If PA is the probability that 

a request is accepted then ^ is the expected number of rejections (blocked cycles) 

plus the one accept cycle. If if) is the static request rate and a is the adjusted request 

rate (also called dynamic request rate) then a is given by 

a = 
- H A 

and bandwidth is given as 

BW = M [l - (l — §)"] 

The probability of acceptance PA is 

Bhuyan [8] introduced the concept of favorite memory modifying the uniform 

distribution pattern of memory requests assumed in the earlier works. Each processor 

Pi has a favorite memory module Mi with which it communicates more than any other 

memory module. A factor m which is the probability that Pi accesses Mi provided 

Pi generates a memory request is assumed to be known apriori . The remaining 

processors' requests are uniformly distributed among the (N —1) remaining modules. 

Obviously m > Bhuyan carried detailed analysis of favorite memory cases for 

crossbar and Delta network. If p0 is the probability that a processor generates a 

request, then pom is the rate of request to its favourite memory. Therefore, the 

rate of request by Pi to the non-favorite memories is po(l — m), which is uniformly 

distributed among the (N — 1) memory modules. Also probability that Pt does not 

request Mi is 1 — pom. Hence for an TV x N crossbar, the probability that Mi will 

not be requested by the (N — 1) processors (excluding Pi) is ( l — Po 

Hence probability that none of the N processors requests memory module Mi is 
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(1 — Pom) ( l - p o l i g l ) " " 1 

The probability that there will be at least one request for memory module Mi is 

1 - (1 - p0m) (l -

Hence the bandwidth is obtained as 

vAf-ll BW = N (1 - p 0 m ) (l 

Bhuyan extended the above analysis to favourite memory cases for At x iV crossbars 

with M > N and M < N : 

For the case M > N, BW = N j l - (1 - pQm) (l -

For the case M <N,BW = N-M(l-p0m) (l - Po^f~l-{N-M) (l - p0
lf^)M 

For Delta networks the rate of request on an output line in the ith stage is 

r> =1 - (i""r1)" 

where p0 is the probability of generation of a request by a processor. The analysis is 

restricted to only NxN case of delta network with n stages of ax a crossbar modules 

with N/a such modules per stage. A processor is connected to its favourite memory 

module when all switches are in a straight connection. If po denote the request rate 

of a proces sor and qt denote the probability that there is a favourite request to a 

switch at the (i + 1 )th stage, then p{ = 1 - (1 - pi^q^) (l - xh e 

rate of request at the final stage pn decides the bandwidth. Hence, BWf — pnx N. 

2.1.2. Buffered MINs 

With buffered MINs we now have the provision of saving rejected request-packets 

for resubmission to the same memory module in the next cycle. This increases the 

system performance considerably, especially when the traffic pattern is non-uniform. 

A packet is not lost when path conflict occurs with more than one processor trying to 

send their requests through the same port of a switching module. Also a packet can 
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leave a buffer in one switching module only when the buffer at the succeeding stage is 

able to accept it. Next we consider several performance evaluation of buffered MINs 

with the help of various models. 

Skinner and Asher [5] were the first to use Markov chain models to analyse memory 

interference in multiprocessor systems with memory queues. The basic assumption 

was that all processors and all the memory modules are identical. A multiprocessor 

system with n processors and m memory modules, where, at each memory cycle a 

set of processors are allocated a set of memory modules is similar to an occupancy 

problem with n balls and m urns, a common combinatorial problem. If state of the 

Markov chain is defined by the m-tuple (ki,k2,k3,... ,km), where J2i h = n and ki 

denotes the number of processors waiting in the queue of the ith memory module 

including the currently active processor. The number of possible states in such case 

is equal to the number of different ways n balls can be placed in m urns which is given 

by (™+™-1) • Since the number of states becomes prohibitively large for large values 

of n and m, Skinner and Asher's study was limited to a small number of processors 

and memory modules, and they failed to generalise it for larger number of processors 

and memory modules. 

Bhandarkar [1] reduced the number of states noting that many of the states of the 

Markov chain model were identical owing to the assumption that all the processors 

are identical. For example in a four processor and three memory modules system, 

the states denoted by the following 3 tuples are identical : (1,2,1), (1,1,2), (2,1,1). 

Bhandarkar defined a partial state as a transition state between the current state 

and the next state, with the assumption that all the currently active processors will 

terminate their memory access at the end of the current cycle. So st the end of the 

current cycle the system enters a partial state where the number of processors in each 

memory queue decreases by one. If the current state is (fc1} k2 ... km) then the partial 

state at the end of the cycle is (ji,j2,. • •jm) where ji = ki — 1 if ki > 0 or = 0, 

otherwise. A new state ( l u l 2 , . . . , lm) is said to be reachable from (A*, k2,..., km) if 
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li > k{. Probability of a state transition is rfm! ( ~ ) where d{ = /,• — jt and 

J2i di = x. Since the number of states in this case too, became unmanageably large 

for m, n > 3, Bhandarkar wrote a program to compute the state transition matrix of 

the Markov chain. 

Sethi and Deo [2] proposed a discrete Markov chain model for analysing memory 

interference, in multiprocessor systems for non-uniform memory access pattern. They 

assumed that if the nth request of a processor is for memory module i, then the (n+l) ' / l 

request will be for module i with probablity a and for module j ( j ^ i) with probability 

(m-l) • Thus requests to memory modules except the previous one are assumed to be 

uniformly distributed. If a = where m is the number of memory modules, the 

model reduces to the uniform reference model. The performance measure used by 

Sethi and Deo for analysis of a p x m system (p processors and m memory modules) 

is Average Number of Busy Memory Modules (ANBM's). This is the average number 

of memory modules which are busy during a memory cycle. Following Bhandarkar's 

approach to use the discrete Markov chain technique, the ANBM's for a 2 x m and 

p x 2 are computed from the state transition probabilities. The ANBM for a 2 x m 

system is given by 

ANBM = ™(2™+a-3) 
1) — 1 

The ANBM for a p x 2 system having two memory modules and p > 2 processors is 

given by 

ANBM = 2frta-)) 

p+2a —1 

Similar analysis was carried out for a 3 x m system with three procesors and m > 3 

memory modules, but with a = 1. The ANBM was obtained as 3 — 

Yen, Patel and Davidson[7] proposed a steady state flow model for multi- processor 

systems with memory queues. Let N and M be the number of processors and memory 

modules, if; be the request rate and / b e the processor utilization. Then Nf processors 

are active (either in accessing memory or in some internal computation) and N(1 - f ) 
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processors are blocked. The Nf active processors issue Nfip memory requests each 

cycle and Nf( 1 — ip) processors are blocked. Since all the N ftp requests are accepted, 

the steady state number of active processors remains fixed at N f . To compute the 

number (r) of non-empty queues in the system, a successive approximation method is 

applied. In the first step all the N(1 — / ) queued requests are distributed uniformly 

among M queues to give 

— = 1 — f l — ^-)N 
M V1 M ) 

This model uses a better estimate assuming that each of the M queues has probability 

of making an access request. Then 

{ iL\m 

X. = 1 _ ( 1 _ M. 
M y M 

is the estimated probability that there is a request for a particular memory. The 

probability that none of the N processors has a request for that memory is (l — 

Thus the effective memory bandwidth of the system is given as 

bw = M[ 1 - (1 - a)" (1 _ i ) = W 

Pfister and Norton [16] introduced a separate class of memory-access non-uniformity 

called hot spot of higher access rate superimposed on otherwise uniform traffic. Hot 

spots capture the effect of all the processors continually sharing a common variable, 

which resides in a particular memory module called the hot memory. An interest-

ing phenomenon called tree saturation can be observed for MINs with finite buffers. 

When the queue at the root of the fan-in tree (formed by the links connecting all the 

processors to a single memory module in the MIN) becomes full, the queues in the 

previous stage can no longer send packets to them and become full themselves leading 

to similar conditions to all the queues in other levels of the tree. Eventually the entire 

tree consists of full queues. Pfister and Norton introduced the concept of combining 

messages to similar destination at every node of the network. In particular com-

parisons are performed only between a pair of messages stored in the output queues 
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of each switching node (only blocked messages), and if the messages are combined 

the information is stored in a wait buffer. A combined message can combine again 

in a later node. When a reply to a combined message reaches a node where it was 

combined, multiplies replies are generated and the messages are routed to individual 

destinations based on the information stored in the wait buffer. 

Pairwise combining shows definite improvement over non-combining in systems 

having hot spots. Ideally one would like to combine as many combinable messages 

as resided in the buffer of a switch module. But this makes the combining process 

complicated and also creates congestion in the wait buffer. Simulating pairwise com-

bining in a network consisting of many stages, Lee, Kruskal and Kuck [17] observed 

that tree saturation still takes place. With infinite buffer length the congestion takes 

place only at the root, although the situation improved with finite buffers because 

messages spend more time waiting near the base of the tree thereby increasing the 

probability of combining. Lee and Kuck suggested a bounded combining scheme with 

three-way combining as the best solution noting that combinable requests coming out 

of the switches are slightly more than two combinables. 

Jenq [10] formulated two models for analyzing single-buffered banyan network 

composed of 2 x 2 switching elements. The basic assumption behind the first model 

is that the buffers in the same switching element (SE) are independent of one another 

and traffic pattern is uniform. He also developed another model that does not include 

the independence assumption, and the results from them nearly matched. So it was 

concluded that the independence assumption is realistic. However a major drawback 

of this model is that blocked states were not considered. 

Yoon, Lee and Liu [12] extended Jenq's model to the more general case of networks 

composed o f n x m SEs. They also expanded the single-buffer model to multi-buffer 

model. Basically, this model has two states - one state in which there is no request 

in the buffer and another state in which there is a single request in. Since all the 

buffers are assumed to be identical and independent, these two states are sufficient 
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to model the system behavior. But this model still did not incorporate the blocked 

state. Theimer, Rathgeb and Huber [14] improved upon the previous two models by 

discarding the assumption of independence between buffers in a SE. Instead they ex-

haustively enumerated the possible states in the 2 x 2 SE. The model has nine states 

and it takes the blocked state into consideration. Although it shows significant im-

provement over the previous two models, the number of states become prohibitively 

large for arbitrary larger sizes of SE or number of buffers. 

Although the performance of MINs under uniform traffic model is interesting to 

note, it does not represent the traffic pattern of a realistic system. Kim and Leon-

Garcia [18] carried out the analysis of buffered Banyan networks, consisting of 2 x 2 

switching elements (SE, crossbar elements), under non-uniform traffic pattern. The 

two important performance metrices of any interconnection network are throughput 

and delay. Throughput is define d as the number of output packets per clock cycle 

that exit from each output port. Delay is defined as the time taken by a packet 

to reach the destination port starting at the input port. For non-uniform traffic 

pattern these parameters are going to change from module to module and hence the 

maximum delay and the maximum throughput at a destination port which has the 

worst congestion is considered. The buffered Banyan network is modeled as a Markov 

chain and analysed using a network decomposition technique. First, individual SE's 

are modelled and then the relationship among the switching elements are depicted. 

In fact, each SE is represented by the state of its buffers, which are as before. Buffers 

with single elements are considered. 

State 0 : no packet in the buffer 

State 1 : single packet in buffer 

For our case, the throughput of the network is defined as the expected number of 

packets delivered from the last stage of the network per cycle. For a switching module 

I in stage k, let the input ports be denoted by x and the output ports by y. Let, 
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Bkix Probability that there is a packet in buffer of port klx 

Pkixy Probability that a packet at klx is destined to y 

rkix Probability that a packet at klx can advance to next stage, then 

the average number of packets delivered per cycle from the port klx to kly of a SE is 

Pkixy Bklx^klx-

To find Bkix the state-transition equations of the two state Markov chain is solved to 

get the steady state probabilities of states 0 and 1. Bkix is equivalent to the steady 

state probability of state 1. To find rklx note that a packet at the buffer of the klx 

port is allowed to advance if the following conditions are met : 

1) The packet either reaches port y without any contention or wins contention if there 

is any. 2) Buffer at (k + 1 )l'y' is able to accept a packet. This is possible if there is 

no packet at that buffer, or if there is one it is going to leave the port in the current 

cycle. 

