
Relative Performance of Preemption-Safe Locking and Non-Blocking
Synchronization on Multiprogrammed Shared Memory Multiprocessors

Maged M. Michael Michael L. Scott

University of Rochester
Department of Computer Science

Rochester, NY 14627-0226�
michael,scott� @cs.rochester.edu

Abstract

Most multiprocessors are multiprogrammed to achieve accept-
able response time. Unfortunately, inopportune preemption may
significantly degrade the performance of synchronized parallel ap-
plications. To address this problem, researchers have developed
two principal strategies for concurrent, atomic update of shared
data structures: (1) preemption-safe locking and (2) non-blocking
(lock-free) algorithms. Preemption-safe locking requires kernel
support. Non-blocking algorithms generally require a universal
atomic primitive, and are widely regarded as inefficient.

We present a comparison of the two alternative strategies, fo-
cusing on four simple but important concurrent data structures—
stacks, FIFO queues, priority queues and counters—in micro-
benchmarks and real applications on a 12-processor SGI Chal-
lenge multiprocessor. Our results indicate that data-structure-
specific non-blocking algorithms, which exist for stacks, FIFO
queues and counters, can work extremely well: not only do they
outperform preemption-safe lock-based algorithms on multipro-
grammed machines, they also outperform ordinary locks on ded-
icated machines. At the same time, since general-purpose non-
blocking techniques do not yet appear to be practical, preemption-
safe locks remain the preferred alternative for complex data struc-
tures: they outperform conventional locks by significant margins
on multiprogrammed systems.

1 Introduction
On shared memory multiprocessors, processes communicate

using shared data structures,which they typically update atomically
under the protection of mutual exclusion locks. At the same time,
most multiprocessors are preemptively multiprogrammed, for the
sake of response time and processor utilization. Unfortunately,
preemption of a process holding a lock can degrade application
performance dramatically [25]; any other process busy-waiting on
the lock is unable to perform useful work until the preempted
process is rescheduled and subsequently releases the lock.

�
This work was supported in part by NSF grants nos. CDA–94–01142

and CCR–93–19445, and by ONR research grant no. N00014–92–J–1801
(in conjunction with the DARPA Research in Information Science and
Technology—High Performance Computing, Software Science and Tech-
nology program, ARPA Order no. 8930).

Alternatives to time-slicing can avoid inopportune preemption,
but have limited applicability and/or lower processor utilization.
Coscheduling reduces utilization if applications have a variable
amount of parallelism, or if processes cannot be evenly assigned to
time-slices of the multiprocessor. Fixed-size hardware partitions
lead to poor response time when the number of processes is larger
than the number of processors. Variable-size hardware partitions
require that applications be able to adjust their number of processes
as new applications join the system.

For time-sliced systems, researchers have proposed two prin-
cipal strategies to avoid inopportune preemption: preemption safe
locking and non-blocking algorithms. Most preemption-safe tech-
niques require a widening of the kernel interface, to facilitate
cooperation between the application and the kernel. Generally,
these techniques try either to recover from the preemption of lock-
holding processes (or processes waiting on queued locks), or to
avoid preempting processes while holding locks.

An implementation of a data structure is non-blocking (also
known as lock-free) if it guarantees that at least one of the processes
trying to update a data structure concurrently will succeed within a
bounded amount of time, regardless of the state of other processes.
Non-blocking algorithms do not require any communication with
the kernel and by definition they have no critical sections in which
preemption can occur. While mutual exclusion locks can be imple-
mented using comparatively weak atomic primitives (e.g. test
and set, fetch and increment, or fetch and store),
non-blocking algorithms generally require a universal [8] primitive
such as compare and swap (CAS) or the pair load linked
and store conditional (LL/SC).

Our contribution is to evaluate the relative performance of
preemption-safe and non-blocking atomic update on multipro-
grammed (time-sliced) systems. We focus on four simple but
important data structures: counters, queues, stacks, and priority
queues. Our experiments employ both micro-benchmarks and
real applications, on a 12-processor SGI Challenge multiproces-
sor. We discuss related work on preemption-safe and non-blocking
techniques in sections 2 and 3, respectively. We then describe
our methodology and results in section 4. We find that efficient
(data-structure-specific) non-blocking algorithms clearly outper-
form both ordinary and preemption-safe lock-based alternatives,
not only on time-sliced systems, but on dedicated machines as
well. At the same time, preemption-safe algorithms outperform

mls
IPPS '97

ordinary locks on time-sliced systems, and should therefore be
supported by multiprocessor operating systems. We summarize
our conclusions and recommendations in section 5.

