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Abstract 

In this papel; by utilizing the circuit-switched communi- 
cation modules of the hypercube nodes, we present a scheme 
where a (d - 1)-dimensional subcube is allocated in afaulty 
d-dimensional hyperc,ube in the presence of up to 2(“-]) 
faulty nodes. The scheme is then extended to allocate a 
(d - 1)-dimensional subcube in the presence of a combi- 
nation of faulty node,s and faulty links. Theoretical and 
simulation results are presented to analyze the performance 
of the scheme. 

1. Introduction 

Multiprocessors based on the hypercube interconnection 
topology are being widely used for a range of scientific and 
real-time applications. Numerous research efforts have been 
undertaken to make the hypercube functional in the presence 
of faulty components. One of the approaches is finding the 
maximum dimensional fault-free subcube of a faulty hy- 
percube [l, 81. However, two faulty nodes in antipodal 
positions destroy every fault-free (d - 1)-dimensional sub- 
cube and thus degrade the performance of the hypercube by 
a factor of 4. To overcome this, Chang and Bhuyan [2] have 
proposed a scheme that utilizes the properties of circuit- 
switched communicat:ion to maintain a (d - 1)-dimensional 
subcube in the presence of up to [;I faulty nodes. The pro- 
cedure first constructs a (d - 1)-dimensional subcube with 
the least number of faulty nodes. The faulty nodes in the 
selected (d - 1)-dimensional subcube are then replaced by 
the healthy nodes in the other subcube. The reconfiguration 
can fail if any of the nodes which are two or fewer hops 
away from a faulty node of the selected subcube is faulty as 
well. 

In this paper, we present a scheme for circuit-switched 
hypercubes where a (d- 1)-dimensional subcube is allocated 
in a faulty d-dimensional hypercube in the presence of up 
to 2cd-i) faulty node,s. Our scheme does not impose any 
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restriction on the distribution of faulty nodes. We then 
extend the scheme so that a (d - I)-dimensional subcube is 
allocated in the presence of a combination of faulty nodes 
and faulty links. 

The rest of the paper is organized as follows. An 
overview of our scheme under only faulty nodes is pre- 
sented in the next section. An optimal and a near optimal 
reconfiguration algorithm is described in Section 3. The 
proof of our theoretical bound is given in Section 4. In 
Section 5, construction of a fault-free (d - I)-dimensional 
subcube under only faulty links and combination of faulty 
nodes and faulty links is discussed and simulation results 
are presented. Finally, concluding remarks are given in 
Section 6. 

2. Construction of a Functional (d - l)- 
Dimensional Subcube 

Figure 1 depicts the architecture of a node in a 4- 
dimensional hypercube. Our scheme is based on the fact that 
in hypercubes with circuit-switched communication mod- 
ules [4], the communication time is nearly constant between 
any two given nodes. We assume that faulty nodes retain 
their ability to communicate. This is a common assumption 
since in hypercube multiprocessors such as the iPSC/860 [7], 
the computation and the communication modules of a node 
are separate. Furthermore, since the complexity of the com- 
putation unit is much greater than that of the communication 
one, the probability of a failure in the computation unit is 
much higher. This assumption may be ignored by duplicat- 
ing the communication module of each node. If the distri- 
bution of faulty nodes is such that every fault-free (d - l)- 
dimensional subcube is destroyed [8], we use the following 
procedure to construct a functional (d - l)-subcube. 

Partition the hypercube into two faulty (d - l)- 
dimensional subcubes along a dimension j (0 2 j 5 d - 1). 
Moreover, label the subcube with the lower number of faulty 
nodes Sub1 and the other subcube Sub2. Although j can be 
chosen from any of the d coordinates, selecting dimension 

1063-7133/96 $5.00 0 1996 IEEE 
Proceedings of ZPPS ‘96 

655 

Proceedings of the 10th International Parallel Processing Symposium (IPPS '96) 
1063-7133/96 $10.00 © 1996 IEEE 



