
Optimal Subcube Fault Tolerance in a Circuit-Switched Hypercube

Baback A. Izadi
Dept. of Elect. Eng. Tech.

DeV’ry Institute of Technology
‘Columbus, OH 43209

bai @devrycols.edu

Abstract

In this papel; by utilizing the circuit-switched communi-
cation modules of the hypercube nodes, we present a scheme
where a (d - 1)-dimensional subcube is allocated in afaulty
d-dimensional hyperc,ube in the presence of up to 2(“-])
faulty nodes. The scheme is then extended to allocate a
(d - 1)-dimensional subcube in the presence of a combi-
nation of faulty node,s and faulty links. Theoretical and
simulation results are presented to analyze the performance
of the scheme.

1. Introduction

Multiprocessors based on the hypercube interconnection
topology are being widely used for a range of scientific and
real-time applications. Numerous research efforts have been
undertaken to make the hypercube functional in the presence
of faulty components. One of the approaches is finding the
maximum dimensional fault-free subcube of a faulty hy-
percube [l, 81. However, two faulty nodes in antipodal
positions destroy every fault-free (d - 1)-dimensional sub-
cube and thus degrade the performance of the hypercube by
a factor of 4. To overcome this, Chang and Bhuyan [2] have
proposed a scheme that utilizes the properties of circuit-
switched communicat:ion to maintain a (d - 1)-dimensional
subcube in the presence of up to [;I faulty nodes. The pro-
cedure first constructs a (d - 1)-dimensional subcube with
the least number of faulty nodes. The faulty nodes in the
selected (d - 1)-dimensional subcube are then replaced by
the healthy nodes in the other subcube. The reconfiguration
can fail if any of the nodes which are two or fewer hops
away from a faulty node of the selected subcube is faulty as
well.

In this paper, we present a scheme for circuit-switched
hypercubes where a (d- 1)-dimensional subcube is allocated
in a faulty d-dimensional hypercube in the presence of up
to 2cd-i) faulty node,s. Our scheme does not impose any

Fiisun ozgiiner
Department of Electrical Engineering

The Ohio State University
Columbus, OH 432 lo- 1277

ozguner@ee.eng.ohio-state.edu

restriction on the distribution of faulty nodes. We then
extend the scheme so that a (d - I)-dimensional subcube is
allocated in the presence of a combination of faulty nodes
and faulty links.

The rest of the paper is organized as follows. An
overview of our scheme under only faulty nodes is pre-
sented in the next section. An optimal and a near optimal
reconfiguration algorithm is described in Section 3. The
proof of our theoretical bound is given in Section 4. In
Section 5, construction of a fault-free (d - I)-dimensional
subcube under only faulty links and combination of faulty
nodes and faulty links is discussed and simulation results
are presented. Finally, concluding remarks are given in
Section 6.

2. Construction of a Functional (d - l)-
Dimensional Subcube

Figure 1 depicts the architecture of a node in a 4-
dimensional hypercube. Our scheme is based on the fact that
in hypercubes with circuit-switched communication mod-
ules [4], the communication time is nearly constant between
any two given nodes. We assume that faulty nodes retain
their ability to communicate. This is a common assumption
since in hypercube multiprocessors such as the iPSC/860 [7],
the computation and the communication modules of a node
are separate. Furthermore, since the complexity of the com-
putation unit is much greater than that of the communication
one, the probability of a failure in the computation unit is
much higher. This assumption may be ignored by duplicat-
ing the communication module of each node. If the distri-
bution of faulty nodes is such that every fault-free (d - l)-
dimensional subcube is destroyed [8], we use the following
procedure to construct a functional (d - l)-subcube.

Partition the hypercube into two faulty (d - l)-
dimensional subcubes along a dimension j (0 2 j 5 d - 1).
Moreover, label the subcube with the lower number of faulty
nodes Sub1 and the other subcube Sub2. Although j can be
chosen from any of the d coordinates, selecting dimension

1063-7133/96 $5.00 0 1996 IEEE
Proceedings of ZPPS ‘96

655

Proceedings of the 10th International Parallel Processing Symposium (IPPS '96)
1063-7133/96 $10.00 © 1996 IEEE

0 Healthy Node

,e
Faulty Node

Figure 2. Construction of a 3-cube in a faulty
4-cube

Figure 1. The architecture of a node in a 4-
dimensional circuit-switched hypercube

j such that Sub1 contains the least number of faulty nodes
normally results in a faster reconfiguration. Let fi and hr
respectively be the number of faulty and healthy nodes in
Subl. Similarly, let f~ and h2 be the number of faulty and
healthy nodes in Sub2. Since fr + hl = fi + h2 = 2cd-‘)
and ft +fz < 2(d-1), then ft < 2(d-‘) - f2 or fr < h2; the
number of healthy nodes in Sub2 is greater than or equal to
the number of faulty nodes in Subl,