2 Preemption-Safe Locking
For simple mutual exclusion locks (e.g. test and set),

preemption-safe locking techniques allow the system either to
avoid or to recover from the preemption of processes holding
locks. Edler et al.’s Symunix system [6] employs an avoidance
technique: a process may request that the kernel not preempt it
because it is holding a lock, and the kernel will honor the request
up to a pre-defined time limit. The first-class threads of Marsh et
al.’s Psyche system [12] require the kernel to warn an application
process a fixed amount of time in advance of preemption. If a
process verifies that it has not been warned of preemption before
entering a critical section (and if critical sections are short), then
it is guaranteed to be able to complete its operation in the current
quantum. Otherwise, it can yield the processor voluntarily.

Black’s work on Mach [5] employs a recovery technique: a
process may suggest to the kernel that it be descheduled in favor of
some specific other process (presumably the one that is holding a
desired lock). The scheduler activations of Anderson et al. [3] also
support recovery: when a processor is taken from an application,
another processor belonging to the same application is informed
via software interrupt. If the preempted thread was holding a
lock, the interrupted processor can perform a context switch to the
preempted thread and push it through the critical section.

Simple preemption-avoidance techniques rely on the fact that
processes acquire a test and set lock in non-deterministic or-
der. Unfortunately, test and set locks do not scale well to
large machines. Queue-based locks scale well, but impose a
deterministic order on lock acquisitions, forcing a preemption-
avoidance technique to deal with preemption not only of the pro-
cess holding a lock, but of processes waiting in the lock’s queue as
well. Preempting and schedulingprocesses in an order inconsistent
with their order in the lock’s queue can degrade performance dra-
matically. Kontothanassis et al. [10] present scheduler-conscious
versions of the MCS queue lock [14] and other scalable locks.
These algorithms detect the descheduling of critical processes us-
ing handshaking and/or a widened kernel-user interface.

The proposals of Black and of Anderson et al. require the ap-
plication to recognize the preemption of lock-holding processes
and to deal with the problem. By performing recovery on a pro-
cessor other than the one on which the preempted process last
ran, they also sacrifice cache footprint. The proposal of Marsh
et al. requires the application to estimate the maximum duration
of a critical section, which is not always possible. To represent
the preemption-safe approach in our experiments, we employ test-
and-test and set locks with exponential backoff, based on the
kernel interface of Edler et al. For machines the size of ours (12
processors), the results of Kontothanassis et al. indicate that these
will out-perform queue-based locks.

3 Non-Blocking Implementations
Motivated in part by the problem of preemption in critical

sections, researchers have developed non-blocking implementa-
tions of several widely-used data structures, together with gen-
eral methodologies for developing such implementations system-
atically for arbitrary data structures.

Herlihy [9] presented a general methodology for transform-
ing sequential implementations of data structures to concurrent
non-blocking implementations using CAS or LL/SC. The basic
methodology requires copying the whole data structure on ev-
ery update. Herlihy also proposed an optimization by which the
programmer can avoid some fraction of the copying for certain
data structures; he illustrated this optimization in a non-blocking
implementation of a skew-heap. Alemany and Felten [1] and
LaMarca [11] proposed techniques to reduce unnecessary copying
and useless parallelism associated with Herlihy’s methodologies
using extra communication between the operating system kernel
and application processes. Barnes [4] presented a similar general
methodology in which processes record and timestamp their mod-
ifications to the shared object, and cooperate whenever conflicts
arise. Shavit and Touitou [20] presented software transactional
memory, which implements a � -word CAS using LL/SC. Turek
et al. [22] and Prakash et al. [18] presented methodologies for
transforming multiple lock concurrent objects into lock-free con-
current objects. Unfortunately, the performance of non-blocking
algorithms resulting from general methodologies is acknowledged
to be significantly inferior to that of the corresponding lock-based
implementations [9, 11, 20].