0 Healthy Node 

,e 
Faulty Node 

Figure 2. Construction of a 3-cube in a faulty 
4-cube 

Figure 1. The architecture of a node in a 4- 
dimensional circuit-switched hypercube 

j such that Sub1 contains the least number of faulty nodes 
normally results in a faster reconfiguration. Let fi and hr 
respectively be the number of faulty and healthy nodes in 
Subl. Similarly, let f~ and h2 be the number of faulty and 
healthy nodes in Sub2. Since fr + hl = fi + h2 = 2cd-‘) 
and ft +fz < 2(d-1), then ft < 2(d-‘) - f2 or fr < h2; the 
number of healthy nodes in Sub2 is greater than or equal to 
the number of faulty nodes in Subl, 

Note that nodes of Sub1 and Sub2 form a 2(d-‘) matching 
along dimension j. In our scheme, Sub1 becomes a func- 
tional (cl - 1)-dimensional subcube by replacing each of its 
faulty nodes with a healthy node in Sub2 via edge-disjoint 
paths along dimension j and other possible edges in Sub2. 
Any healthy node that replaces a faulty node assumes its ad- 
dress label. Figure 2 illustrates a case in a 4-dimensional hy- 
percube where nodes 0000, 0001,0101,0110, 1001, 1010, 
1011, and 1110 are faulty. Setting j = 3, the subcube Ozzz 
is maintained by replacing the faulty nodes 0000, 0001, 
0101, and 0110 with the healthy nodes 1000, 1100, 1101, 
and 1111 respectively. The edge-disjoint paths between 
the healthy nodes in Sub2 and the faulty nodes in Sub1 are 
shown in the figure with bold solid and dashed lines. These 
paths are established during the reconfiguration and remain 
intact thereafter. Each of the edge-disjoint paths then be- 
comes an extension of the communication module of the 
faulty node in Subl. Figure 3 illustrates the construction 
of edge-disjoint paths associated with the faulty nodes 0000 
and 0001 of Figure 2. The bold solid and dashed lines in 
Figure 3 correspond to the similar lines in Figure 2. 

If a message is to originate from a faulty node in Subl, its 
healthy replacement in Sub2 sends the data to the injection 
channel as normal. Using the established path, the message 
reaches the communication module (CM) of the faulty node 
in Subl; the CM of the faulty node receives the data via 
input channel j (Ch-j In). The appropriate channel out is 
then used per normal operation. As an example in Figures 2 
and 3, if an algorithm requires node 0000 to send a message 
to node 0100, node 1000 (replacement of node 0000) sends 
the message along dimension 3 to the CM of node 0000. For 
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Figure 3. Replacing faulty nodes 0000 and 
0001 with healthy nodes 1000 and 1100 

e-cube routing, the CM of node 0000 then uses its channel 
2 to forward the message to node 0100. 

If the destination of amessage is a faulty node in Subl, the 
CM of that faulty node, instead of sending the message out 
on its consumption channel, routes it automatically to output 
channel j. Consequently, CM of its healthy replacement 
receives the message and forwards it automatically to its 
computation module via the consumption channel. Note 
that some nodes in Sub2 are used as intermediate switch 
connections. For example in Figures 2 and 3, node 1000 is 
used to connect channel 0 to channel 2 and at the same time 
link channel 3 to the local computation module. Therefore, 
the regular nodes in Sub2 have dual functions: one is to 
be logical replacements for the faulty nodes in Sub1 and 
the other is to function as permanent intermediate switch 
connections. Both functions may be active at the same time. 
The faulty nodes in Sub2 may only be used as permanent 
intermediate switch connections. 