If both 1) and 2) are satisfies then a packet reaches the next stage and contributes 

to the throughput of the network. Based on the above the following equation was 

derived 

rklxy = (1 — Bkix + BklxPklxy + BkixPkixy) • (l — B(k+l)l'y' + r(fc+l)/y) 

rkix can be obtained from r îxy as follows 

Tklx ^klxyPklxy Vklxy Pkixy 

and delay for a path is given as 

^allstages Tklxy 

Addding to this the IBC buffer delay, we get the total delay of the network. The 

objective is to compute the values of r and B. Since both of them are described by 

recurrence relations, the solutions are by iterative method, assuming a certain load 

matrix feeding certain traffic load to the first stage. 

Hsiao and Chen [13] modeled single buffered MINs with SEs of arbitrary sizes 

using three states. 'State 0' is when the buffer is empty, 'State n' is the normal state 



19 

where a buffer has a packet which arrived in the previous network cycle, and 'State 

b' is the blocked state where the buffer has a blocked packet which had stayed there 

for at least one cycle due to blocking. A blocked state occurs when a packet cannot 

move to the next stage because the destination stage buffer is full or it has lost the 

contention with other packets for a same output link. Hsiao and Chen, however based 

their model on certain unrealistic assumptions. For example, they assumed that a 

blocked request cannot go directly to the next stage even though there is an empty 

buffer and no other packets are destined for it. This is because a blocked packet can 

only contend with other blocked packets and if it wins the contention it changes state 

from blocked to normal state. Thus this assumption overestimates packet delay of 

the network. Also a blocked packet is not resubmitted to the original memory module 

but randomly distributed. 

2.2. Multiple Bus Interconnection Network 

The interconnection networks discussed so far used either crossbar networks or mul-

tistage interconnection networks, which are attractive because of the high bandwidth 

capability and fault tolerence. But the principle disadvantage of these systems is 

their high cost (cost of the switching modules). Most of the commercially available 

systems having a single processor use a single shared bus. A logical and cost effective 

extension of the single bus systems are the multiple bus systems. Single bus sys-

tems are inexpensive but they lack fault tolerence and have a limited bandwidth. A 

multiple bus system will naturally increase the bandwidth and fault tolerence, with-

out increasing the cost appreciatively, because we are not dealing with the expensive 

switching modules anyway. Another advantage of multiple bus systems over MIN's 

is the simple interconeection scheme and easy expansibility. 

Lang [19] was the first to investigate the performance of multiple-bus systems. 

They divided the multiple bus systems into two categories, complete and partial, 

based on the interconnection scheme of the bus with the processors and memory 
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modules. For a typical system consisting of B buses used to connect N processors 

to M memory modules (B < N), in the complete case (fig 2.2a) every processor 

and memory module are connected to every bus; in the partial case (fig 2.2b), each 

memory module need to be connected to a subset of buses. Lang et al. showed that 

a complete multiple bus configuration with B « y has almost the same bandwidth 

as an N x M crossbar and higher fault tolerence. Simulations were used to determine 

the bandwidth of both classes of system. 
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PN 
Ml M2 MM 

a) Complete Bus case 

Processors Memory modules 

b) Partial Bus case 

Figure 2.2: Examples of Multiple Bus Interconnection Networks 



22 

Mudge, Hayes, Buzzard and Winsor presented a discrete stochastic model of band-

width for multiple bus multiprocessor systems for both the partial and complete 

case taking into account the various conflicts arising from memory and bus con-

tention. Two types of assumptions are made to simplify the analysis - i) temporal 

independence, in which successive memory requests are assumed to be independent 

(i.e. blocked requests are discarded), and ii) spatial independence, in which the event 

that there is at least one request for a particular memory module is independent of 

the same event for another memory module. Later, spatial independence assumption 

was removed, and an iterative scheme is developed to reduce the error caused by the 

temporal independence. 

There are two sources of conflict due to memory requests in a multiple bus system - i) 

memory interference, when a processor requests an already busy memory module, ii) 

bus interference, when a memory request cannot be completed due to non-availability 

of a bus. Lang et al. proposed a two stage arbitration scheme to resolve these con-

flicts. In the first step, M 1-out-of-N memory arbiters each selects one outstanding 

request for each memory module. In the second step, one B-out-of-M bus arbiter 

assigns buses to the requests selected in the first stage. Each processor is assumed 

to generate independent requests (Bernoulli trials) for memory modules at the be-

ginning of each memory cycle with probability p. The memory requests are assumed 

to be uniformly distributed over all memory modules with probability Therefore, 

probability that a particular processor Pt requests memory module Mj i s M- I f Ei is 

the event that there is at least one request for Mj, then probability of Ej is 

Pr[E3] = q = 1 - (1 -

If events E j are assumed to be independent, then probability that exactly i of the 

M memory request arbiters output a memory request is f(i) = (^f)g'(l -

The probability that B or more of the M memory request arbiters output a memory 

request is F(B) = YALB /(«)• Now requests for at most B of these memory requests 

can be met as there are only B buses. Hence the BW of a complete multiple bus 
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system is 

BW = BF(B) + £g-'if(i) 

These results are next extended to the partial bus case. Let the B buses be divided 

into g equal groups (assume g is a factor of B). Let m = y and b = j . Thus, 

/a(0 = ( ? )? ' ( ! — a n d Fg(B) = YlT=bfg{i)- Hence bandwidth is given as 

BW, = g [6F„(£) + E i V •/,(>) • 

The idea is to multiply by g the bandwidth of any one of the groups of complete 

multiple bus systems to get the bandwidth of the whole system. 

The same model is extended by the authors to the case with spatial dependence, i.e. 

assuming each event Ej is dependent on Ek for k ^ j. The dependence is given as 

follows. 

Pr[Ej\Ek] = E i l i Pr[Ej\Ek results from i requests] x Pr[Ek results from i requests] 

To consider the effects of spatial dependence, the authors defined a new function 

h(i) denoting the exact probability that i of the M memory request arbiters output 

a memory request. An expression for h(i) was deduced, and is given as 

MO = E L ( ? > ' ( ! - p ) N - k { ^ ) M - H 

where 0 is given as, 9 = J2 , k\ where the summation is carried out over all 
"1 • *̂2 • • • * *** * 

n i , . . .rii > 0. An alternative expression for 0 is given in [] as 0 = «!(;), where 

denotes a Stirling number of the second kind. It is defined as the number of ways to 

partition a set Xk of k elements inti i nonempty disjoint subsets. The new expression 

for bandwidth is given by 

BW = BH(B) + ih(i), where H(B) = Y^Lb MO-

In order to distinguish between the two expressions of bandwidth, they are called 

BWf and BWh respectively. It is however shown that in the bus-sufficient case (i.e. 
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where B > M) we have BWh = BW*. 

Until now it is assumed that blocked requests are rejected, which in practise is not 

true. Actually they are stored in memory queue and resubmitted to the same memory 

module in the next cycle. The probability of acceptance of a memory request is given 

Pa = Due to the resubmission of memory requests to the same memory 

module, teh request rate is going to increase. Let a be the adjusted request rate. 

Ratio of the number of successful memory requests to teh total number of requests is 

the probability of acceptance, Pa, given by f 5 f . The above two equations for P0 can 
P 

be used in an iterative scheme to get an improved estimate of bandwidth due to the 

new request rate a as follows 

<*kh = 1 + §l$kl{l ~P)-

where BW(ak) is obtained by replacing p by a in the expressions for f(i) and h(i), 

used in the expressions for BW. Finally, some asymptotic approximations to the 

bandwidth of multiple bus systems is considered. From our expression of bandwidth, 

BW1 is bounded by i.e. BW} < B. Also replacing the first term on the 

right hand side by »'/(i),we get BW* < E ^ o »/(«')> i-e- BWS < Mq. Hence, 

BW = min(B,Mq). Mq is called bus-sufficient bandwidth and making B > Mq 

does not improve the bandwidth anymore. 

Markov chain models for the analysis of multiple bus multiprocessors were devel-

oped by Marson and Gerla [22]. The performance index was the average number of 

active processors called processing power, P. The model specifies that a processor can 

be in any of the following three states: 

1) processor is busy in internal computation using its private cache memory. 

2) processor exchanges data with other cooperating processors, by accessing the global 

memory modules. 3) processor is waiting in the queue of any of the global memory 

modules. 

A processor is said to be active when it is in state 1) and the processing power is 
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defined as: 

P = E[number of active processors]. 

Processors join memory queues if the requesting memory module is busy, and before 

proceeding to service (i.e. accessing memory) must be given a permit to access a bus. 

The permit is returned upon completion of service. With these assumptions a closed 

queueing network model is developed with the following parameters : 1) the duration 

of the access to the common memory is an independent exponentially distributed 

random variable with mean for the jth memory module. In order to simplify the 

model the parameter is assumed to be the same for all memory modules and sim-

ply called K 2) The interval between subsequent access requests is an independent, 

exponentially distributed random variable with mean j- for the ith processor. This 

was also assumed to be same for all the processors and simply called fraclX. 3) A 

uniform reference model was assumed, that a request from a processor is directed to 

any of the common memory modules with probability fraclm. Marsan and Gerla 

carried out the exact performance analysis for a p x m x b system with the above 

assumptions. Applying Little's law to the entire memory system including queues 

and servers, we have the average customer delay D = The average queueing 

time is given as W = P~PJ\+P, where p — K The average number of queued pro-

cessors is Nq = WPA = p — P( 1 + p); and average number of processors accessing 

common memory is Ns = Dp™ = Pp. The average cycle time (average time taken 

by the customers to cycle through the closed queueing network) is easily obtained as 

C = W + i + i 

Marsan and Gerla also constructed a Markov chain model using the theory of lumpable 

Markov chains for defining the states. The state definition is (nTO, qx, q2,..., qm) for 

the genral p x m x b system. nm is the number of processors currently accessing a 

common memory, q x . . .qb are numbers of processors queueing for memory modules 

currently accessed and qb+i... qm are numbers of processors queueing for free mem-

ory not accessible because no free bus is available. The general p x m x b case was 
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not easy to handle because of teh huge explosion of states as the number of proces-

sors and memory modules are increased. The state transition rates for a 3 x 3 x 2 

model could be computed. Next, various approximate models were developed with 

reduced number of states, by reducing the amount of information about the status 

of the queues in each state. In the first model, the state of the system is represented 

by (nm , nq) where nm =number of processors currently accessing a common memory 

module, and nq =number of processors queued. The transition rates were computed 

for the most general case. Since the number of active processors is p — nm — nq, the 

processing power can be evaluated once the steady state distribution of the Markov 

chain is known. In the second model the state definition is the same as in the first 

model. The transition rates are evaluated using an "averaging" technique. Various 

identical states are merged into a "macro-state", the rates from the merged state to 

all neighbouring state are added up and the new transition rate for the merged state 

is defined as the ratio between the sum and the number of merged states. In the 

third model, a state is represented by (nm, nq, / ) , where the definitions of nm and nq 

remains as before and / is a flag which is set to zero when no processor is queued for 

a bus. Transition rates for the pxmx 2 were computed for this model. In the fourth 

model, the system state is simply the number of active processors. The transition 

rates are evaluated using the averaging technique. 

A semi Markov model for the performance of multiple bus systems was proposed 

by Mudge and Al-Saldoun [21]. The basic assumptions are as follows: At any cycle, 

a processing element (PE) can be in any of the three states, thinking i.e. busy in 

unternal compute, accessing i.e. connected to a memory module, and waiting i.e. 

waiting in the queue of a memory module. A memory module can also be in any 

of the following two states: busy, when a PE is connected to it, and idle, when no 

PE is connected to it. Each PE will submit a request after its thinking time T, a 

discrete random variable, which is the inter-request time. Also there is a connection 

time between a processor and a memory module, given by the discrete independent 



27 

random variable C. Considering a N x M x B system, a semi-Markov process was used 

to describe the state of each PE. This considerably simplifies the state space reducing 

it to only four states as opposed to using a discrete Markov chain model for each 

PE, where the number of states can grow very large. Briefly, a semi-Markov process 

(SMP) is a stochastic process which can be in any one of the K states 1 ,2 , . . . , K. 