Prakash et al. [19], Valois [30], and Michael and Scott [17]
proposed non-blocking implementations of concurrent link-based
queues. Treiber [21] proposed a non-blocking implementation of
concurrent link-based stacks. Valois [24] proposed a non-blocking
implementation of linked lists. Anderson and Woll [2] proposed
a non-blocking solution to the union-find problem. Simple non-
blocking centralized counters can be implemented using a fetch
and add atomic primitive (if supported by hardware), or a read-
modify-check-write cycle using CAS or LL/SC.

Performance results were reported for only a few of these algo-
rithms [17, 19, 30]. The results of Michael and Scott indicate that
their non-blocking implementation of link-based queues outper-
forms all other non-blocking and lock-based implementations, on
both multiprogrammed and dedicated multiprocessors. The queue
of Prakash et al. outperforms lock-based implementations in the
case of multiprogramming. No performance results were reported
for non-blocking stacks. However, Treiber’s stack is very simple
and can be expected to be quite efficient. We also observe that a
stack derived from Herlihy’s general methodology, with unneces-
sary copying removed, seems to be simple enough to compete with
lock-based implementations.

Massalin and Pu [13] presented non-blocking algorithms for
array-based stacks,FIFO queues,and linked lists,using adouble
compare and swap (DCAS) primitive that operates on two arbi-
trary memory locations simultaneously. Unfortunately, this prim-
itive is available only on the Motorola 68020 processor and its
direct successors. Herlihy and Wing [7] proposed a non-blocking
array-based queue algorithm that requires infinite arrays. Val-
ois [23] presented a non-blocking array-based queue algorithm
that requires either a non-aligned CAS (not supported on any ar-
chitecture) or a Motorola-like DCAS. No practical non-blocking
implementations for array-based stacks or circular queues have
been proposed. The general methodologies can be used, but the
resulting implementations would be very inefficient. For these data
structures lock-based implementations seem to be the only option.

As representatives of the best available non-blocking algo-

rithms on simple data structures, we use the following in our
experiments: the non-blocking link-based queues of Michael and
Scott [17] and Prakash et al. [19], the non-blocking link-based
stack of Treiber [21], an optimized version of a stack resulting
from applying Herlihy’s methodology [9], a skew heap implemen-
tation due to Herlihy using his general methodology with optimized
copying [9], and a LL/SC implementation of counters.

4 Experimental Results
We use an SGI Challenge multiprocessor with twelve 100

MHz MIPS R4400 processors to compare the performance of
the best non-blocking, ordinary lock-based, and preemption-safe
lock-based implementations of counters and of link-based queues,
stacks, and skew heaps. We use micro-benchmarks to compare
the performance of the alternative implementations under various
levels of contention. We also use two versions of a parallel quick-
sort application, together with a parallel solution to the traveling
salesman problem, to compare the performance of the implemen-
tations when used in a real application.1 More detailed results are
available in a technical report version of this paper [16].

Our results were obtained on a dedicated machine with appli-
cation processes “pinned” to 11 processors and with one processor
dedicated to running a pseudo-scheduler. Whenever a process is
due for preemption, the pseudo-scheduler interrupts it, forcing it
into a signal handler. The handler spins on a flag which the pseudo-
scheduler sets when the process can continue computation. The
time spent executing the handler represents the time during which
the processor is taken from the process and handed over to a pro-
cess that belongs to another application. The time quantum is 10
ms.

All ordinary and preemption-safe locks used in the experi-
ments are test-and-test and set locks with bounded exponen-
tial backoff. All non-blocking implementations also use bounded
exponential backoff. The backoff was chosen to yield good overall
performance for all implementations, and not to exceed 30 � s.

In the figures, multiprogramming level represents the number
of applications sharing the machine, with one process per proces-
sor per application. A multiprogramming level of 1 (the left graph
in each figure) therefore represents a dedicated machine; a multi-
programming level of 3 (the right graph in each figure) represents
a system with a process from each of three different applications
on each processor.