3. The Reconfiguration Algorithm 

A reconfiguration algorithm establishes edge-disjoint 
paths between faulty nodes in Sub1 and healthy nodes in 
Sub2. To illustrate our reconfiguration algorithm, the fol- 
lowing sets are used. Given a faulty node a E Subl, let’s 
denote the node across its dimension j as /I E Sub2. If p 
is a healthy node, it can replace LY as discussed before. We 
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then label /3 as a used node and denote the set of used nodes 
as SU. If ,L? is a faulty node, a dedicated path from /? to 
an unused healthy node in Sub2 needs to be established. p 
and the healthy node are then referred to as the source and 
the target nodes respectively. We refer to the set of source 
nodes in Sub2 as Ss. The set of unused healthy nodes in 
Sub2 represents potent.ial target nodes and are labeled as ST. 
The remaining nodes im Sub2 consist of faulty nodes. Since 
edge-disjoint paths can be established through them, they are 
also marked as used nodes and are assigned to SU. Therefore 
a node in Sub2 is a source node if both the node and its neigh- 
bor in Sub1 are faulty. Allocated healthy nodes and remain- 
ing faulty nodes in Sub.2 are called used nodes. Finally, non- 
allocated healthy nodes in Sub2 are labeled target nodes. For 
example, inFigure2,Ss={lOOl, l l lO},S~={11OO, llll}, 
and S-J={ 1000, 1010, loll, 1101). Then, a reconfiguration 
algorithm first has to connect the faulty nodes in Sub1 to the 
respective nodes along dimension j in Sub2. Subsequently, 
it needs to establish edge-disjoint paths between the nodes 
in Ss and the nodes in ST within Sub2. 

3.1. An Optimal Algorithm 

An optimal reconfiguration algorithm can be developed 
by utilizing the maxflow/mincut algorithm [9]. Here, opti- 
mality is measured as the ability to assign a healthy node 
in Sub2 to every faulty node in Sub1 whenever such an 
assignment is feasible vis-a-vis Menger’s theorem [3]. To 
apply the maxflow/mincut algorithm, a digraph G’ needs to 
be constructed as specified below. First a digraph repre- 
sentation of Sub2 (digraph G) is constructed by replacing 
each link of Sub2 with two parallel and oppositely directed 
links. Next, two super-nodes s and t are added and are 
connected to each node in Ss and ST via a single directed 
link respectively. The flow capacity of each link in G’ is 
set to 1. Figure 4 depicts the construction of G’ for the 
example in Figure 2. By Menger’s theorem, there exists 
sufficient number of edge-disjoint paths between s and t to 
make the reconfiguration feasible provided the number of 
nodes in Ss is smaller than or equal to the size of the mincut 
of G’. In Section 4, we will prove that this condition always 
holds. Since each of the edge-disjoint paths passes through 
a unique source node and a unique target node, each node 
in Ss can be connected to a unique healthy node in ST. The 
maxflow/mincut algorithm can then construct these paths 
and hence assign a healthy node in ST to each node in Ss. 

3.2. A  Near-Optimal Algorithm 

The main drawback to reconfiguration using the above 
algorithm is that a new graph G’ has to be constructed and 
the target to source assignments have to be done by the 
host processor. To reduce the reconfiguration time, we next 

Figure 4. Construction of G’ for Sub2 

present a. near optimal reconfiguration algorithm which can 
be implemented in a distributed manner. The algorithm is 
near optimal since there can be cases where reconfiguration 
fails even though Menger’s theorem holds. To find a set of 
candidate target nodes that can be assigned to a source node, 
we utilize Lee’s path-finding algorithm[6]. The algorithm 
begins by constructing a breadth-first search of minimum 
depth in Sub2 from each node in Ss. If a target node is 
found, a path is formed between the source and the target 
node. The algorithm guarantees that a path to a target node 
will be found, if there exists one, and the path will be the 
shortest possible [6]. Therefore, all target nodes that are one 
link away from the source nodes (at distance 1) are assigned 
first. Once a path is formed, the algorithm removes the 
links associated with that path from Sub2. It also marks 
both the source node and the target node as used nodes and 
assigns them to SU. The process is repeated on the new 
resultant structure for a higher depth i. The reconfiguration 
is completed if Ss becomes an empty set. Reconfiguration 
fails if distance i becomes greater than 2(d-‘) - 1, which is 
the longest acyclic path in Sub2. 

We implemented the near optimal algorithm using the C 
language for various dimensions of the hypercube (up to d = 
10). 10000 simulation runs were performed for randomly 
placed 2(d.-‘) faulty nodes. Our simulations resulted in 
100% reconfiguration. 