Each time it enters a state i it remains there for a definite amount of time called the 

sojourn time, having mean rji and then makes a transition to state j with probability 

Pij. The four states are as follows: The first state is the thinking state 0. The second 

state is the accessing state 1. The third state is the full waiting state 2. The PE 

enters state 2 when it requests an idle MM simultaneously with at least one other PE, 

and it fails to access the MM (by passing the two levels of arbitration as proposed 

by Lang). The fourth state is the residual waiting state 3. A PE enters state 3 when 

it requests a busy MM or when, due to bus contention, access is blocked to an MM 

even though it is idle. The underlying approximation of this model is in describing 

any PE behaviour independent from other PE's while compensating for the coupling 

between the PE's in the transition probabilities between the states of the SMP. 

Detailed analysis was carried out and the following performance indices were com-

puted for the N x M x B multiprocessor system. The transition probabilities between 

the states were computed and the steady state probabilities were determined. Let a; 

be the probability of the process entering state i and P; be the steady state probabil-

ity of the same state. The following parameters were computed: 

Bandwidth, BW = NP1 

Processor utilization, PU = PQ + P\ 

Memory utilization, MU = JJP\ 

Bus utilization, BU = ^PI 

Average queue length, L = |^(P2 + P3) 

Average waiting time, W = . 
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The performance of multiple bus multiprocessor systems under a non- uniform 

reference model called hierarchical requesting model is studied by Chen and Sheu 

[25]. Various types of multiple bus networks investigated involve i)complete(full) bus 

case impartial bus case m)single bus case and the newly introduced impartial bus with 

K classes. In a single bus network, each processor is connected to all the buses, but 

each memory module is connected to a single bus. A new architecture of N x M x B 

multiple bus networks called partial bus networks with K classes is introduced, where 

there are K classes of memory modules (K < B). The memory modules of class CK 

are connected to all the buses 1 to memory modules of class CK-\ are connected 

to B — 1 buses from 1 to bus B — 1 etc. In general, memory modules in class Cj are 

connected to j + B — K buses. Fig 4 shows an example of a partial bus network with 

3 classes. Memory modules which needs more fault tolerence of buses and which are 

more frequently referenced are connected to more number of buses in this scheme. 

To avoid memory and bus contention the two stage arbitration scheme proposed by 

Lang [19] is used. The cost and fault tolerent capability of each type of network are 

Class 1 Class 2 Class 3 

Memory 

Modules 

Processors 

A 3 X 6 X 4 Partial bus network with three classes 

Figure 2.3: Example of Partial Bus Network with three classes 
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evaluated and compared. The cost of a multiple bus network is proportional to the 

number of connections in the network. For the N x M x B multiple bus with full 

bus-memory connection, cost is 0(B(N + M)), and the degree of fault tolerence is 

B-1. Similarly cost for single bus systems is 0(BN + M), and it is less fault tolerent 

than the complete bus case. The cost in case of the partial bus case is 0(N + ^), 

where g is the number of groups; the fault tolerence is ^ — 1. In case of partial bus 

network with K classes, cost is proportional to BN + J2f= i Mj(j + B — K), where 

Mj is the number of memory modules in class Cj. The degree of fault tolerence of 

this network is B - K. It is seen that the cost and fault-tolerence of networks with 

partial bus-memory connection scheme are intermediate between the networks with 

full and single bus-memory connection. 

To analyse the performance of multiple bus networks a hierarchical requesting 

model is proposed. For an N x N x B system, assume that N = k\k2 ... kn. Each 

processor Pi has a memory module MM,- as its favourite memory. These processors 

and memories are organised into an n—level hierarchy. First, the N pairs of pro-

cessors and memory modules are partitioned into ki clusters in the first level, each 

cluster containing k2kz.. ,kn pairs of processor- memory. In the second level, each of 

k\ clusters is partitioned into k2 subclusters of equal size, and so on. For an n—level 

hierarchy, there are n + 1 different request rates for a processor, mo, m j . . . mn de-

pending on the hierarchy of the memory module addressed to. We assume that 

m0>mi>.. .mn. If Nt be the number of processors or memory modules belonging 

to the same subcluster in the (n — i)th level excluding those in the (n — i + l)th 

level, then N{ is given as N{ = (kn-i+1 — l)kn_l+2 . . . k n ^k n and YA=O = 1 where 

iVo = 1. Let X be the probability that there is at least one request for a particular 

memory module MMj and let po be the probability of connection to a favourite mem-

ory. If r be the request generation rate then the probability that at least one request 

is generated by those processors which request connection to MMj with fraction m; 

is pi = 1 — (1 — rrrii)N%. Hence, probability that at least one processor requesting 



30 

connection to MMj is X = 1 — (1 — rm 0 ) ( l — rmx)
Nl ... (1 — rmn)

Nn. Then the 

probability that exactly i of the N memory-request arbiters output a memory re-

quest is given by P(i) = ^ X ! ( l — X)N~\ The memory bandwidth in case of full 

bus-memory connection is given by 

MBW = N X - E £ b + 1 ( » ~ B)P(i). 

For the single bus case, if Mi be the number of memory modules connected to bus 

i, then the probability that there is at least one memory servicein bus i is Yx = 

1 — (1 — X)Mi. Then the memory bandwidth is given by 

MBW = £?= i Yi. 
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MEMORY ACCESS PATTERN 

NON-UNIFORM UNIFORM 

BUFFERED 

-Skinner & Asher, 

1969. 

-Bhandarkar, 1975 

-Jenq, 1983 * 

-Yoon, Lee & 

Liu, 1990 * 

-Marsan & Gerla, 

1982** 

-Yang & Bhuyan, 

1991** 

NON-BUFFERED 

-Patel, 1981 * 

-Kruskal & Snir, 1983* 

-Kumar & Jump, 1986* 

-Liu & Wang, 1989* 

-Mudge, Hayes, Buzzard 

& Winsor, 1985** 

-Lang, Valero & Alegre, 

1982*/** 

INTRA-CYCLE 

* On MINs 

** On MBINs 

FAVORITE HOT 

BUFFERED 

-Pfister & Norton, 

1985* 

-Lee, Kruskal & 

Kuck, 1994* 

-Das, Sen & Basu, 

1995 

BUFFERED 

-Sethi & Deo, 

1979 

-Kim & Garcia, 

1990* 

-Mahmud, 1994 ** 

-Das, Sen & Basu, 

1995 

NON-BUFFERED 

-Bhuyan, 1985 * 

-Chen &Sheu, 1991** 

-Das & Bhuyan, 1985 ** 

INTER-CYCLE 

BUFFERED 

-Yen, Patel & Davidson, 

1982 

-Kim & Garcia, 1990* 

-Hsiao & Chen, 1991* 

-Mun & Youn, 1994 * 

-Theimer, Rathgeb & 

Huber, 1991* 

-Mudge & Al-Sadoun, 

1987** 

-Mudge, Hayes, Buzzard 

& Winsor, 1985 ** 

-Das, Sen & Basu, 1995 

Figure 2.4: A taxonomy of related work on memory references 

2.3. Conclusion 

In this chapter, we discussed some of the important previous work in the area of 

processor memory interconnection. A taxonomy of all the work which has been 

described so far is shown on figure 2.4. All types of interconnection schemes can be 

broadly classified into two groups - multiple stage interconnection networks (MIN) 

and multiple bus interconnection networks (MBIN). Under the first scheme, we have 

distinguished between two types of memory access patterns, nemely, the uniform 

reference and the non-uniform reference models. Since no work has been done for 

uniform reference model under MBINs, we do not have any such classification in the 

second case. 



CHAPTER 3 

MARKOV MODEL FOR MULTIPROCESSORS WITH HOT SPOTS AND 

FAVORITE MEMORIES 

In this chapter, we derive a discrete Markov model for shared memory multiprocessor 

systems in which each memory module has a buffer for queueing up unsatisfied mem-

ory requests. The following assumptions are made in order to develop our model, 

allowing two types of non-uniformity, namely, favorite and hot memories. 

INTERCONNECTION MECHANISM 

1 1 1 I 
- MEMORY QUEUES 

M M , M , 

Figure 3.1: A Buffered memory system 

1. There are N processors and M memory modules in the system; all processors 

are identical, so are all the memory modules. 

2. When a processor requests access to a particular memory module, it is granted 

if the requested memory module is not busy. 

3. There is no contention in the interconnection mechanism. 

4. It two or more processors request access to the same memory module then only 

one of them is granted permission, and the rest are queued up in the queue 
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associated with the memory module. The process of selection is completely 

random. 

5. The system is synchronous, i.e. all the requests made by the processors are at 

the beginning of the cycle. All the memory cycles are of equal length. 

6. All the processors have an identical memory request rate A. 

7. The memory access of a processor may last over several memory cycles. The 

completion rate of a memory access by a processor is given by fi. In almost all 

related works, it has been tacitly assumed that pi = 1, to simplify the models. 

8. If there is a 'hot' memory module in the system, then the probability of accessing 

the hot memory is given by m. If there are K hot memories, they are all identical 

and memory reference is uniform among the hot memory modules. 

9. The memory reference pattern among the "non-hot, non-favorite" memory mod-

ules is also uniform. 

10. Successive memory requests follow the following scheme, which models the tem-

poral locality concept of memory references. If in the current cycle, a processor 

accesses memory module Mj, then, given it completes its access in the current 

memory cycle, the probability that it will again request access from the module 

Mj is given by a. Also, references to other memory modules are uniformly 

distributed, with probability given by 1 — Of 

M-V 

We follow a step by step approach in developing our model. We start with the 

case where there is only one hot memory in the system and the rest are all non-

hot memories. The favorite memory case is not included in this analysis. Then we 

extend the model to K hot memories, again without any favorite memory. Next the 

favorite memory case is introduced along with a single hot memory. As the state space 

becomes enormously large for M,N > 2, we restrict our analysis to systems with two 
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processors and M memory modules, and N processors and two memory modules. A 

scheme for extension to the general case of NxM system using simulation, is discussed 

in Section 4. and the consequences of the experiments discussed. In Section 5, an 

approximate probabilistic analysis of a N x M system is given and a heuristic is 

proposed to find the value of K beyond which the memory bandwidth is expected to 

saturate. 

3.1. 2 x M system, one hot spot without any Favorite memory 

There are two processors and M memory modules in the system. Of these M memory 

modules, one is a hot memory. Let m be the probability of request of a hot memory 

by any processor. Then, is the probability of request of any other M — 1 non-hot 

memories. If A is the request rate of a processor, then the probability that a processor 

requests the hot memory is given by, ph = Am. Probability that a processor requests 

a particular non-hot memory is, p = A • The next step is to enumerate all the 

possible states for this system. 

The states are represented as two or three tuples, where each element gives the 

number of processor requests in the memory queue. Since there are only two proces-

sors in the system, at most two of the M memory modules have their memory queues 

filled up with processor request. We assume that the memory queue also holds the 

currently active processor. The first tuple always represents the number of processor 

requests in the queue of the hot memory. The remaining one (two) tuple(s) represents 

the number of requests in the queue of any one (two) (as there can be at most two 

memory modules holding a processor request) of the memory modules. A memory 

queue with no processor waiting or active is not always shown explicitly. They are 

usually shown as a zero tuple, when 

(i) we want to distinguish between the non-existence of a processor in a hot memory 

module and the non-existence of a processor in a non-hot memory module. For ex-

ample, the state < 0,1 > represents the situation where there is no processor in the 
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hot memory and only one processor in any one of the non-hot memory modules. 

(ii) the state 0 represented by < 0,0 > represents the situation when all processors 

are busy in their internal computation, and not accessing any memory module. 