4.1 Queues
Figure 1 shows performance results for six queue implementa-

tions on a dedicated system (no multiprogramming), and on multi-
programmed systems with 2 and 3 processesper processor. The six
implementations are: the usual single-lock implementation using
both ordinary and preemption-safe locks (single ordinarylock and
single preemption-safe lock); a two-lock implementation due to
Michael and Scott [17], again using both ordinary and preemption-
safe locks (two ordinary locks and two preemption-safe locks);
and non-blocking implementations due to Michael and Scott [17]
(MS non-blocking) and Prakash et al. [19] (PLJ non-blocking).

The two-lock implementation of Michael and Scott implements
the queue as a singly-linked list with Head and Tail pointers and

1C code for all the micro-benchmarks and the real applications
are available from ftp://ftp.cs.rochester.edu/pub/pack-
ages/sched conscious synch/multiprogramming.

uses two locks, one lock to protect each of Head and Tail. An
extra dummy node always pointed to by Head is used to ensure
that the linked list is never empty. Enqueue operations never have
to access the head pointer, and dequeue operations never have
to access the tail pointer, so enqueues and dequeues can always
proceed concurrently, with no possibility of deadlock. The non-
blocking algorithm of Michael and Scott uses a similar structure
except for the locks. Instead, the algorithm uses CAS to add and
remove nodes at the tail and the head of the linked list, respectively.

The non-blocking algorithm of Prakash et al. uses a singly-
linked list to represent the queue with Head and Tail pointers. It
uses CAS to enqueue and dequeue nodes at the tail and the head
of the list, respectively. A process performing an enqueue or a
dequeue operation first takes a snapshot of the data structure and
determines if there is another operation in progress. If so it tries to
complete the ongoing operation and then takes another snapshotof
the data structure. Otherwise it tries to complete its own operation.
The process keeps trying until it completes its operation.

The horizontal axes of the graphs represent the number of pro-
cessors. The vertical axes represent execution time normalized to
that of the preemption-safe single lock implementation. This im-
plementation was chosen as the basis of normalization because it
yields the median performance among the set of implementations.
The absolute times in seconds for the preemption-safe single-lock
implementation on one and 11 processors, with 1, 2, and 3 pro-
cesses per processor, are 18.2 and 15.6, 38.8 and 15.4, and 57.6
and 16.3, respectively.

The execution time is the time taken by all processors to perform
one million pairs of enqueues and dequeues to an initially empty
queue (each process performs 1,000,000/� enqueue/dequeuepairs,
where � is the number of processors). Every process spends 6 � s
(� 10% randomization) spinning in an empty loop after perform-
ing every enqueue or dequeue operation (for a total of 12 � s per
iteration). This time is meant to represent “real” computation. It
prevents one process from dominating the data structure and finish-
ing all its operations while other processes are starved by caching
effects and backoff.

The results show that as the level of multiprogramming in-
creases the performance of ordinary locks degrades significantly,
while the performance of preemption-safe locks and non-blocking
algorithms remains relatively unchanged. The two-lock implemen-
tation outperforms the single-lock in the case of high contention
because it allows more concurrency, but it suffers more with multi-
programming when using ordinary locks, as the chances are larger
that a process will be preempted while holding a lock needed
by other processes. The non-blocking implementations provide
better performance; they provide added concurrency without be-
ing vulnerable to interference from multiprogramming. Overall,
the non-blocking implementation of Michael and Scott yields the
best performance. It outperforms the single-lock preemption-safe
implementation by more than 40% on 11 processors with vari-
ous levels of multiprogramming, since it needs to access a fewer
memory locations and allows more concurrency than the other im-
plementations. In the case of no contention, it is essentially tied
with the single ordinary lock.

4.2 Stacks
Figure 2 shows performance results for four stack implementa-

tions: the usual single lock implementation using ordinary and

Queues

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
 t

im
e

single preemption−safe lock
single ordinary lock
two preemption−safe locks
two ordinary locks
PLJ non−blocking
MS non−blocking

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
 t

im
e

two ordinary locks
single ordinary lock
single preemption−safe lock
two preemption−safe locks
PLJ non−blocking
MS non−blocking

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
 t

im
e

two ordinary locks
single ordinary lock
single preemption−safe lock
two preemption−safe locks
PLJ non−blocking
MS non−blocking

Figure 1. Normalized execution time for one million enqueue/dequeue pairs on a multiprogrammed system, with
multiprogramming levels of 1 (left), 2 (middle), and 3 (right).