4. Correctness of Our Theoretical Bounds 

In this section, we show that a functional (d - l)- 
dimensional subcube can be found in a hypercube with up 
to 2(d-‘) faulty nodes; we assume static faults and no faulty 
links. If every faulty node in Sub1 is matched with a healthy 
node in Sub2 along dimension j, the reconfiguration can 
be accomplished by simply assigning the matched healthy 
nodes to the faulty nodes. In the worst case, each faulty 
node in Sub1 is matched with a faulty node in Sub2 along 
dimension j. Furthermore, there exists maximum number 
of faulty nodes; Sub1 and Sub2 each contain 2(d-2) faulty 
nodes. Therefore, 2cde2) edge-disjoint paths from the faulty 
nodes in Sub2 to the healthy nodes in Sub2 have to be con- 
structed. Other cases where the number of faulty nodes 
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in the hypercube is less than 2cd-‘) or the number of faulty 
nodes in Sub1 is less than the number of faulty nodes in Sub2 
or some of the faulty nodes in Sub1 are matched with healthy 
nodes in Sub2 along dimension j are covered by the above 
case; they require fewer number of edge-disjoint paths from 
the nodes in Sub1 to the nodes in Sub2. As an example, the 
case depicted in Figure 4 only requires two edge-disjoint 
paths. If 2 of the used nodes in Figure 4 are relabeled as 
source nodes and the remaining used nodes are relabeled 
as target nodes, the required number of edge-disjoint paths 
becomes 4. Obviously, the latter case covers the former one. 

To examine whether there exists 2cde2) edge-disjoint 
paths between the faulty nodes of Sub2 and the healthy 
nodes of Sub2, the undirected version of the digraph G’ 
(Figure 4) has to be constructed. We will next show that 
each node in Ss can be connected to a unique node in ST 
via a dedicated path in Sub2. 

Lemma 1 In a d-dimensional hypercube, let a set of nodes 
be assigned to P and the rest be grouped under Q. The mini- 
mum number of links that connects P to Q  is min( 1 P j , IQ I). 

Proof: The proof is omitted due to space limitation [S]. n 

Theorem 1 In a d-dimensional hypercube, let half of the 
nodes be randomly labeled source nodes and the remaining 
nodes be called target nodes. Within such a hypercube, 
there exists edge-disjointpaths connecting each of the 2(d-‘) 
source nodes to a distinct target node. 

Proof: Given a hypercube graph G(V, E), let’s partition V 
into two subsets P and Q = V - P such that P = Ss and 
Q = ST ([PI = IQ] = 2(d-1)). Moreover, let’s construct a 
new graph G’ by adding two nodes s and t to G  such that they 
be connected to every node in the set P and Q respectively 
(Figure 5). The number of edge-disjoint paths between s 
and t in G’, according to Menger’s theorem [3], is equal to 
the mincut of G’. The theorem is proven by showing that 
there always exists an (s, t) mincut in G’ whose cutsize is 
greater than or equal to 2(d-‘). 

Figure 5. An (s,t) cut in G’ 

An (s, t) mincut in G’ may exist at s, t, G, or some 
combination of them. By construction, the cutsize at s and t 
is equal to 2(d-1). Consider a general cut in G’ as depicted 
in Figure 5, crossing i of the edges connecting s to the nodes 
within SS, k of the edges of G, and j of the edges connecting 
the nodes of ST to t (0 5 i, j <: 2cd-‘)). Only the case 
where ;+j < 2cd-‘) needs to be investigated since the other 
meets the minimum cutsize on its own. The cut in Figure 5 
splits the nodes into two sets P’ and Q’. The number of 
source nodes in the set Q’ is i. The number of target nodes 
in the same set is 2cd-‘) - j. Hence, the total number of 
source and target nodes in Q’ is i+2(d-1) -j. Following the 
same reasoning, the total number of source and target nodes 
in p’ is j + 2(d-‘1 _ i. Either ]P’l or IQ’] is less than or 
equal to 2cd- ‘1. Without loss of generality, let it be P’. From 
Lemma 1, the minimum number of links connecting P’ and 
Q’ is k = min( jP’ 1, IQ’I). Thus, the above cut must cross at 
least k = j + 2cd-‘) - i links in G. The size of the (P’, Q’) 
cut is then given by I(P’, Q’)] 2 i + j + j + 2(d-1) - i or 
I(P’, &‘)I > 2j + 2cd-‘) > 2cdV1). A similar inequality 
results if IQ’1 < 2 (d-1), l(P’, Q’)I > 2i + 2cd-‘) 2 2(d-1). 