The enumeration of seven possible states of the 2 x M system is given below. 

state state vector 

So < 0,0 > 

Si < 0,1 > 

s2 
< 0,1,1 > 

S3 < 0,2 > 

s4 
< 1,0 > 

S5 < 1,1 > 

Se < 2,0 > 

3.1.1. Bandwidth Analysis 

The state transition probabilities are next computed, as shown in Table 3.1. In this 

case, 

A = 1 — A; 

» = ( ; ) A ( 1 - A ) ; 

c — p(M — 1); 

d = p(M — 2); 

m = 1 — m; 

This gives a 7 x 7 linear system of the form ATIl = II where A is the state transition 

matrix and II = (n0 , H i , . . . , II6) is a vector containing the limiting probabilities such 

that n t denotes the limiting probability of state Si. This system of linear equations 

can be solved by replacing any one of them by o n , = 1. After some simple matrix 

manipulations, the following reduced form of the linear system is obtained, which is 



36 

Table 3.1: State Transition Matrix A of 2 x M system 

states 0 1 2 3 4 5 6 

0 A2 
bfh cd cp 6m 2 cph P2, 

1 fi\2 
libm -f MA Licd -f /id ficp + MP fibrn 2̂ cph + Jiph W2h 

2 n2X2 2/x/lA + n2hm p,2 + 2/i/2rf -f n2cd 2fifip + fj2 cp M2 bm 2iiiiph + 2fj2cph »2v\ 

3 0 fiX lid P> + MP 0 VPh 0 

4 fix2 
libra lied fjtcp jlX 4- jibm Jic 4- 2iicph MPh 4* VP2

h 

5 M2A2 [ijlX + {J?brh Hfid + fJ?cd fijlp + fjfcp HjlX 4- p?bm Ji2 -f mmc 4- MMPh 4- 2n2cph jiUPh + \i2p2 

6 0 0 0 0 fiX flC 

J 

P> + UPh 

solved for the limiting probabilities. The seven equations are enumerated below. 

(A2 - i)n„ + n\2ih + fi2 A2n2 + fi~x2u4 + h2xu5 = o 
bin 
X* no + {n — i )n x + 2 ^ n 2 + /4II3 + /^ i i s = 0 

(cA - bm)n0 + A2nx + = 0 

(cA — bm) n 0 + A2IIi ^ n 3 = o 

+ (fi — i ) n 4 + /X/UII5 + fiTls = 0 
bm 
A5" 

( l i r - 1 ) n o + £ n 4 - ^ n 6 = o 

(76,0-13 0 j(d + P — l)IIi + II2 + 113 + jH4 + + flH6 = 1 

where C6,„ = - [l + {(1 - i ) I - (1 - £ ) ( l + i ) } 

This system of linear equations can be solved by Kramer's rule to obtain expres-

sions for the IL's. 
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bdfh 
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bm 
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bfh 

A 3 0 2 - 1 ) 
bdfh 

0 0 0 0 
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6 m 1 
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bfhp 

0 0 0 
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bm 
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6 m 1 0 0 0 0 0 
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n5 

n6 = i 

A 2 - 1 

1 
cA _ 
bfh 

c A -j 
bfh 

1 
Ce,o 

EJA - i 
bm 

A2 — 1 
1 
cA __ -j 
bfh cA i 
bfh 

1 
6̂,0 

Phi _ 1 
bm 1 

/iA2 M2A2 0 fl\2 0 0 
A 2 ( £ A - 1 ) 2 / U A A 3 Ml 0 0 0 bfh bfh bfh 0 0 
2 1 
bfh 

A 3 ( P 2 — 1 ) 
bdfh 0 0 0 0 

2 1 
bfh 0 M A 3 

bfhp 0 0 0 
0 0 0 a 2 ( a a - d 

bm 0 Ml 
bm 

2 1 
bm 

2 1 
bm 

2 1 
bm 

2 1 
bm 

Ml 
bm 

0 0 0 2 1 0 A * 3 
— 1 P̂bm 

fl\2 

A2(fiA-l) 
bfh 

21 
bfh 

21 6rh 

0 

0 

t? A 2 0 l± A 2 H2X2 0 

2 M £ * 3 
m A 3 

0 M f t ^ 3 
0 bfh bfh 0 bfh 0 

A 3 ( £ 2 - l ) 
bdfh 0 0 0 0 

0 m a 3 

bfhp 0 0 0 

0 0 
A 2 ( £ A - 1 ) M f l A 3 

0 0 bm bm 0 

2 1 2 1 2 1 a 2 a 3 
2 1 

bm bm bm bm bm 

0 0 2 1 
bm 0 0 

where, 

D = 

A2 - 1 fl\2 M2A2 
0 fj,X2 

n2\2 0 
1 A2(AA-1) 2pp\3 Mi 0 MfiA3 

n 1 bm bfh bfh bfh U cA -j 
bfh 

21 
bfh 

A3(M3-1) 
bdfh 0 0 0 0 

c A -j 
b m 1 

21 
bfh 0 _Mi 

bfhp 0 0 0 
1 0 0 0 A2(£A-1) MM A3 Mi 0 bm bm bm 

6̂,0 £(*-<*-?) 21 
bm 

21 
bm 

21 
bm 

a 2 a 3 

bm 
Ml 
bm 

Ph* 

bm 1 0 0 0 21 
bm 0 M A 3 

Ph bm 

From the state table of the 2 x M system, the bandwidth of the system is given 

by, 

BW — III "I" 2II2 + II3 + II4 + 2II5 + 1̂ 6 

The system, in all other states except S2 and 5's, have only one active memory module. 

In state S2 and in state it has two. Some of the values of bandwidth obtained for 

various values of the input parameters are shown in Table 3.2. 

We find, from the results in Table 3.2, that if the request service rate, (i is increased 

keeping the request arrival rate, A, constant, all other parameters remaining the 

same, the memory bandwidth decreases. This can be intuitively explained as follows. 

Increasing the service rate of the processing element (in this case a memory module) 

leads to higher rate of completion of jobs, and without additional jobs coming in 
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Table 3.2: Memory bandwidth with varying A and n for M = 10 and m = 0.75. 

A 

P 

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 

0 . 1 . 9 1 

0 . 2 . 6 7 . 9 5 

0 . 3 . 5 2 . 8 2 . 9 9 

0 . 4 . 4 2 . 7 1 . 9 1 1 . 0 4 

0 . 5 . 3 6 . 6 3 . 8 3 . 9 8 1 . 0 8 

0 . 6 . 3 1 . 5 6 . 7 7 . 9 3 1 . 0 4 1 . 1 3 

0 . 7 . 2 7 . 5 1 . 7 1 . 8 8 1 . 0 1 1 . 1 1 1 . 1 8 

0 . 8 . 2 4 . 4 6 . 6 6 . 8 3 . 9 7 1 . 0 8 1 . 1 7 1 . 2 3 

0 . 9 . 2 1 . 4 3 . 6 2 . 7 9 . 9 4 1 . 0 6 1 . 1 5 1 . 2 2 1 . 2 7 

1 . 0 . 2 0 . 3 9 . 5 8 . 7 5 . 9 0 1 . 0 3 1 . 1 4 1 . 2 2 1 . 2 7 1 . 3 1 

to fill the empty slots, the processing element tends to remain inactive for more 

amount of time. In our case, this directly leads to a decrease in the number of active 

memory modules, thereby decreasing the effective bandwidth. This phenomenon is 

also reflected in a decrease in the mean memory queue length with increasing ji and 

constant A (see graphs). 

On the other hand, memory bandwidth seems to increase with increasing A and 

constant \i. Service rate remaining the same, an increase in the arrival rate of requests 

leads to more number of active memory modules. Of course, we have assumed that 

A < /i, so that requests don't pile up in memory queues leading to a decrease in 

bandwidth. 

3.1.2. Mean Queue Length and Waiting Time 

Let MQLh and MQLnh be the mean queue lengths for a hot memory module and 

non-hot memory module, respectively. Since we are dealing with a system of multiple 
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queues, we actually consider the mean of the maximum queue lengths in the system. 

As is evident from the state table, these are given by the following expressions. 

MQLh = II4 + II5 -f 2116 

MQLnh = nx + n 2 + 2113 + n5 . 

The mean queue length for the whole system is given by 

MQLS = III + II2 + 2113 + II4 + II5 + 2116. 

The arrival rate of requests for a hot memory module is given by mX, hence by 

Little's law, the mean waiting time for a processor request in a hot module is given 

by MWTh = M®\h• Similarly, for a non-hot memory module, the request arrival 

rate is given as and, by Little's law, the mean waiting time for a request in a 

non-hot memory module is MWTnh = • Since the probability of accessing a 
M - l 

hot memory module is m, and that for a non-hot module is (1 - m), the mean waiting 

time for the whole system is given as follows. 

MWT, = m x MWTh + (1 - m) x MWTnh 

= j{MQLh + (M-l)xMQLnh). 

The variations of the mean queue length and mean waiting time are depicted graph-

ically (Figure 3.2). 

3.2. 2 x M system, K hot spots and no favorite memory 

There are I< hot memories and (M - K) non-hot memories. We assume that within 

the K hot memories the access pattern is uniform. The probability of accessing hot 

memories is given as before by, m\ . Hence, the probability of accessing a particular 

hot memory is given as, ph = Similarly, probability that a processor requests a 

particular non-hot memory module is given by p = 
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For a system with 1 hot-spot and no favorite memories 

Figure 3.2: Variation of mean queue length and mean waiting time with request 

service rate 

The possible states are enumerated as in Section 3.1 with one additional state. As 

there are multiple hot memories, the two processors can access two hot memories si-

multaneously, and this leads to the eighth state < 1,1,0 >, where the first two tuples 

stand for any two hot memory queues. In all other cases the first tuple represents 

a hot memory queue, while the rest of the tuples represent non-hot memory queues. 

The possible enumeration of states is given below. 
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state state vector 

So < 0,0 > 

Si < 0,1 > 

S2 < 0,1,1 > 

Sz < 0,2 > 

s 4 < 1,0 > 

Ss < 1,1 > 

Se < 2,0 > 

S7 < 1,1,0 > 

The state transition probabilities are next computed, which are shown in Table 3.3. 

Table 3.3: State Transition Matrix of 2 x M system with K hot spots 

states 0 ] 2 3 4 5 6 7 

0 A2 
hfh c'd1 c'p bm 2c'phk Plk PhkPh(k - !) 

1 MA2 
txbfh, + A A \xc d! + Jxd! txc'p + AP (xbm 2 txc'phk + jxphk 

" p l k A P h k P h ( k ~ ! ) 

2 M2A2 2/i/iA -f M2 6*™ A 2 + 2 fxfxd1 -f fJ>2cfd' 2MAP+ M2 fem 2nfxphk + 2 ix2c'phk M2p2/c »2PhkPh(k - x ) 

3 0 jj,X txd' A + MP 0 txphk 0 0 

4 fx A2 
jxbfh fxc'd' Mc'p aa + p,c' + 2fxc'phk P-Ph + Ap̂ (fc - 1) + 

VPhkPh(k - *) 

5 M2A2 
lxp,X + ix2bfh ixjxd1 -f p2 cf df - , 2 / MMP + M c p MAA + fx2bm fx2 + mAc' + txfxpfok + 

2 n2c'phk 

A APft + M2P̂  MAPh(fe ~ 1) + 
V2PhkPh(k ~ l ) 

6 0 0 0 0 Â ixc1 A + MPfc VPh(k ~!) 

7 ^A2 
fx2bm M2

 c'd' ix2c'p MAA + M2 6m ixjxc' + ix22c'phk MAP/J + M2P^ A 2 + 2fxfiph(k -

1) + 
»2PhkPh(k ~ ! ) 

In this case, 

A = 1 - A; 
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6 = (J)A(1-A); 

c' = p(M- K); 

d' = p(M - I< - 1); 

fi = 1 - A*5 

m = 1 — m; 

The linear system of the state transition equations are solved by a standard For-

tran linear system solver, for various values of the five input parameters A , n , m , K , 

and M, which are respectively the request rate, the service rate, probability of request 

to a hot memory module, the number of hot modules and the total number of mem-

ory modules. The output vector, {ITo, IIi, II2 • - - II7} of the linear system solver gives 

the limiting probabilities for the eight states, {S'o, S\... 67} of the processor-memory 

system. The bandwidth of the system can be obtained by the following expression. 

BW = IIi + 2II2 + II3 + II4 + 2II5 + Tig + 2II7 

Next the mean queue length and the mean waiting time for the system is computed. 