Note that nodes of Sub1 and Sub2 form a 2(d-‘) matching
along dimension j. In our scheme, Sub1 becomes a func-
tional (cl - 1)-dimensional subcube by replacing each of its
faulty nodes with a healthy node in Sub2 via edge-disjoint
paths along dimension j and other possible edges in Sub2.
Any healthy node that replaces a faulty node assumes its ad-
dress label. Figure 2 illustrates a case in a 4-dimensional hy-
percube where nodes 0000, 0001,0101,0110, 1001, 1010,
1011, and 1110 are faulty. Setting j = 3, the subcube Ozzz
is maintained by replacing the faulty nodes 0000, 0001,
0101, and 0110 with the healthy nodes 1000, 1100, 1101,
and 1111 respectively. The edge-disjoint paths between
the healthy nodes in Sub2 and the faulty nodes in Sub1 are
shown in the figure with bold solid and dashed lines. These
paths are established during the reconfiguration and remain
intact thereafter. Each of the edge-disjoint paths then be-
comes an extension of the communication module of the
faulty node in Subl. Figure 3 illustrates the construction
of edge-disjoint paths associated with the faulty nodes 0000
and 0001 of Figure 2. The bold solid and dashed lines in
Figure 3 correspond to the similar lines in Figure 2.

If a message is to originate from a faulty node in Subl, its
healthy replacement in Sub2 sends the data to the injection
channel as normal. Using the established path, the message
reaches the communication module (CM) of the faulty node
in Subl; the CM of the faulty node receives the data via
input channel j (Ch-j In). The appropriate channel out is
then used per normal operation. As an example in Figures 2
and 3, if an algorithm requires node 0000 to send a message
to node 0100, node 1000 (replacement of node 0000) sends
the message along dimension 3 to the CM of node 0000. For

i_-+T.~~zA--;
‘-------------+-----------,,

T---------------c----------- ,
, +-yL+ \ -!’
I -;-
L-;v

--;-a

\ /‘I:--
-;=,“, rr-
7 --

~~ &--. ;%J
3-a

1 --it ‘J

L--a---
LO&al olnu Logical IKl110

Figure 3. Replacing faulty nodes 0000 and
0001 with healthy nodes 1000 and 1100

e-cube routing, the CM of node 0000 then uses its channel
2 to forward the message to node 0100.

If the destination of amessage is a faulty node in Subl, the
CM of that faulty node, instead of sending the message out
on its consumption channel, routes it automatically to output
channel j. Consequently, CM of its healthy replacement
receives the message and forwards it automatically to its
computation module via the consumption channel. Note
that some nodes in Sub2 are used as intermediate switch
connections. For example in Figures 2 and 3, node 1000 is
used to connect channel 0 to channel 2 and at the same time
link channel 3 to the local computation module. Therefore,
the regular nodes in Sub2 have dual functions: one is to
be logical replacements for the faulty nodes in Sub1 and
the other is to function as permanent intermediate switch
connections. Both functions may be active at the same time.
The faulty nodes in Sub2 may only be used as permanent
intermediate switch connections.

3. The Reconfiguration Algorithm

A reconfiguration algorithm establishes edge-disjoint
paths between faulty nodes in Sub1 and healthy nodes in
Sub2. To illustrate our reconfiguration algorithm, the fol-
lowing sets are used. Given a faulty node a E Subl, let’s
denote the node across its dimension j as /I E Sub2. If p
is a healthy node, it can replace LY as discussed before. We

ti56

Proceedings of the 10th International Parallel Processing Symposium (IPPS '96)
1063-7133/96 $10.00 © 1996 IEEE

then label /3 as a used node and denote the set of used nodes
as SU. If ,L? is a faulty node, a dedicated path from /? to
an unused healthy node in Sub2 needs to be established. p
and the healthy node are then referred to as the source and
the target nodes respectively. We refer to the set of source
nodes in Sub2 as Ss. The set of unused healthy nodes in
Sub2 represents potent.ial target nodes and are labeled as ST.
The remaining nodes im Sub2 consist of faulty nodes. Since
edge-disjoint paths can be established through them, they are
also marked as used nodes and are assigned to SU. Therefore
a node in Sub2 is a source node if both the node and its neigh-
bor in Sub1 are faulty. Allocated healthy nodes and remain-
ing faulty nodes in Sub.2 are called used nodes. Finally, non-
allocated healthy nodes in Sub2 are labeled target nodes. For
example, inFigure2,Ss={lOOl, l l lO},S~={11OO, llll},
and S-J={ 1000, 1010, loll, 1101). Then, a reconfiguration
algorithm first has to connect the faulty nodes in Sub1 to the
respective nodes along dimension j in Sub2. Subsequently,
it needs to establish edge-disjoint paths between the nodes
in Ss and the nodes in ST within Sub2.