Stacks

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
 t

im
e

preemption−safe lock
ordinary lock
Herlihy non−blocking
Treiber non−blocking

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
 t

im
e

ordinary lock
preemption−safe lock
Herlihy non−blocking
Treiber non−blocking

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
 t

im
e

ordinary lock
preemption−safe lock
Herlihy non−blocking
Treiber non−blocking

Figure 2. Normalized execution time for one million push/pop pairs on a multiprogrammed system, with multi-
programming levels of 1 (left), 2 (middle), and 3 (right).

preemption-safe locks, a non-blocking implementation due to
Treiber [21], and an optimized non-blocking implementation based
on Herlihy’s general methodology [9].

Treiber’s non-blocking algorithm represents the stack as a
singly-linked list with a Top pointer. It uses CAS to modify the
value of Top atomically. The optimized implementation based on
Herlihy’s methodology also uses a singly-linked list to represent
the stack with a Top pointer. However, every process has its own
copy of Top and an operation is successfully completed only when
the process uses LL/SC to swing a shared pointer to its copy of
Top. The shared pointer can be considered as pointing to the latest
version of the stack.

Execution time is normalized to that of the preemption-safe
single lock implementation. The absolute times in seconds for
the preemption-safe lock-based implementation on one and 11
processors, with 1, 2, and 3 processes per processor, are 19.0 and
20.3, 40.8 and 20.7, and 60.2 and 21.6, respectively. As in the
micro-benchmark for queues, each process executes 1,000,000/�
push/pop pairs on an initially empty stack, with a 6 � s average
delay between operations.

As the level of multiprogramming increases, the performance of
ordinary locks degrades, while the performance of the preemption-
safe and non-blocking implementations remains relatively un-
changed. Treiber’s implementation outperforms all the others even
on dedicated systems. It outperforms the preemption-safe imple-
mentation by over 45% on 11 processors with various levels of
multiprogramming. This is mainly due to the fact that a push or a
pop in Treiber’s algorithm typically needs to accessonly two cache
lines in the data structure, while a lock-based implementation has

the overhead of accessing lock variables as well. Accordingly,
Treiber’s implementation yields the best performance even with
no contention.

4.3 Heaps
Figure 3 shows performance results for three skew heap imple-

mentations: the usual single-lock implementation using ordinary
and preemption-safe locks, and an optimized non-blocking im-
plementation due to Herlihy [9]. The latter uses a binary tree to
represent the heap with a Root pointer. Every process has its own
copy of Root. A process performing a heap operation copies the
nodes it intends to modify to local free nodes and finally tries to
swing a global shared pointer to its copy of Root using LL/SC. If
it succeeds, the local copies of the copied nodes become part of
the global structure and the copied nodes can be recycled for use
in future operations.

Execution time in the graphs is normalized to that of the
preemption-safe single lock implementation. The absolute times
in seconds for the preemption-safe lock-based implementation on
one and 11 processors, with 1, 2, and 3 processes per processor, are
21.0 and 27.7, 43.1 and 27.4, and 65.0 and 27.6, respectively. Each
process executes 1,000,000/� insert/delete min pairs on an initially
empty heap with a 6 � s average delay between operations. Ex-
periments with non-empty heaps resulted in relative performance
similar to that reported in the graphs.

As the level of multiprogramming increases the performance of
ordinary locks degrades, while the performance of the preemption-
safe and non-blocking implementations remains relatively un-
changed. The degradation of the ordinary locks is larger than
that suffered by the locks in the queue and stack implementations,

Heaps

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
 t

im
e

Herlihy non−blocking
preemption−safe lock
ordinary lock

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
 t

im
e

ordinary lock
Herlihy non−blocking
preemption−safe lock

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
 t

im
e

ordinary lock
Herlihy non−blocking
preemption−safe lock

Figure 3. Normalized execution time for one million insert/delete min pairs on a multiprogrammed system, with
multiprogramming levels of 1 (left), 2 (middle), and 3 (right).

because the heap operations are more complex and result in higher
levels of contention. Unlike the case for queues and stacks, the
non-blocking implementation of heaps is quite complex. It cannot
match the performance of the preemption-safe lock implementa-
tion on either dedicated or multiprogrammed systems, with and
without contention. Heap implementations resulting from general
non-blocking methodologies (without data-structure-specific elim-
ination of copying) are even more complex, and could be expected
to perform much worse.