As in Section 3.1, we consider the mean of the maximum queue lengths in the system. 

As is evident from the state table, the mean queue lengths for a hot memory module 

and non-hot module are given as follows. 

MQLh — II4 + II5 + 2116 II7 

MQLnh = IIi + II2 + 2II3 + II5 + II7. 

The mean queue length for the whole system is given by, 

MQLS = IIi + II2 + 2II3 + II4 + IT5 + 2116 + II7 

The arrival rate of requests for a hot memory module is given by ^ , hence by Little's 

law the mean waiting time for a processor request in a hot module, MWTh, is given 

by MWTh = MSth• Similarly, for a non-hot memory module, the request arrival 
K 

rate is given as a n d , by Little's law the mean waiting time for a request in a 
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non-hot memory module is, MWTNH = • Since the probability of accessing a 
M-K 

hot memory module is m, and that for a non-hot module is (1 — m), the mean waiting 

time for the whole system is given as follows. 

MWTS = M x MWTH + (1 - m ) x MWTNH 

= j ( I < x MQLH + { M - K) x MQLNH) 

Some of the values of bandwidth obtained for various values of the input parameters 

are shown in the Tables 3.4 - 3.6. The variations of the mean queue length and mean 

waiting time are depicted graphically (Figure 3.3). 

Table 3.4: Memory bandwidth with varying A and N for K = 1,M = 10 and 

m = 0.75. 

A 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 

0 . 1 . 9 1 

0 . 2 . 6 7 . 9 5 

0 . 3 . 5 2 . 8 2 . 9 9 

0 . 4 . 4 2 . 7 1 . 9 1 1 . 0 4 

0 . 5 . 3 6 . 6 3 . 8 3 . 9 8 1 . 0 8 

0 . 6 . 3 1 . 5 6 . 7 7 . 9 3 1 . 0 4 1 . 1 3 

0 . 7 . 2 7 . 5 1 . 7 1 . 8 8 1 . 0 1 1 . 1 1 1 . 1 8 

0 . 8 . 2 4 . 4 6 . 6 6 . 8 3 . 9 7 1 . 0 8 1 . 1 7 1 . 2 3 

0 . 9 . 2 1 . 4 3 . 6 2 . 7 9 . 9 4 1 . 0 6 1 . 1 5 1 . 2 2 1 . 2 7 

1 . 0 . 2 0 . 3 9 . 5 8 . 7 5 . 9 0 1 . 0 3 1 . 1 4 1 . 2 2 1 . 2 7 1 . 3 1 
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Table 3.5: Memory bandwidth with varying A and // for k = 5, M = 10 and 

m = 0.75. 

A 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 

0 . 1 1 . 1 1 

0 . 2 . 7 5 1 . 1 5 

0 . 3 . 5 6 . 9 4 1 . 2 0 

0 . 4 . 4 5 . 7 9 1 . 0 6 1 . 2 6 

0 . 5 . 3 7 . 6 8 . 9 4 1 . 1 5 1 . 3 3 

0 . 6 . 3 1 . 6 0 . 8 4 1 . 0 6 1 . 2 4 1 . 4 0 4 

0 . 7 . 2 8 . 5 3 . 7 6 . 9 7 1 . 1 6 1 . 3 4 1 . 4 9 

0 . 8 . 2 4 . 4 7 . 6 9 . 9 0 1 . 1 0 1 . 2 8 1 . 4 4 1 . 5 9 

0 . 9 . 2 2 . 4 3 . 6 4 . 8 4 1 . 0 4 1 . 2 2 1 . 4 0 1 . 5 6 1 . 7 2 

1 . 0 , 2 0 . 4 0 . 6 0 . 7 9 . 9 8 1 . 1 7 1 . 3 5 1 . 5 3 1 . 7 0 1 . 8 7 

Table 3.6: Memory bandwidth with varying A and n for k = 5, M = 10 and 

m = 0.95. 

A 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 

0 . 1 1 . 1 4 

0 . 2 . 7 7 1 . 1 8 

0 . 3 . 5 7 . 9 6 1 . 2 2 

0 . 4 . 4 5 . 8 1 1 . 0 7 1 . 2 7 

0 . 5 . 3 7 . 6 9 . 9 5 1 . 1 6 1 . 3 3 

0 . 6 . 3 2 . 6 0 . 8 5 1 . 0 6 1 . 2 4 1 . 4 0 

0 . 7 . 2 7 . 5 3 . 7 7 . 9 8 1 . 1 7 1 . 3 3 1 . 4 8 

0 . 8 . 2 5 . 4 8 . 7 0 . 9 1 1 . 0 9 1 . 2 7 1 . 4 3 1 . 5 7 

0 . 9 . 2 2 . 4 3 . 6 4 . 8 4 1 . 0 3 1 . 2 1 1 . 3 8 1 . 5 3 1 . 6 8 

1 . 0 . 2 0 . 4 0 . 5 9 . 7 8 . 9 7 1 . 1 5 1 . 3 3 1 . 5 0 1 . 6 6 1 . 8 1 
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Figure 3.3: Variation of mean memory-queue length with request service rate 

Table 3.4 gives the bandwidth values for K = 1, which corresponds to the case 

taken up in Section 3.1.1. The bandwidth values obtained by increasing the value of 

K to 5, are displayed in Table 3.5, while Table 3.6 gives the bandwidths for K = 5 but 

with increased m. It is observed from the results above that the memory bandwidth 

increases as the number, K, of hot spots is increased, because the greater memory 

traffic towards the hot memories is now distributed among the new modules. This 

leads to a decrease in the number of requesting processors queued up for memory 

access, thereby increasing the overall bandwidth. It is also observed that the band-

widths increase slightly as the probability of accessing hot modules, m, is increased. 

This will be true as long as there are sufficient number of hot memory modules to 

take care of the increased traffic in their direction. Here, for N = 2, five hot modules 

(refer Tables 3.5 and 3.6) are more than sufficient, as there cannot be more than 

two simultaneous requests to the hot modules. But, as we shall see in Chapter 4, in 

the general case of the N x M system, the bandwidth actually decreases when m is 

increased to the extent that the number of hot modules is not sufficient to meet the 

higher request rate. 
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3.3. 2 x M system, one hot spot with favorite memory 

We consider the system which has only one hot spot and also favorite memories among 

the non-hot modules. The term "favorite" is explained as follows. If a processor is 

accesssing the memory module Mi in the current cycle, then it will request the same 

memory module in the next cycle (provided it has completed its memory access by 

the current cycle) with probability a and the remaining M — I memory modules with 

probability 1 — a. Then the modified request rate of a processor to its favourite mem-

ory module is given as a A, and the modified request rate to non-favorite memories is 

(1 — a)A. We assume that the hot memory is not a favorite memory to any of the 

processors, and the favorite memory is one of the non-hot memories only. The states 

remain the same as in the case dealing with one hot memory and no favorite memory 

(Section 3.1). Only changes are in the case of some of the transition probabilities 

due to the introduction of one additional parameter a . The enumeration of states is 

repeated here for convenience. 

state state vector 

So < 0,0 > 

Si < 0 , 1 > 

s2 
< 0,1,1 > 

S3 < 0,2 > 

s4 
< 1,0 > 

s5 
< 1,1 > 

Se < 2,0 > 

The corresponding state transition probabilities are shown in Table 3.7. 

In this case, fx = ap + (1 - a)p(M - 2), f2 = ap+( 1 - a)p(M - 3), and all the 

other parameters are the same as in Section 3.1. 

The linear system of the state transition equations are solved by a standard linear 

system solver, for various values of the five input parameters A, //, a, m, and M, which 



48 

Table 3.7: State Transition Matrix of 2 xM system with hot spot and favorite 

memories 

states 0 1 2 3 4 5 6 

0 A 2 bin cd cp bm 2 cph Pi 

1 /iA2 2/iA/i + /LAA m/i d-\- fid M/lP+ fip fibm 2m/i Ph + P>Ph Wh 

2 /i2 A2 2/*/iA -F- /i26m p? + 2nfih + M2/I/2 2tifLap + v,2fiP fi2bm 2 fifiph + 

2v>2flPh 

V2Ph 

3 0 /iA fid fi + /iap 0 VPh 0 

4 /iA2 nbfh fxcd /u cp 
flX + fibm fic + 2 ixcph fiph + v>p\ 

5 m
2A2 

(iji A + M 2 2 A / I Lifid + M2 Si d M2 flP jjifi\ + /i26m fi2 + 

Viifl + HfiPh + 

2v2flPh 

filJLPh + (J.2p2
h 

6 0 0 0 0 /iA lie fi + Wh 

are respectively, the request rate, the service rate, probability of request to favorite 

memory, probability of request to the hot memory module, and the total number of 

memory modules. The output vector, {IIo, III, II2 . . . lie} of the linear system solver 

gives the limiting probabilities for the seven states, {So, S i . . . Se} of the processor-

memory system. The bandwidth of the system can be obtained by, BW = III + 2IT2 + 

113 + 114 + 2115 + He* The computation of mean queue length and mean waiting time 

for a processor request are exactly similar to those in Section 3.1.2. We can derive 

expressions for the mean waiting time for the favorite memory requests and that for 

the non-favorite requests to a non-hot memory module. Thus, we get MWTf = 

(i-m)Aa
 and MWTnf = (^mCombining the above two expressions for the 

M-1 
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waiting times in the favorite and non-favorite cases, the mean waiting time for a non-

hot memory module is given by, MWTnh = aMWTf + (1 — a)MWTnf, which gives 

exactly the same formula for MWTnh as derived in Section 3.1. 

Some of the values of bandwidth obtained for various values of the input parameters 

are shown in Tables 3.8 and 3.9. The variation of mean waiting time of a memory 

request with various A and yu is depicted graphically (Figure 3.4). 

Table 3.8: Memory bandwidth for various A and /x, M = 10, ra = 0.75 and 

a — 0.6. 

A 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 

0 . 1 . 9 1 

0 . 2 . 6 7 . 9 4 

0 . 3 . 5 2 . 8 2 . 9 8 

0 . 4 . 4 2 . 7 1 . 9 0 1 . 0 2 

0 . 5 . 3 6 . 6 3 . 8 3 . 9 7 1 . 0 6 

0 . 6 . 3 1 . 5 7 . 7 7 . 9 2 1 . 0 3 1 . 1 0 

0 . 7 . 2 7 . 5 1 . 7 1 . 8 7 . 9 9 1 . 0 8 1 . 1 4 

0 . 8 . 2 4 . 4 7 . 6 6 . 8 3 . 9 6 1 . 0 6 1 . 1 2 1 . 1 7 

0 . 9 . 2 2 . 4 3 . 6 2 . 7 9 . 9 3 1 . 0 4 1 . 1 1 1 . 1 6 1 . 1 9 

1 . 0 . 2 0 . 3 9 . 5 8 . 7 5 . 9 0 1 . 0 1 1 . 1 0 1 . 1 6 1 . 1 9 1 . 2 
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Table 3.9: Memory bandwidth for various a and fi, M = 10, m = 0.75 and 

a = 0.9. 

A 

M 

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 

0 . 1 . 9 1 

0 . 2 . 6 7 . 9 4 

0 . 3 . 5 2 . 8 2 . 9 8 

0 . 4 . 4 2 . 7 1 . 9 0 1 . 0 2 

0 . 5 . 3 6 . 6 3 . 8 3 . 9 7 1 . 0 6 

0 . 6 . 3 1 . 5 7 . 7 7 . 9 2 1 . 0 3 1 , 1 0 

0 . 7 . 2 7 . 5 1 . 7 1 . 8 7 . 9 9 1 . 0 8 1 . 1 4 

0 . 8 . 2 4 . 4 7 . 6 6 . 8 3 . 9 6 1 . 0 6 1 . 1 3 1 . 1 7 

0 . 9 . 2 2 . 4 3 . 6 2 . 7 9 . 9 3 1 . 0 4 1 . 1 1 1 . 1 7 1 . 2 

1 . 0 . 2 0 . 4 . 5 9 . 7 5 . 9 0 1 . 0 2 1 . 1 0 1 . 1 6 1 . 2 1 . 2 1 

M« 10,N*2 

— Series 1 

-*• Series 2 

• Series 3 

0.1 0.2 0 3 0.4 0.5 0.6 0.7 0.8 0.9 1 , 

Favorite memory case, alpha=0.9 

Figure 3.4: Variation of mean mean waiting time with request service rate 
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With the same values of M and m and with a > .5 the average bandwidth in 

case of the system with favorite memory modules is less than that without such 

modules. This can be intuitively seen as follows. Without favorite memories, the 

processors' requests to non-hot memory modules are evenly distributed, while with 

the introduction of favorite memories, the requests tend to queue up to the same 

memory modules thereby decreasing the average number of active memories and 

hence the overall bandwidth. 