3.1. An Optimal Algorithm

An optimal reconfiguration algorithm can be developed
by utilizing the maxflow/mincut algorithm [9]. Here, opti-
mality is measured as the ability to assign a healthy node
in Sub2 to every faulty node in Sub1 whenever such an
assignment is feasible vis-a-vis Menger’s theorem [3]. To
apply the maxflow/mincut algorithm, a digraph G’ needs to
be constructed as specified below. First a digraph repre-
sentation of Sub2 (digraph G) is constructed by replacing
each link of Sub2 with two parallel and oppositely directed
links. Next, two super-nodes s and t are added and are
connected to each node in Ss and ST via a single directed
link respectively. The flow capacity of each link in G’ is
set to 1. Figure 4 depicts the construction of G’ for the
example in Figure 2. By Menger’s theorem, there exists
sufficient number of edge-disjoint paths between s and t to
make the reconfiguration feasible provided the number of
nodes in Ss is smaller than or equal to the size of the mincut
of G’. In Section 4, we will prove that this condition always
holds. Since each of the edge-disjoint paths passes through
a unique source node and a unique target node, each node
in Ss can be connected to a unique healthy node in ST. The
maxflow/mincut algorithm can then construct these paths
and hence assign a healthy node in ST to each node in Ss.

3.2. A Near-Optimal Algorithm

The main drawback to reconfiguration using the above
algorithm is that a new graph G’ has to be constructed and
the target to source assignments have to be done by the
host processor. To reduce the reconfiguration time, we next

Figure 4. Construction of G’ for Sub2

present a. near optimal reconfiguration algorithm which can
be implemented in a distributed manner. The algorithm is
near optimal since there can be cases where reconfiguration
fails even though Menger’s theorem holds. To find a set of
candidate target nodes that can be assigned to a source node,
we utilize Lee’s path-finding algorithm[6]. The algorithm
begins by constructing a breadth-first search of minimum
depth in Sub2 from each node in Ss. If a target node is
found, a path is formed between the source and the target
node. The algorithm guarantees that a path to a target node
will be found, if there exists one, and the path will be the
shortest possible [6]. Therefore, all target nodes that are one
link away from the source nodes (at distance 1) are assigned
first. Once a path is formed, the algorithm removes the
links associated with that path from Sub2. It also marks
both the source node and the target node as used nodes and
assigns them to SU. The process is repeated on the new
resultant structure for a higher depth i. The reconfiguration
is completed if Ss becomes an empty set. Reconfiguration
fails if distance i becomes greater than 2(d-‘) - 1, which is
the longest acyclic path in Sub2.

We implemented the near optimal algorithm using the C
language for various dimensions of the hypercube (up to d =
10). 10000 simulation runs were performed for randomly
placed 2(d.-‘) faulty nodes. Our simulations resulted in
100% reconfiguration.

4. Correctness of Our Theoretical Bounds

In this section, we show that a functional (d - l)-
dimensional subcube can be found in a hypercube with up
to 2(d-‘) faulty nodes; we assume static faults and no faulty
links. If every faulty node in Sub1 is matched with a healthy
node in Sub2 along dimension j, the reconfiguration can
be accomplished by simply assigning the matched healthy
nodes to the faulty nodes. In the worst case, each faulty
node in Sub1 is matched with a faulty node in Sub2 along
dimension j. Furthermore, there exists maximum number
of faulty nodes; Sub1 and Sub2 each contain 2(d-2) faulty
nodes. Therefore, 2cde2) edge-disjoint paths from the faulty
nodes in Sub2 to the healthy nodes in Sub2 have to be con-
structed. Other cases where the number of faulty nodes

657

Proceedings of the 10th International Parallel Processing Symposium (IPPS '96)
1063-7133/96 $10.00 © 1996 IEEE

in the hypercube is less than 2cd-‘) or the number of faulty
nodes in Sub1 is less than the number of faulty nodes in Sub2
or some of the faulty nodes in Sub1 are matched with healthy
nodes in Sub2 along dimension j are covered by the above
case; they require fewer number of edge-disjoint paths from
the nodes in Sub1 to the nodes in Sub2. As an example, the
case depicted in Figure 4 only requires two edge-disjoint
paths. If 2 of the used nodes in Figure 4 are relabeled as
source nodes and the remaining used nodes are relabeled
as target nodes, the required number of edge-disjoint paths
becomes 4. Obviously, the latter case covers the former one.