4.4 Counters
Figure 4 shows performance results for three implementations

of counters: the usual single lock implementation using ordinary
and preemption-safe locks,and the standard implementations using
LL/SC. Execution time in the graphs is normalized to that of the
preemption-safe single lock implementation. The absolute times
in seconds for the preemption-safe lock-based implementation on
one and 11 processors, with 1, 2, and 3 processes per processor,
are 17.7 and 10.8, 35.0 and 11.3, and 50.6 and 10.9, respectively.
Each process executes 1,000,000/� increments on a shared counter
with a 6 � s average delay between successive operations.

The results are similar to those observed for queues and stacks,
but are even more pronounced. The non-blocking implementation
outperforms the preemption-safe lock-based counter by more than
55% on 11 processors with levels of multiprogramming. The
performance of a fetch and add atomic primitive would be
even better [15].

4.5 Quicksort Application
We performed experiments on two versions of a parallel quick-

sort application, one that uses a link-based queue, and another that
uses a link-based stack for distributing items to be sorted among the
cooperating processes. We used three implementations for each
of the queue and the stack: the usual single lock implementation
using ordinary and preemption-safe locks, and the non-blocking
implementations of Michael and Scott, and Treiber, respectively.
In each execution, the processes cooperate in sorting an array of
500,000 pseudo-random numbers using quicksort for intervals of
more than 20 elements, and insertion sort for smaller intervals.

Figures 5 and 6 show the performance results for the three
queue-based versions and three stack-based versions, respectively.
Execution times are normalized to those of the preemption-safe
lock-based implementations. The absolute times in seconds for
the preemption-safe lock-based implementation on one and 11
processors, with 1, 2, and 3 processes per processor, are 4.0 and

1.6, 7.9 and 2.3, and 11.6 and 3.3, respectively for a shared queue,
and 3.4 and 1.5, 7.0 and 2.3, and 10.2 and 3.1, respectively for a
shared stack.

The results confirm our observations from experiments on
micro-benchmarks. Performance with ordinary locks degrades
under multiprogramming, though not as severely as before, since
more work is being done between atomic operations. Simple non-
blocking implementations yield superior performance even on ded-
icated systems, making them the implementation of choice under
any level of contention or multiprogramming.

4.6 Traveling Salesman Application
We performed experiments on a parallel implementation of a

solution to the traveling salesman problem. The program uses
a shared heap, stack, and counters. We used three implementa-
tions for each of the heap, stack, and counters: the usual single
lock implementation using ordinary and preemption-safe locks,
and the best respective non-blocking implementations (Herlihy–
optimized, Treiber, and LL/SC). In each execution, the processes
cooperate to find the shortest tour in a 17-city graph. The pro-
cesses use the priority queue heap to share information about the
most promising tours, and the stack to keep track of the tours
that are yet to be computed. We ran experiments with each of
the three implementations of the data structures. In addition, we
ran experiments with a “hybrid” program that uses the version of
each data structure that ran the fastest for the micro-benchmarks:
non-blocking stacks and counters, and a preemption-safe priority
queue.

Figure 7 shows the performance results for the four different
implementations. Execution times are normalized to those of the
preemption-safe lock-based implementation. The absolute times
in seconds for the preemption-safe lock-based implementation on
one and 11 processors, with 1, 2, and 3 processes per processor,
are 34.9 and 14.3, 71.7 and 15.7, and 108.0 and 18.5, respectively.
Confirming our results with micro-benchmarks, the implementa-
tion based on ordinary locks suffers under multiprogramming. The
hybrid implementation yields the best performance, since it uses
the best implementation of each of the data structures.

5 Conclusions
For atomic update of a shared data structure, the program-

mer may ensure consistency using a (1) single lock, (2) multi-
ple locks, (3) a general-purpose non-blocking technique, or (4) a
special-purpose (data-structure-specific) non-blocking algorithm.
The locks in (1) and (2) may or may not be preemption-safe.