3.4. N x 2 system, one hot and one non-hot non-favorite memory 

There are N processors and 2 memory modules in the system. Out of these two 

modules, one is hot and the other is non-hot. We do not consider here the favorite 

memory case. We also assume that the probability of request by a processor at any 

memory cycle is unity. That is, A = 1. Consequently, fi = 1 too. This assumption, 

though unrealistic, considerably simplifies the model. The number of states in this 

case is N + 1. The state vectors are as follows. 

state state vector 

So < N , 0 > 

SI 

A
 

r-H
 

T
-H
 

1 V
 

s2 
< N - 2 , 2 > 

SN/2 < N/2, N/2 > 

SN-I < 1 , N - 1 > 

SN < 0 ,N> 

The Markov chain model for the system is shown in Figure 3.5. 
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Figure 3.5: Markov chain model for N x 2 system 

To find the state transition probabilities, we consider three cases. The general case 

is for the ith state, Si, of the Markov chain where i / 0 or N. Other two cases are 

for the boundary conditions, i.e. for the first and the last states of the chain (Fig. 3.5). 

Transition probabilities for state Si, where i ^ 0 or N. 

The probability of transition from state Si to the same state is given by = 

m( 1 — m). Let atj be the probability of transition from state Si to state Sj. Then, 

= m2 

a , = (1 - m)2 

Transition probabilities for state So. 

We need to compute only the outgoing transition probabilities for state So, as the 

incoming transition probabilities will be the same as in the general case. The required 

transition probabilities are obtained as follows: 

«o,o = m 

«o,i = 1 — to 

ai.i = a.\», for i = 1 

«i,o = 1) for i = 1 

Transition probabilities for state Sn-

We need to compute only the outgoing transition probabilities for state Sn, as the 

incoming transition probabilities will be the same as in the general case. Thus 

OCN N == 1 ~' m 
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&N,N-l = m 

&n-i,n-i — &i,i, for i = N — 1 

&n-i,n = a.-.i-i, for i = AT - 1 

3.4.1. Solutions of the state transition equations. 

The state transition equations of the system are solved to obtain the limiting proba-

bilities of the states in our Markov model. Let II; denote the limiting probability of 

state Si. Solving the state equations, 

\ 2 i - l . 

no = ,. and n i = a ^ - n „ , where, I 
m2(l—i) 

The bandwidth is given by 

BW = n0 + 2(IIi + XI2 + • • • + Iljv-i) + Iljv 

= 2(n0 + iij 1I2 "f* • • • + nN_i + uN) — n0 — n# 

= 2 — IIo — IIjv-

Next the mean queue length and the mean waiting time of the system is computed 

in a similar manner as described in Sections 3.1 and 3.2. The mean queue length of 

the requests in the hot memory module is given from the state table as, 

MQLh — iVn0 4- (N — 1) IIx + (N — 2)112 + • • • 4- UN-i 
N-l N—l 

= w £ n , - - £ in< 

- N { 1 - n N ) - - ^ F - { j r n r — r r r 1 " 1 ' 

The mean queue length of the requests in the non-hot memory module is given 

from the state table as, 

MQLnh -= IIi + 2II2 + 3II3 + ... + NHjsf 
(1 -- m) 1 — lN NlN 

rn2 (1 - I)2 ~ 



54 

From Little's law, M W T ' h = M ^ h and M W T n h = ^ S m j x • ^he m e a n waiting time 

for a memory request in the system is given below. 

M W T S = m x M W T h + (1 - m) x MWTnfc 

( M Q L h + M Q L n h ) 

A 

The expression for the mean queue length of the system is, from the state table for 

the N x 2 system and the limiting probabilities of the states, given by: 

M Q L S = N U 0 + ( N - 1 ) U 1 + ( N - 2 ) I 1 2 + . . . + j E k + ( J + 1 ) U k + 1 + . . . + N U n 

N N 
2 2 AT N N 

i v £ n i - X > ' n i + ? £ n f + £ i n " 
,-=0 .-=1 z

 i =^;+ 1 i = £ + i 

which after some manipulation gives the following closed form solution for MQLS. 

\ f n r - AT N { l - m ) N ^ { l - l ^ ) r j . (l-m)r{l-m)" i 1 f 1—1% f '^"ITr 
MQLS - iV - y ' roW2(i_/) n o + ^ 2 - (1̂ 7) j11q-

The bandwidths are evaluated for various values of m and N. As expected, the 

bandwidth value deteriorated as the value of m is increased, due to the fact that 

an increase in m results in progressive accumulation of the memory requests in the 

hot memory module, which remain unserviced due to the lack of memory modules, 

thereby decreasing the effective bandwidth. The results are shown in Table 3.10. For 

the same values of the input parameters, the mean queue lengths are depicted in 

Figure 3.6. 
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Table 3.10: Memory bandwidths with various values of m and N for the 

N x 2 system 

m II
 

to
 N = 5 II
 

O
 N = 1 5 

O
 

C
N

 

II 
. 5 5 1 . 1 9 1 . 4 7 1 . 5 8 1 . 5 9 1 . 5 9 

. 6 5 1 . 3 2 1 . 4 4 1 . 4 5 1 . 4 5 1 . 4 5 

. 7 5 1 . 2 7 1 . 3 0 1 . 3 0 1 . 3 0 1 . 3 0 

. 8 5 1 . 1 6 1 . 1 7 1 . 1 7 1 . 1 7 1 . 1 7 

. 9 5 1 . 0 5 1 . 0 5 1 . 0 5 1 . 0 5 1 . 0 5 

MQL 

— Series 1 

Series 2 

Series 3 

— Series 4 

0.50.550.60.650.70.750.80.850.90.95 1 m - - > 

For a system with N processors and 2 memory modules 

Figure 3.6: Mean queue length with probabilty of requesting hot modules 

3.5. Conclusion 

In this chapter we developed a discrete Markov model for analyzing memory inter-

ference in a 2 x M and N x 2 multiprocessor system. A step by step approach is 

followed in developing the model. First, a Markov model is developed for a system 

with one hot-spot and no favorite memories, which was later extended to a system 

with K hot-spots. Next, the model for a system consisting of one hot and multiple 
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favorite memories is developed. The probabilistic analysis of bandwidth, mean queue 

length and mean waiting time are done in each case and the results are shown either 

in tabular form or in the form of graphs. 



CHAPTER 4 

SIMULATION OF PROCESSOR MEMORY INTERCONNECTION SYSTEM 

To analyze the general case of an N x M system with K hot-spots and favorite 

memories, the more common practise of simulation is resorted to. The number of 

states in the Markov model become prohibitively large for AT, N > 3 and so it is 

almost impossible to derive an analytical model for such a system [1]. 

4.1. Simulation Environment 

The sequential simulation of the processor-memory interconnection is carried out for 

a thousand simulation cycles. The simulation program has two main parts. The 

first part simulates the activity of the processors e.g. generating memory requests, 

which again can be directed to three distinct types of memory modules, namely, hot 

memories, favorite memories, and non-hot, non-favorite memories. The second part 

deals with the simulation of the activities of the memory modules, e.g. selecting the 

next processor request from the buffer if the current request is completed, otherwise 

continue serving the current request. The various input parameters to the simulation 

program are, memory service rate n, memory request arrival rate A, hot memory 

request rate m, number of memory modules M, number of hot modules K, and 

number of processors N. The simulation results are also used to validate the analytic 

results from the special case we considered, namely, 2 x M system with K hot-spots, 

with and without favorite memories. Simulation was carried out for the cases with 

favorite memories and without, separately. The results of the simulation are tabulated 

below for various values of the input parameters, namely, X,p,,K,M,N and m. The 

results are seen to tally well with the analytical results in the special cases. 

57 
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4.2. Simulation of N x M system with K hot and M — K non-favorite memories 

The effective memory band widths from the simulation experiment for the various val-

ues of the input parameters are tabulated below. Tables 4.1 and 4.2 are the simulation 

counter-parts of the analytic results displayed in tables 3.4 and 3.5 respectively. 

Table 4.1: Memory bandwidth for K = 1,M = 10, N = 2 and m = 0.75. 

A 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 

0 . 1 . 7 5 

0 . 2 . 5 5 . 8 4 

0 . 3 . 5 4 . 9 2 . 9 7 

0 . 4 . 4 0 . 6 5 1 . 0 1 1 . 3 3 

0 . 5 . 3 6 . 7 9 . 8 1 1 . 0 6 1 . 1 1 

0 . 6 . 3 0 . 6 0 . 8 5 . 8 9 1 . 1 9 1 . 1 8 

0 . 7 . 2 4 . 3 7 . 7 1 . 8 7 1 . 0 1 1 . 1 8 1 . 1 6 

0 . 8 . 1 2 . 3 9 . 6 7 . 9 3 . 8 1 1 . 0 2 1 . 1 3 1 . 2 5 

0 . 9 . 2 6 . 3 6 . 6 1 . 7 8 1 . 0 1 1 . 0 2 1 . 1 6 1 . 2 6 1 . 2 3 

1 . 0 . 1 4 . 3 6 . 6 2 . 7 0 . 8 0 1 . 0 2 1 . 1 6 1 . 2 3 1 . 2 3 1 . 2 6 
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Table 4.2: Memory bandwidth for K = 5, M = 10, N = 2 and m = 0.75. 

A 

V 

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 

0 . 1 1 . 2 2 

0 . 2 . 6 1 1 . 0 7 

0 . 3 . 7 3 . 8 1 1 . 3 6 

0 . 4 . 4 5 . 7 6 1 . 0 5 1 . 2 6 

0 . 5 . 3 7 . 6 9 . 8 0 1 . 1 9 1 . 1 6 

0 . 6 . 1 9 . 7 0 . 7 4 1 . 0 9 1 . 2 7 1 . 3 2 

0 . 7 . 3 4 . 3 7 . 8 3 1 . 0 2 1 . 0 2 1 . 2 1 1 . 5 3 

0 . 8 . 2 2 . 4 3 . 6 1 . 8 2 1 . 0 7 1 . 2 3 1 . 4 7 1 . 4 6 

0 . 9 . 3 5 . 4 6 . 5 2 . 8 7 1 . 1 5 1 . 2 2 1 . 4 1 1 . 4 9 1 . 6 7 

1 . 0 . 1 5 . 5 5 . 6 1 . 8 4 . 8 3 1 . 0 5 1 . 3 4 1 . 6 2 1 . 7 0 1 . 8 4 

Table 4.3: Memory bandwidth for K = 20, M = 50, N = 30 and m = 0.75. 

A 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 

0,1 9 . 9 4 

0 . 2 8 . 8 7 1 1 . 7 8 

0 . 3 7 . 3 1 1 1 . 0 3 1 2 . 8 5 

0 . 4 6 . 1 1 1 0 . 1 4 1 2 . 2 3 1 3 . 3 9 

0 . 5 5 . 6 7 8 . 9 6 1 0 . 7 8 1 2 . 8 8 1 3 . 3 0 

0 . 6 4 . 6 6 8 . 2 1 1 0 . 3 2 1 2 . 8 0 1 3 . 3 8 1 3 . 8 3 

0 . 7 4 . 1 5 7 . 3 9 9 . 9 9 1 1 . 8 3 1 3 . 2 8 1 4 . 8 3 1 4 . 3 6 

0 . 8 3 . 6 5 6 . 7 9 9 . 2 0 1 1 . 6 5 1 2 . 8 4 1 3 . 9 4 1 4 . 7 1 1 5 . 8 2 

0 . 9 3 . 4 5 6 . 2 5 9 . 3 9 1 0 . 8 8 1 2 . 8 6 1 4 . 7 6 1 4 . 7 7 1 6 . 1 8 1 5 . 9 

1 . 0 3 . 2 4 5 . 7 0 8 . 5 9 1 1 . 0 4 1 2 . 5 7 1 3 . 9 0 1 5 . 0 2 1 5 . 7 9 1 7 . 1 1 1 6 . 8 5 
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Table 4.4: Memory bandwidth for k = 75, M = 100, N = 60 and m — 0.75. 

