
Semantics and Implementation of
a Generalized forall Statement for Parallel Languages.

Paul Dechering Leo Breebaart Frits Kuijlman Kees van Reeuwijk
Henk Sips

Delft University of Technology, The Netherlands
BoosterTeam@cp.tn.tudelft.nl

Abstract

In this paper we present a generalized forall statement
for parallel languages. The forall statement occurs in many
(data) parallel languages and specifies which computations
can be performed independently. Many different definitions
of such a construct can be found in literature, with differ-
ent conditions and execution models. We will show how for-
all constructs of a wide class of parallel languages can be
mapped to this generalized forall statement. In addition, the
forall statement we propose has the ability to spawn more
complex independent activities than can be found in these
languages.

Denotational semantics are used to define the meaning
of the forall and define only one possible program state
change. It is shown that it is easy to use and that it is feasible
to implement this forall efficiently.

1. Introduction

The forall statement is an important language construct in
many (data) parallel languages [3], [4], [5], [9], [13], [17].
It specifies which computations can be performed independ-
ently. Although its necessity is widely accepted, the forall
definition differs per language. The forall statement in each
of the languages was designed with specific implementation
criteria in mind.

We think it is important to have a clear and generalized
semantics for forall statements in all languages in which
they occur. This paper defines a generalized forall state-
ment and discusses its semantics and implementation. We
will show how forall constructs as found in the languages
Booster [3], Connection Machine Fortran (CM Fortran) [5],
and High Performance Fortran (HPF) [9] are mapped to this
generalized forall statement without forfeiting semantics
and efficiency. Furthermore, the forall statement we pro-
pose has the ability to spawn more complex independent

activities than can be found in these languages. Having a
single language construct that spawns a parallel loop in-
creases the orthogonality of a language. It is our opinion that
this forall statement is not only suited to an intermediate rep-
resentation, but can also be adopted at the syntactic level in
high-level parallel languages.

The context of our forall statement is supplied by V-nus, a
concise intermediate language we have defined for data par-
allel programs [6]. The purpose of V-nus is providing a lan-
guage platform to which other data parallel languages can
be translated, and subsequently optimized. We use denota-
tional semantics to define the meaning of the V-nus language
constructs, which will allow us to verify and optimize forall
statements.

Our goal is to find a forall statement that complies with
the following requirements: (1) The denotational semantics
of a forall statement must represent a deterministic outcome.
(2) It must be possible to implement the forall statement effi-
ciently. This means that the administration that is needed to
execute the forall should not use excessive amounts of com-
putational resources. (3) The forall statement must be cap-
able of representing a wide class of forall definitions as can
be found in (data) parallel languages. (4) It must be possible
to give a concise operational semantics of the forall state-
ment that can easily be understood.

2. Different types of iteration

In the set of iteration statements, we can identify two ex-
tremes: the sequential loop and the completely parallel loop.

The sequential iteration is equivalent to the conven-
tional FOR-loop. The body-instances are executed one after
another, in a predefined order. Data dependencies are of no
consequence. In the chaotic iteration, the body-instances
are executed completely concurrently. All body-instances
work on the same memory locations, and no assumptions are
made about the order in which writes to and reads from these
variables take place. A non-deterministic behaviour can be



a result of this model of execution.
Besides these extremes we present a number of other it-

eration statements.
In the merge iteration, the body-instances are executed

completely concurrently as well. But now, all body-
instances work on their own copy of the program state, so
determinism is guaranteed. At the end of the iteration state-
ment all the now-changed individual program states of the
body-instances must be merged back into a single parent
program state by a merge function.

In the statement-atomic iteration, the body-instances
are executed concurrently, but the statements within the
body are considered to be atomic. This means that during
the execution of a statement S it is guaranteed that no other
body-instances will be updating the value of any of the vari-
ables used in S. In the body-atomic iteration, the entire
body is considered to be atomic; i.e. during the execution
of a body-instance i it is guaranteed that no other body-
instances will be updating the value of any of the variables
used in body-instance i.

These intermediate forms of iteration statements are
called forall statements. Both the statement-atomic and the
body-atomic forall statement imply a certain amount of syn-
chronization and variable-shielding. We have chosen the
merge forall in V-nus, because it has the most potential par-
allelism, and is well-suited for use in programming.

3. Existing approaches

Both data parallel languages as well as control parallel
languages use the concept of a forall statement to denote the
spawning of concurrent actions. There is a common trade
off in the definitions of forall statements in these languages:
constraints on the body decrease the potential parallelism,
but lack of these constraints may cause non-determinism.
An assignment in a specific body-instance may affect the
computation of another body-instance, when these body-
instances share the same variable. The outcome of a for-
all statement is then dependent on the order of computation.
In general, it is impossible to know at compile time which
data elements are assigned to. The solution for this problem
is putting restrictions to forall statements to reduce undesir-
able behaviour. Function and procedure calls complicate the
task of finding well-defined restrictions even more, since it
is hard to analyse their effect on the program context in gen-
eral.