Counters

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
 t

im
e

preemption−safe lock
ordinary lock
LL/SC non−blocking

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
 t

im
e

ordinary lock
preemption−safe lock
LL/SC non−blocking

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
 t

im
e

ordinary lock
preemption−safe lock
LL/SC non−blocking

Figure 4. Normalized execution time for one million atomic increments on a multiprogrammed system, with
multiprogramming levels of 1 (left), 2 (middle), and 3 (right).

Quicksort – queue

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
 t

im
e

preemption−safe lock
ordinary lock
MS non−blocking

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
 t

im
e

ordinary lock
preemption−safe lock
MS non−blocking

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
 t

im
e

ordinary lock
preemption−safe lock
MS non−blocking

Figure 5. Normalized execution time for quicksort of 500,000 items using a shared queue on a multiprogrammed
system, with multiprogramming levels of 1 (left), 2 (middle), and 3 (right).

Options (1) and (3) are easy to generate, given code for a
sequentialversion of the data structure, but options (2) and (4) must
be developed individually for each different data structure. Good
data-structure-specific multi-lock and non-blocking algorithms are
sufficiently tricky to devise that each has tended to constitute an
individual publishable result.

Our experiments indicate that for simple data structures,
special-purpose non-blocking atomic update algorithms will out-
perform all alternatives, not only on multiprogrammed systems,
but on dedicated machines as well. Given the availability of a
universal atomic hardware primitive (CAS or LL/SC), there seems
to be no reason to use any other version of a link-based stack, a
link-based queue, or a small, fixed-sized object like a counter.

For more complex data structures, however, or for machines
without universal atomic primitives, preemption-safe locks are
clearly important. Preemption-safe locks impose a modest perfor-
mance penalty on dedicated systems, but provide dramatic savings
on time-sliced systems.

Further research in general-purpose non-blocking techniques is
clearly warranted, though we doubt that the results will ever match
the performance of preemption-safe locks.

For the designers of future systems, we recommend (1) that
hardware always include a universal atomic primitive, and (2) that
kernel interfaces provide a mechanism for preemption-safe lock-
ing. For small-scale machines, the Synunix interface appears to
work well [7]. For larger machines, a more elaborate interface may
be appropriate [10].

References
[1] J. Alemany and E. W. Felten. Performance Issues in Non-

blocking Synchronization on Shared-Memory Multiproces-
sors. In Proc. of the 11th ACM Symposium on Principles of
Distributed Computing, pp. 125–134, Aug. 1992.

[2] R. J. Anderson and H. Woll. Wait-Free Parallel Algorithms
for the Union-Find Problem. In Proc. of the 23rd ACM Sym-
posium on Theory of Computing, pp. 370–380, May 1991.

[3] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M.
Levy. Scheduler Activations: Effective Kernel Support for
the User-Level Management of Parallelism. ACM Trans. on
Computer Systems, 10(1):53–79, Feb. 1992.

[4] G. Barnes. A Method for Implementing Lock-Free Data
Structures. In Proc. of the Fifth Annual ACM Symposium on
Parallel Algorithms and Architectures, June– July 1993.

[5] D. L. Black. Scheduling Support for Concurrency and Paral-
lelism in the Mach Operating System. Computer, 23(5):35–
43, May 1990.

[6] J. Edler, J. Lipkis, and E. Schonberg. Process Management
for Highly Parallel UNIX Systems. In Proc. of the USENIX
Workshop on Unix and Supercomputers, Sept. 1988.

[7] M. P. Herlihy and J. M. Wing. Axions for Concurrent Ob-
jects. In Proc. of the 14th ACM Symposium on Principles of
Programming Languages, pp. 13–26, Jan. 1987.

[8] M. Herlihy. Wait-Free Synchronization. ACM Trans. on
Programming Languages and Systems, 13(1):124–149, Jan.
1991.

[9] M. Herlihy. A Methodology for Implementing Highly Con-
current Data Objects. ACM Trans. on Programming Lan-
guages and Systems, 15(5):745–770, Nov. 1993.

Quicksort – stack

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
 t

im
e

preemption−safe lock
ordinary lock
Treiber non−blocking

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
 t

im
e

ordinary lock
preemption−safe lock
Treiber non−blocking

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
 t

im
e

ordinary lock
preemption−safe lock
Treiber non−blocking

Figure 6. Normalized execution time for quicksort of 500,000 items using a shared stack on a multiprogrammed
system, with multiprogramming levels of 1 (left), 2 (middle), and 3 (right).