A 

n 
0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 

0 . 1 2 4 . 1 1 

0 . 2 1 9 . 5 6 2 6 . 5 9 

0 . 3 1 3 . 6 6 2 4 . 0 0 2 8 . 7 9 

0 . 4 1 2 . 7 1 2 0 . 3 4 2 6 . 1 5 3 0 . 4 1 

0 . 5 1 0 . 7 1 1 8 . 5 9 2 3 . 8 3 2 8 . 9 8 3 2 . 0 0 

0 . 6 9 . 3 1 1 6 . 5 4 2 1 . 8 6 2 6 . 8 7 3 0 . 4 2 3 2 . 3 9 

0 . 7 8 . 6 7 1 5 . 5 9 2 1 . 1 0 2 5 . 7 9 3 0 . 2 6 3 2 . 9 0 3 3 . 7 7 

0 . 8 6 . 9 7 1 4 . 1 8 1 9 . 2 0 2 4 . 4 9 2 9 . 4 2 3 2 . 0 9 3 5 . 5 7 3 6 . 1 8 

0 . 9 6 . 3 5 1 2 . 2 4 1 8 . 8 7 2 3 . 2 7 2 8 . 2 0 3 2 . 0 0 3 4 . 0 2 3 6 . 4 9 3 8 . 0 9 

L . O 5 . 7 3 1 2 . 0 0 1 7 . 6 2 2 2 . 9 2 2 6 . 5 1 3 0 . 2 2 3 3 . 8 4 3 6 . 8 0 3 9 . 3 4 4 0 . 0 3 

a m d a = . 3 

1 a m d a * : t 

M « 1 D , N s s 2 , K s s t 

- Series 1 

- Series 2 

*- Series 3 

3.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

e simulation of a system with K hot spots arid rv 

Figure 4.1: Variation of mean memory-queue length with request service rate 

We note from the above results that the effective bandwidth of the system de-

creases with increasing service rate fi, the request arrival rate A being kept constant. 

This has the same explanation as in the analytic case, that, increse in service rate 

with the arrival rate constant means a faster rate of processing without any increase in 



61 

input, which will correspondingly lead to lesser number of active processing elements 

which, in this case, are the memory modules. On the other hand, the bandwidth 

increases with increasing A for constant fi because the increased request rate leads to 

an increase in the number of active memory modules. Figure 4.1 shows graphically 

the variation of mean queue length with ji for constant A. The variation shows the 

same pattern as in the analytical case (Figure 3.3). 

Keeping the values of A and ft constant, the variation of bandwidth with K showed 

a definite pattern. With M = 50, the variation of bandwidth with K for N = 

10,20,30 and 40 is observed. The bandwidth of the system seems to increase at 

first almost linearly with K and then at a progressively lower rate, until it almost 

saturates with the variation of K. When N is kept constant, and the variation of 

bandwidth with K is observed for M = 10,20,30 and 40, it showed similar patterns 

and it also decreases substantially after saturation. The value of K at which the 

change of bandwidth is almost insignificant is called the saturation value of K. The 

bandwidths shown in Table 4.5 are for four particular values of N and M in a system 

consisting of fifty memory modules and fifty processors respectively. The values of A 

and are assumed to be unity. 



Table 4.5: Memory bandwidths for various values of K, with \ = fi 

using simulation 

1, 
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K M = 50 N = 50 

o II 
^! 

o 
i 

II I 

II C
O
 

°
 o II S
: II o M = 20 o C

O
 

II 
§ S

: II O
 

1 1.37 1.30 1.42 1.36 1.47 1.49 1.46 1.46 

2 2.76 2.83 2.84 2.95 2.81 2.88 2.84 2.84 

3 3.43 3.90 3.96 4.19 4.18 4.07 4.19 4.34 

4 4.77 5.08 5.17 5.33 4.96 5.40 5.36 5.49 

5 5.48 5.58 6.71 6.40 6.51 6.47 6.61 6.88 

6 5.62 7.49 7.65 7.82 7.11 7.38 7.84 7.48 

7 6.45 8.12 7.95 8.80 7.09 8.92 9.05 9.07 

8 6.84 9.14 9.24 9.91 7.08 9.52 10.07 10.33 

9 6.96 9.36 9.96 10.84 5.05 9.63 10.48 10.98 

10 7.26 10.34 11.30 11.95 12.01 12.29 12.37 

11 7.50 10.31 12.06 12.21 12.33 12.69 12.47 

12 7.62 10.83 12.85 13.08 12.02 13.39 13.52 

13 7.49 12.04 12.81 14.99 12.79 14.13 15.47 

14 8.02 12.03 13.86 14.73 14.14 14.34 16.09 

15 8.18 13.02 15.08 15.40 13.57 16.67 16.92 

16 8.06 12.84 15.38 16.96 13.95 16.58 16.77 

17 8.17 13.46 15.90 17.92 12.18 17.35 16.71 

18 8.63 13.76 16.62 17.90 8.80 18.11 16.86 

19 8.39 13.71 16.96 17.56 5.37 17.85 17.27 

20 8.54 13.78 16.79 18.43 17.77 21.35 

21 8.34 14.35 16.90 18.35 18.44 21.60 

22 8.27 14.86 17.37 19.17 17.87 21.20 

23 8.73 14.26 18.35 20.75 18.70 21.46 

24 8.49 14.95 18.23 22.12 19.09 22.48 

25 9.05 15.68 19.66 22.75 18.29 22.27 

26 8.96 15.31 19.88 21.87 14.75 22.39 

27 8.91 15.45 19.96 23.17 12.88 22.39 

28 8.77 14.96 20.32 23.41 9.36 22.3 

29 9.05 15.20 20.13 23.59 4.71 21.99 

30 8.94 15.64 19.82 22.92 22.32 

31 8.89 15.47 20.52 23.62 23.48 

32 9.09 15.82 20.29 23.71 24.43 

33 9.00 15.92 20.60 23.74 22.28 

34 8.88 15.74 20.03 23.37 21.43 

35 9.33 15.54 21.20 23.59 18.91 

36 9.05 15.65 21.03 23.92 16.37 

37 8.84 15.71 20.40 24.36 12.45 

38 9.04 15.78 20.91 24.75 9.33 

39 9.15 16.03 19.78 24.68 5.28 

40 9.10 15.82 20.44 24.29 
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BW M=50 

W-10 

vafawofK 

— Series 1 

-+- Series 2 

* Series 3 

•*- Series 4 

1 6 11 16 21 26 31 36 41 K--> 

Using simulation 

Figure 4.2: Variation of memory bandwidth with number of hot modules 
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BW 
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10 

N=50 
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M=30. 
\«=20 

"* 4̂=10 
J 

Saturation 

— Series 1 

-+- Series 2 

* Series 3 

Series 4 
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From simulation 

Figure 4.3: Variation of memory bandwidth with number of hot modules 

From the simulation results, the values of K at which the rate of change of band-
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width is very low are shown in the graphs (Figures 4.2 and 4.3). In the case where 

M is constant (M = 50), it appears that at K = 8 for N — 10, K = 16 for N = 20, 

K = 26 for N — 30 and K — 27 for N = 40, the bandwidths saturate. In the other 

case, for constant N = 50, it appears that at K = 6 for M = 10, K = 14 for M = 20, 

K — 24 for M = 30 and K — 32 for M = 40, the bandwidth saturates. These results 

will validate our probabilistic analysis in Section 5. 

We also notice a sharp decrease in the bandwidth value immediately after it sat-

urates. It can be intuitively explained as follows. As K is increased, the number of 

non-hot memory modules decreases. The decrease in bandwidth can be attributed to 

piling up of requests in the non-hot memory modules. Since the rate of request arrival 

in non-hot modules is less than that of hot modules, the effect is delayed. However, 

if m w .5, it is expected that the bandwidth curve will be more symmetrical, with 

the bandwidth reaching a maximum value at K ~ y. 

4.3. Simulation of N x M system with K hot spots and favorite memories 

The effective memory bandwidths from the simulation experiment for the various 

values of the input parameters are tabulated. Tables 4.6 and 4.7 are the simulation 

counter-parts of the analytic results displayed in tables 3.8 and 3.9 respectively. 
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Table 4.6: Memory bandwidth for various A and /x, k = 1, M = 10, TV = 2, m 

0.75 and a = 0.6. 

A 

A* 

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 

0 . 1 . 7 5 

0 . 2 . 6 0 . 8 7 

0 . 3 . 4 3 . 8 7 1 . 1 4 

0 . 4 . 4 6 . 6 6 . 9 3 1 . 1 0 

0 . 5 . 4 4 . 6 3 . 8 0 1 . 0 2 1 . 1 9 

0 . 6 . 3 5 . 5 0 . 8 0 1 . 0 0 1 . 1 1 1 . 2 4 

0 . 7 . 1 . 5 2 . 5 7 . 8 5 1 . 0 6 1 . 1 4 1 . 1 7 

0 . 8 . 2 3 . 5 3 . 5 6 . 8 8 1 . 0 0 1 . 0 5 1 . 1 4 1 . 1 7 

0 . 9 . 2 2 . 4 4 . 6 7 . 8 4 . 9 3 1 . 0 4 1 . 2 5 1 . 2 0 1 . 2 4 

1 . 0 . 2 2 . 3 5 . 5 6 . 7 2 . 9 7 1 . 1 1 1 . 1 5 1 . 2 6 1 . 2 4 1 . 3 0 

Table 4.7: Memory bandwidth for various A and n, K = 1, M — 10, N = 2, m 

0.75 and a = 0.9. 

A 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 

0 . 1 . 7 5 

0 . 2 . 5 3 . 8 6 

0 . 3 . 4 3 . 7 3 . 9 8 

0 . 4 . 4 7 . 7 1 1 . 0 0 1 . 1 8 

0 . 5 . 3 8 . 7 7 . 8 4 1 . 0 3 1 . 0 9 

0 . 6 . 3 4 . 5 7 . 9 1 . 8 9 1 . 1 4 1 . 1 7 

0 . 7 . 2 3 . 4 5 . 6 7 . 8 6 . 9 9 1 . 2 2 1 . 1 3 

0 . 8 . 1 0 . 4 3 . 7 0 . 8 4 . 8 3 1 . 0 0 1 . 1 3 1 . 2 7 

0 . 9 . 2 6 . 3 6 . 6 2 . 8 5 1 . 0 5 1 . 1 1 1 . 1 3 1 . 2 6 1 . 3 

1 . 0 . 2 1 . 3 4 . 6 3 . 6 9 . 9 3 1 . 0 2 1 . 1 9 1 . 2 0 1 . 2 6 1 . 2 9 
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Table 4.8: Memory bandwidth for various A and K = 20, M = 50,7V = 

30, m = 0.75 and a = 0.9. 