To examine whether there exists 2cde2) edge-disjoint
paths between the faulty nodes of Sub2 and the healthy
nodes of Sub2, the undirected version of the digraph G’
(Figure 4) has to be constructed. We will next show that
each node in Ss can be connected to a unique node in ST
via a dedicated path in Sub2.

Lemma 1 In a d-dimensional hypercube, let a set of nodes
be assigned to P and the rest be grouped under Q. The mini-
mum number of links that connects P to Q is min(1 P j , IQ I).

Proof: The proof is omitted due to space limitation [S]. n

Theorem 1 In a d-dimensional hypercube, let half of the
nodes be randomly labeled source nodes and the remaining
nodes be called target nodes. Within such a hypercube,
there exists edge-disjointpaths connecting each of the 2(d-‘)
source nodes to a distinct target node.

Proof: Given a hypercube graph G(V, E), let’s partition V
into two subsets P and Q = V - P such that P = Ss and
Q = ST ([PI = IQ] = 2(d-1)). Moreover, let’s construct a
new graph G’ by adding two nodes s and t to G such that they
be connected to every node in the set P and Q respectively
(Figure 5). The number of edge-disjoint paths between s
and t in G’, according to Menger’s theorem [3], is equal to
the mincut of G’. The theorem is proven by showing that
there always exists an (s, t) mincut in G’ whose cutsize is
greater than or equal to 2(d-‘).

Figure 5. An (s,t) cut in G’

An (s, t) mincut in G’ may exist at s, t, G, or some
combination of them. By construction, the cutsize at s and t
is equal to 2(d-1). Consider a general cut in G’ as depicted
in Figure 5, crossing i of the edges connecting s to the nodes
within SS, k of the edges of G, and j of the edges connecting
the nodes of ST to t (0 5 i, j <: 2cd-‘)). Only the case
where ;+j < 2cd-‘) needs to be investigated since the other
meets the minimum cutsize on its own. The cut in Figure 5
splits the nodes into two sets P’ and Q’. The number of
source nodes in the set Q’ is i. The number of target nodes
in the same set is 2cd-‘) - j. Hence, the total number of
source and target nodes in Q’ is i+2(d-1) -j. Following the
same reasoning, the total number of source and target nodes
in p’ is j + 2(d-‘1 _ i. Either]P’l or IQ’] is less than or
equal to 2cd- ‘1. Without loss of generality, let it be P’. From
Lemma 1, the minimum number of links connecting P’ and
Q’ is k = min(jP’ 1, IQ’I). Thus, the above cut must cross at
least k = j + 2cd-‘) - i links in G. The size of the (P’, Q’)
cut is then given by I(P’, Q’)] 2 i + j + j + 2(d-1) - i or
I(P’, &‘)I > 2j + 2cd-‘) > 2cdV1). A similar inequality
results if IQ’1 < 2 (d-1), l(P’, Q’)I > 2i + 2cd-‘) 2 2(d-1).

From the above inequalities it follows that there always
exists 2(d-‘) edge-disjoint paths from s to t. Since there
always exists 2(d-1) edges from s to 2(d-‘) source nodes
and 2cd- ‘) edges from t to 2(d-1) target nodes, each of the
2(d-‘) paths must connect a source node to a target node.
Therefore, there exists edge-disjoint paths connecting each
of the 2(d-‘) source nodes to a distinct target node.

5. A (d - I)-Subcube in Presence of Faulty
Nodes and Faulty Links

A link is specified uniquely by d-tuple{ 0,l ,-}d where “-”
can be substituted by “0” and “1” to identify its connecting
nodes. Reconfiguration in the presence of faulty links is ac-
complished by searching for a subcube with all of its nodes
and links intact. There exists 2d subcubes of dimension
d - 1 in a d-dimensional hypercube [8]. Each faulty link
destroys d - 1 of these subcubes. A (d - l)-dimensional
fault-free subcube can be found in a d-dimensional hyper-
cube by searching for a bit position that does not contain
both 0 and 1 (ignoring “-“) in the d-tuples representing the
faulty links. Once such a bit is found, the d-tuple obtained
by complementing the value of the bound bit position and
assigning Z’S to the remaining d - 1 coordinate positions de-
fines a fault-free (d- 1)-dimensional subcube. For example,
consider the faulty links -010, l-00, 10-1, and 11 l- in a 4-
dimensional hypercube. Only the bit values of dimension 3
do not contain both 0 and 1. Therefore, the subcube Oxxx is
the only fault-free 3-dimensional subcube. We implemented
the above procedure in the C language for a hypercube of
dimension 10. The simulation result for randomly placed
faulty links is shown in Figure 6.