TSP

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
 t

im
e

preemption−safe lock
ordinary lock
non−blocking
hybrid

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
 t

im
e

ordinary lock
preemption−safe lock
non−blocking
hybrid

1 2 3 4 5 6 7 8 9 10 11

0.5

1

1.5

2

Processors

no
rm

al
iz

ed
 t

im
e

ordinary lock
preemption−safe lock
non−blocking
hybrid

Figure 7. Normalized execution time for a 17-city traveling salesman problem using a shared priority queue,
stack and counters on a multiprogrammed system, with multiprogramming levels of 1 (left), 2 (middle), and 3
(right).

[10] L. I. Kontothanassis, R. W. Wisniewski, and M. L. Scott.
Scheduler-ConsciousSynchronization. ACM Trans. on Com-
puter Systems, 15(1), Feb. 1997.

[11] A. LaMarca. A Performance Evaluation of Lock-free Syn-
chronization Protocols. In Proc. of the 13th ACM Symposium
on Principles of Distributed Computing, Aug. 1994.

[12] B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P. Markatos.
First-Class User-Level Threads. In Proc. of the 13th ACM
Symposium on Operating Systems Principles, Oct. 1991.

[13] H. Massalin and C. Pu. A Lock-Free Multiprocessor OS
Kernel. Tech. Report CUCS-005-91, Computer Science De-
partment, Columbia University, 1991.

[14] J. Mellor-Crummey and M. L. Scott. Algorithms for Scalable
Synchronization on Shared-Memory Multiprocessors. ACM
Trans. on Computer Systems, 9(1):21–65, Feb. 1991.

[15] M. M. Michael and M. L. Scott. Implementation of Atomic
Primitives on Distributed Shared-Memory Multiprocessors.
In Proc. of the First International Symposium on High Per-
formance Computer Architecture, pp. 222–231, Jan. 1995.

[16] M. M. Michael and M. L. Scott. Concurrent Update on
Multiprogrammed Shared Memory Multiprocessors. Tech.
Report 614, Computer Science Dept., Univ. of Rochester,
April 1996.

[17] M. M. Michael and M. L. Scott. Simple, Fast, and Practical
Non-Blocking and Blocking Concurrent Queue Algorithms.
In Proc. of the Fifteenth ACM Symposium on Principles of
Distributed Computing, pp. 267–275, May 1996.

[18] S. Prakash, Y. H. Lee, and T. Johnson. Non-Blocking Algo-
rithms for Concurrent Data Structures. Tech. Report 91-002,
University of Florida, 1991.

[19] S. Prakash, Y. H. Lee, and T. Johnson. A Nonblocking Algo-
rithm for Shared Queues Using Compare-and-Swap. IEEE
Trans. on Computers, 43(5):548–559, May 1994.

[20] N. Shavit and D. Touitou. Software Transactional Memory.
In Proc. of the 14th ACM Symposium on Principles of Dis-
tributed Computing, Aug. 1995.

[21] R. K. Treiber. Systems Programming: Coping with Paral-
lelism. In RJ 5118, IBM Almaden Res. Center, April 1986.

[22] J. Turek, D. Shasha, and S. Prakash. Locking without Block-
ing: Making Lock Based Concurrent Data Structure Algo-
rithms Nonblocking. In Proc. of the 11th ACM Symposium
on Principles of Database Systems, pp. 212–222, 1992.

[23] J. D. Valois. Implementing Lock-Free Queues. In Proc. of the
Seventh International Conference on Parallel and Distributed
Computing Systems, Oct. 1994.

[24] J. D. Valois. Lock-free Linked Lists using Compare-and-
swap. In Proc. of the 14th ACM Symposium on Principles of
Distributed Computing, Aug. 1995.

[25] J. Zahorjan, E. D. Lazowska, and D. L. Eager. The Effect of
Scheduling Discipline on Spin Overhead in Shared Memory
Parallel Systems. IEEE Trans. on Parallel and Distributed
Systems, 2(2):180–198, April 1991.