From the above inequalities it follows that there always 
exists 2(d-‘) edge-disjoint paths from s to t. Since there 
always exists 2(d-1) edges from s to 2(d-‘) source nodes 
and 2cd- ‘) edges from t to 2(d-1) target nodes, each of the 
2(d-‘) paths must connect a source node to a target node. 
Therefore, there exists edge-disjoint paths connecting each 
of the 2(d-‘) source nodes to a distinct target node. 

5. A  (d - I)-Subcube in Presence of Faulty 
Nodes and Faulty Links 

A link is specified uniquely by d-tuple{ 0,l ,-}d where “-” 
can be substituted by “0” and “1” to identify its connecting 
nodes. Reconfiguration in the presence of faulty links is ac- 
complished by searching for a subcube with all of its nodes 
and links intact. There exists 2d subcubes of dimension 
d - 1 in a d-dimensional hypercube [8]. Each faulty link 
destroys d - 1 of these subcubes. A (d - l)-dimensional 
fault-free subcube can be found in a d-dimensional hyper- 
cube by searching for a bit position that does not contain 
both 0 and 1 (ignoring “-“) in the d-tuples representing the 
faulty links. Once such a bit is found, the d-tuple obtained 
by complementing the value of the bound bit position and 
assigning Z’S to the remaining d - 1 coordinate positions de- 
fines a fault-free (d- 1)-dimensional subcube. For example, 
consider the faulty links -010, l-00, 10-1, and 11 l- in a 4- 
dimensional hypercube. Only the bit values of dimension 3 
do not contain both 0 and 1. Therefore, the subcube Oxxx is 
the only fault-free 3-dimensional subcube. We implemented 
the above procedure in the C language for a hypercube of 
dimension 10. The simulation result for randomly placed 
faulty links is shown in Figure 6. 
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Reccmtigurability Under Random Fault Distribution 

Dimension ofhypercube = IO 

2 4 6 8 IO 12 14 16 I8 20 

Number of Faulty Links 

Figure 6. Percentage of sustained (d - l)- Figure 8. Sustained (d - I)-subcubes in the 
subcubes in the presence of faulty links presence of faulty nodes and links 

To find a fault-free (d - 1)-dimensional subcube in 
the presence of a combination of faulty nodes and faulty 
links, our algorithm first uses the above procedure to check 
whether a (d- l)-dimensional subcube without any link fail- 
ure exists. If there exists one, it is labeled Subl. Next, Lee’s 
path-finding algorithm :is used to find edge-disjoint paths 
from the faulty nodes in Sub1 to the healthy nodes in Sub2 
via the healthy edges from Sub1 to Sub2 and the healthy 
edges within Sub2. Figure 7 demonstrates a case where 
nodes0000,0001,0101,OllO,lOOl,lOlO,lOll,lllOand 
links -010, l-00, 10-1, Ii 1 l- are faulty. The subcube Oz:za: 
remains functional in the presence of faulty elements. 

of up to 2(d-‘) faulty nodes. Moreover, we showed that a 
functional (d - 1)-subcube may be allocated in the presence 
of a combination of faulty nodes and faulty links. To in- 
crease the number of tolerated faulty links, the requirement 
that Sub1 be free of faulty links needs to be relaxed. This 
may be done by having each faulty link in Sub1 bypassed 
by a parallel path consisting of healthy links between Sub1 
and Sub2, and healthy links within Sub2. For example, in 
Figure 7, if link O-l 1 is faulty as well, it can be replaced by 
the parallel path made of links -011, l- 11, and - 111. 
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