658

Proceedings of the 10th International Parallel Processing Symposium (IPPS '96)
1063-7133/96 $10.00 © 1996 IEEE

Reccmtigurability Under Random Fault Distribution

Dimension ofhypercube = IO

2 4 6 8 IO 12 14 16 I8 20

Number of Faulty Links

Figure 6. Percentage of sustained (d - l)- Figure 8. Sustained (d - I)-subcubes in the
subcubes in the presence of faulty links presence of faulty nodes and links

To find a fault-free (d - 1)-dimensional subcube in
the presence of a combination of faulty nodes and faulty
links, our algorithm first uses the above procedure to check
whether a (d- l)-dimensional subcube without any link fail-
ure exists. If there exists one, it is labeled Subl. Next, Lee’s
path-finding algorithm :is used to find edge-disjoint paths
from the faulty nodes in Sub1 to the healthy nodes in Sub2
via the healthy edges from Sub1 to Sub2 and the healthy
edges within Sub2. Figure 7 demonstrates a case where
nodes0000,0001,0101,OllO,lOOl,lOlO,lOll,lllOand
links -010, l-00, 10-1, Ii 1 l- are faulty. The subcube Oz:za:
remains functional in the presence of faulty elements.

of up to 2(d-‘) faulty nodes. Moreover, we showed that a
functional (d - 1)-subcube may be allocated in the presence
of a combination of faulty nodes and faulty links. To in-
crease the number of tolerated faulty links, the requirement
that Sub1 be free of faulty links needs to be relaxed. This
may be done by having each faulty link in Sub1 bypassed
by a parallel path consisting of healthy links between Sub1
and Sub2, and healthy links within Sub2. For example, in
Figure 7, if link O-l 1 is faulty as well, it can be replaced by
the parallel path made of links -011, l- 11, and - 111.

References

&Faulty Link

Figure 7. A functional 3-cube in a faulty 4-
cube

The simulation result for randomly placed faulty nodes
and faulty links is given in Figure 8. In our simulation we
have assumed that the probability of having a node failure
is the same as having a. link failure. From Figures 6 and
8, it follows that a functional (d - 1)-dimensional subcube
can exist provided the number of faulty links are relatively
small.

6. Concluding Remarks

In this paper we presented a scheme where a functional
(d- 1)-dimensional subcube can be allocated in the presence

Number ofF;lulty Links zmd Faulty Naks

[l] B. Becker and H. U. Simon. How robust is the n-cube? In
Proc. 27fhAnnu. Symp. Foundations Comput. Sci.,pages 283-
291, October 1986.

[2] Y. Chang and L. N. Bhuyan. Subcube fault tolerance in hy-
percube multiprocessors. IEEE Transactions on Computers,
44:1108-l 120, September 1995.

[3] C. J. Colboum. The Combinatorics of Nefwork Reliability.
Oxford University Press, 1987.

[4] P. T. Gaughan and S. Yalamanchili. Adaptive routing protocols
for hypercube interconnection networks. IEEE Computer,
pages 12-23, May 1993.

[5] B. Izadi. Design of fault-tolerant distributed memory multi-
processors. Ph.D. thesis, the Ohio State University, 1995.

[6] C. Y. Lee. An algorithm for path connection and its applica-
tions. IRE Transaction on Electronic Computers, ec-10:346-
365,196l.

[7] S. Nugent. The iPSC/I direct-connect communication tech-
nology. In Proceedings of the Third Conference on Hypercube
Concurrent Computers and Applications, pages 51-60, Jan-
uary 1988.

[8] F. ijzgiiner and C. Aykanat. A reconfiguration algorithm for
fault tolerance in a hypercube multiprocessor. Information
Processing Letters, 29(5):247-254, November 1988.

[9] A. Tucker. Applied Combinatorics 2nd ed. Wiley, 1984.

659

Proceedings of the 10th International Parallel Processing Symposium (IPPS '96)
1063-7133/96 $10.00 © 1996 IEEE