A 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0 

0 . 1 5 . 9 2 

0 . 2 5 . 6 5 7 . 5 6 

0 . 3 5 . 8 5 9 . 3 8 . 1 4 

0 . 4 6 . 3 7 8 . 8 6 1 0 . 5 5 1 1 . 1 4 

0 . 5 5 . 0 1 8 . 4 0 1 1 . 2 6 1 2 . 8 6 1 3 . 0 7 

0 . 6 4 . 8 1 8 . 1 0 1 0 . 5 8 1 2 . 1 3 1 3 . 3 9 1 4 . 6 4 

0 . 7 3 . 8 6 7 . 7 3 1 0 . 1 1 1 2 . 0 3 1 3 . 5 4 1 3 . 8 8 1 4 . 4 3 

0 . 8 3 . 4 9 7 . 0 8 9 . 4 1 1 1 . 3 5 1 3 . 1 6 1 4 . 0 8 1 5 . 1 3 1 5 . 7 8 

0 . 9 2 . 9 7 6 . 5 3 9 . 0 6 1 1 . 9 0 1 2 . 5 0 1 4 . 4 5 1 4 . 3 5 1 5 . 4 8 1 6 . 4 0 

1 . 0 3 . 0 1 5 . 8 3 8 . 1 8 1 0 . 8 0 1 3 . 0 7 1 4 . 1 0 1 5 . 3 5 1 5 . 7 0 1 6 . 4 7 1 7 . 2 1 

We see that, if the probability of accessing the favorite module is increased for a 

processor, all other conditions remaining the same, the bandwidth seems to decrease 

in most cases. This pattern is also seen in our analytic results, and can be explained 

by the fact that increasing a leads to an increase in the request rate to the same 

memory module, thereby leading to a piling up of requests in the memory queues. 

This leads to a decrease in the average number of active modules thereby decreasing 

the bandwidth. In fact, comparing tables 13 and 18, which give the bandwidth 

values for a general system configuration (M = 50, TV = 30, K = 20) without favorite 

memories and with favorite memories respectively, we can draw the same conclusion. 

4.4. Conclusion 

In this chapter, we have described in moderate detail the implementation of the 

simulation environment for an TV x M multiprocessor system and compared some of 

the results with the analytical results obtained for a 2 x M and TV x 2 system. First, 

the simulation studies for an TV x M system with K hot and M — K non-favorite 
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memories are carried out, and then the experiments are extended to include favorite 

memories as well. In the first case, the variation of memory bandwidth with the 

number of hot modules, K, is also studied for various values of N and M. In all 

cases the bandwidth value seems to saturate after a certain value of K less than 

min(N, M). 



CHAPTER 5 

PROBABILISTIC MODEL WITH ONLY HOT SPOTS 

Consider for the moment the case where intra-cycle uniformity of memory requests 

is assumed. In that case we assume that once a processor's memory request is failed 

due to memory interference, it is altogether discarded in that cycle or the next. To 

compute the bandwidth in such a case, we proceed as follows. 

Let BWh and BWnh denote the average number of active hot memory units and 

active non-hot, non-favorite memory modules respectively. In other words, BWh de-

notes the contribution to the effective bandwidth from the hot memory modules, and 

BWnh gives the contribution from non-hot memories. If K is the number of hot mem-

ory modules in the system, then according to [1], BWh — K 1 — (l — j, where 

gives the probability of requesting a particular hot memory module. Similarly, 

for the non-hot memory modules, BWnh = (M — K) 1 — ^1 — A
j^~^)JVJ. Hence the 

effective memory bandwidth for the entire system is 

, AH 
BWa = K l - ( l - f ) +(M-K) i - ( i - A l £ g l ) w 

But this is an approximate analysis of the bandwidth as in a more realistic situation 

the rejected memory requests are not discarded, but stored in order to make a fresh 

attempt in the next cycle. We will consider this case next following an iterative tech-

nique laid down by Mudge [20] to compute the effective bandwidth of the system. 

Let us assume that the rejected memory requests are resubmitted in the next cy-

cle following a uniform distribution. This assumption over-estimates the bandwidth, 

because multiple rejected requests to the same memory module will be evenly dis-

tributed to all memory modules in the next cycle. Still, it gives a better estimate of 

the bandwidth than that given by equation . 

68 
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Let /3/i and /3nh be the modified request rates for the hot and non-hot memory 

modules. Following the scheme laid down in [20], we get the following iterative 

equation to evaluate the values of /3's 

where BW* denotes either ( i )BW h or ( i i )BWn h and p represents Am and A(1 — m) 

for case (i) and (ii) respectively, and BW*(/3i) is obtained by replacing p by (3h or 

(3nh as the case may be. Solution for when substituted in equation , gives a new 

value of bandwidth which is much more closer to that in the real situation. 

Our simulation results (Table 4.5) reveal that for given values of M (the number 

of memory modules), N (the number of processors) and assuming A and fj, to be one, 

the memory bandwidth increases almost linearly with K (the number of hot spots) 

for low values of K. As the value of K continues to increase, the rate of increase 

of bandwidth decreases, and after some critical value of K, the bandwidth doesn't 

increase at all. We now propose a method to find out approximately this critical value 

of K for given M and N. The bandwidth evaluated by the preceding iterative scheme 

gives the closest possible approximation of the actual bandwidth, the only difference 

is due to the fact that, a rejected memory request instead of being repeated to the 

same memory module in the next cycle is uniformly distributed among all the memory 

modules. Still the analytical results seem to be close to the simulation results. Using 

this scheme, we propose the following heuristic to evaluate an approximate value of 

K beyond which we expect to get very little improvement on the bandwidth. 

Heuristic : 

Step 1: Initialize K to 1. 

Step 2: Set M, N and m to given values; set A and /x to 1, 

and start with an initial estimate of /?, in the range 0 < /? < 1. 
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Step 3: Apply a non-linear equation solver to evaluate (3 

using new estimates of BW (from equation ) in successive stages. 

Step 4: Use this (3 to get the final estimate of BW. 

Step 5: Check the relative rate of change of bandwidth. 

If the rate > e (e is a predefined small value), then increment K 

and go to step 2. Else print the current value of K. 

The proposed heuristic was implemented using a Fortran non-linear equation 

solver package and estimated the saturation value of K beyond which there is lit-

tle or no change of memory bandwidth. The results obtained were quite satisfactory. 

While the iterative scheme to evaluate the bandwidth gave results which differed from 

those obtained from actual simulation to a small extent, the basic trend of the vari-

ations was remarkably similar. This is apparent from comparision of Tables 4.5 and 

5.1. The variations are also depicted graphically (Figures 5.1, 5.2) for comparision. In 

all cases, the rate of change of the bandwidth progressively decreases for higher values 

of K. Our analytical model gives good estimates of memory bandwidths, although it 

tends to over-estimate bandwidths more for lower values of K than for higher values. 

Our analytical model also captures the decrease in bandwidth after saturation, for 

increasing K, although the decrease is not as substantial as found in the experiments. 

Applying the heuristic, the saturation values of K are found to be K = 8,18,26 

and 32, respectively for N = 10,20,30 and 40 and M = 50. When N is kept constant 

at 50, the saturation values of K are 6,14,22 and 30, respectively for M = 10,20,30 

and 40. Compare these results with the values of K obtained from the experiments 

under similar conditions (same values of the other parameters), which are 6,16,26, 

27 and 8,16,24, and 32, respectively, in either case. 



Table 5.1: Memory bandwidths with various values of K, with A = /x = 1, 

using probabilistic model 
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1 3.46 8.18 5.86 10.43 8.75 11.19 11.98 12.37 

2 4.46 9.17 6.85 11.41 9.22 12.06 12.93 13.34 

3 5.37 10.16 7.85 12.40 9.59 12.92 13.87 14.31 

4 6.11 11.15 8.81 13.39 9.83 13.76 14.81 15.28 

5 6.67 12.14 9.75 14.37 9.95 14.59 15.74 16.24 

6 7.10 13.10 10.55 15.35 9.99 15.38 16.67 17.20 

7 7.44 14.02 11.35 16.32 9.99 16.14 17.59 18.16 

8 7.71 14.87 11.98 17.27 9.98 16.86 18.49 19.11 

9 7.93 15.71 12.60 18.19 9.96 17.52 19.37 20.04 

10 8.11 16.46 13.10 19.07 18.11 20.23 20.95 

11 8.26 17.17 13.56 19.91 18.61 21.05 21.84 

12 8.39 17.78 13.94 20.70 18.99 21.83 22.69 

13 8.50 18.39 14.31 21.45 19.23 22.56 23.51 

14 8.59 18.91 14.61 22.16 19.31 23.35 24.29 

15 8.68 19.42 14.90 22.82 19.24 23.87 25.03 

16 8.75 19.87 15.14 23.43 19.05 24.44 25.73 

17 8.81 20.28 15.38 24.01 18.79 24.95 26.39 

18 8.87 20.67 15.59 24.54 18.49 25.38 27.00 

19 8.92 21.00 15.77 25.04 18.16 25.73 27.57 

20 8.97 21.33 15.90 25.51 25.99 28.10 

21 9.01 21.62 16.09 25.94 26.15 28.59 

22 9.05 21.89 16.23 26.35 26.20 29.04 

23 9.09 22.14 16.36 26.72 26.11 29.44 

24 9.12 22.37 16.48 27.07 25.87 29.80 

25 9.15 22.58 16.58 27.39 25.48 30.11 

26 9.17 22.77 16.68 27.69 24.98 30.38 

27 9.20 22.95 16.77 27.97 24.43 30.59 

28 9.22 23.12 16.86 28.22 23.86 30.74 

29 9.24 23.27 16.93 28.45 23.26 30.83 

30 9.26 23.41 17.0 28.67 30.85 

31 9.27 23.53 17.06 28.86 30.77 

32 9.29 23.64 17.11 29.03 30.60 

33 9.30 23.72 17.16 29.17 30.30 

34 9.31 23.82 17.20 29.30 29.86 

35 9.32 23.88 17.24 29.40 29.29 

36 9.33 23.94 17.27 29.47 28.62 

37 9.34 23.97 17.29 29.52 27.91 

38 9.34 23.99 17.30 29.53 27.18 

39 9.34 23.98 17.30 29.51 26.44 

40 9.34 23.94 17.28 29.43 
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Figure 5.1: Variation of memory bandwidth with number of hot modules 
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Figure 5.2: Variation of memory bandwidth with number of hot modules 
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5.1. Conclusion 

In this chapter, we have developed an approximate probabilistic model for memory 

interference in an N x M multiprocessor system with K hot-spots. The iterative 

method formulated to give a good estimate of the bandwidth is used in the heuristic 

presented to estimate the saturation value of K beyond which the memory bandwidth 

is expected not to show any significant increase. The heuristic is implemented using 

a standard Fortran non-linear equation solver, and the results obtained are compared 

with that obtained from simulation experiments. Both results are shown to agree 

very well. 



CHAPTER 6 

CONCLUSIONS 

In this thesis, we have presented an analysis of memory interference in multiprocessor 

systems consisting of various types of non-uniformities in memory access patterns. A 

discrete Markov chain is used to model the memory reference pattern in a set of 

memory modules constituting of hot spots, favorite memories or neither of these two, 

depending on the type of access non-uniformity. A step-by-step approach is taken to 

develop the model. First, a system consisting of one hot spot and no favorite memory 

modules is considered, which is then extended to K hot spots. Next, the system 

consisting of hot spot and favorite memories is developed. The last case considered is 

the system with N processors and two memory modules, one of them being a hot spot. 

Analytic expressions for bandwidth are derived for the very first and the last cases, 

while a linear sytem solver is used to solve the state transition equations in the others, 

of the four cases considered. For the general case of the N x M system, the more 

common practise of simulation is resorted to. Simulation is carried out for systems 

with hot spots only and systems with both hot spots and favorite memories. The 

simulation results are found to tally well with our analytic results in the special cases. 

A peculiar behavior of the system performance was observed when the bandwidth 

was computed from the simulation gradually increasing the number of hot memory 

modules. The bandwidth at first increased almost linearly with K, but saturated 

after some optimum value of K. A heuristic is proposed to evaluate the optimum 

value of K using an approximate probabilistic model of the memory interference. The 

model is approximate because it over-estimates bandwidth. However the value of K 

obtained from that heuristic seems to be a good approximation of the optimum value 

of K. 

We have seen that the performance of the processor memory interconnection sys-
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tem actually improves with the increase in the number of hot memory modules, and 

presented a method of finding the upper bound on this number beyond which the im-

provemnent virtually stops. It might be concluded that in a system with hot spots, 

distributing the shared variables in more than one memory modues is a good idea, 

as long as the number of newly added modules is below the saturation value of K. 

An interesting problem might be to look into a particular interconnection mechanism 

(e.g a bus based system), and analyse its performance in presence of all the various 

types of memory reference non-uniformity. 
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