One of the first versions of the forall statement was in-
troduced by Thinking Machines Corporation in CM Fortran
[5]. It is used to distribute computations over the processing
elements of the Connection Machine (CM). The keyword
FORALL indicates that the body-instances can be executed in-
dependently. The body-instances consist of one assignment
with a left-hand side that is not assigned to by another body-

instance. The use of certain kinds of expressions, such as
user defined functions and assignments to array sections that
depend on the index variable, always causes the forall state-
ment to be executed serially.

Vienna Fortran [17] defines a broader forall statement
by permitting private variables. These variables are known
only in the forall statement in which they are declared, and
each body-instance has a separate copy. A body-instance
can consist of any legal FORTRAN 77 executable statement.
Tightly nested forall statements can be used to specify mul-
tiple levels of parallelism. Vienna Fortran also restricts the
forall body by requiring that a value written in one body-
instance is neither read (define-use dependence) nor writ-
ten (define-define dependence) in any other body-instance
(see [18] for a description of define-use and define-define
dependencies). The result is always deterministic.

Experiences with the forall statement in the Fortran dia-
lects CM Fortran, Vienna Fortran, and Fortran D [10] led
to the construction of the HPF forall. CM Fortran uses the
forall statement to create parallelism explicitly by distrib-
uting body-instances over the CM. Vienna Fortran uses the
forall statement to indicate that the different body-instances
are independent and can be logically executed in parallel. In
HPF [9] it is the distribution of data that introduces parallel-
ism. The HPF forall statement consists of a single assign-
ment statement. The left-hand side of each body-instance of
this assignment can only be assigned to once. This excludes
define-define dependencies. Execution of the forall state-
ment requires the right-hand sides of the body-instances to
be evaluated before these are assigned to the left-hand sides.
This implies that a synchronization is needed. Only func-
tion calls to pure functions (functions that have no side ef-
fect) may be used in the right-hand side. It is then assured
that define-use dependencies leave the outcome of the forall
statement deterministic.

It is allowed to have multiple statements in the HPF for-
all body1, but this means that each assignment of the body
is executed completely; i.e. as if the assignments were writ-
ten as forall statements in the same order (see Section 7).
In addition a directive INDEPENDENT has been introduced for
both DO loops and FORALL statements. The directive assures
the compiler that the body-instances can be executed in an
arbitrary order, without any computational differences in the
result. In case of the multiple statement forall this means no
synchronization is needed between the statements. Both the
single assignment and the multiple assignment forall state-
ment of HPF are used in the same form with the same se-
mantics in Fortran 95, according to the proposed revision
[8].

The data parallel language Booster [3] has no FORALL

keyword. It is possible to assign array sections in parallel

1HPF distinguishes between forall statements and forall constructs; the
latter may have multiple statements in their bodies.



by using an aggregate assignment. Unambiguous semantics
are enforced by the requirement that no element is used as
a target before it is used as a source. Function calls do not
complicate analysis, since Booster requires the functions to
be referentially transparent; i.e. no side effects occur and no
global variables are accessed.

In the control parallel language SuperPascal [13] the for-
all statement is used to denote an array of parallel processes.
A severe restriction is imposed on the forall body to prevent
ambiguous computations: the body may not assign to a vari-
able. This implies that a body-instance must output its res-
ults through a communication channel or a file. Procedure
calls can be used in the body, which causes no problems un-
der the given circumstances.

The forall statement in Compositional C++ [4], denoted
by the keyword PARFOR, also initiates the parallel execution
of the body-instances. Multiple statements are allowed in
the forall body, where the statements of a specific body-
instance are executed sequentially. This is in contrast to the
multiple statement forall of HPF. No copies are made of data
that is used in the body-instances, so loop carried dependen-
cies can lead to non-deterministic results.

The Myrias PARALLEL DO uses a copy-in/copy-out se-
mantics [2]. When a program executes a PARALLEL DO con-
struct, parallel tasks are created, one for each iteration of
the PARALLEL DO. Each task gets a separate copy of the parent
program state. At the end of the PARALLEL DO all child pro-
gram states are merged to form the new program state. It is,
however, not explained how this merging can be done effi-
cient.

Li and Wolfe [14] mention the difficulties in defining
well-behaved parallel constructs without making arbitrary
decisions. They have developed a framework for analyzing
the behaviour and relations of various sequential and par-
allel control constructs. Their DOPAR iteration has a similar
meaning as the merge foralldescribed in Section 2, and is
based on the PARALLEL DO of the Myrias system. Here too,
it is not mentioned how to implement this general iteration
construct efficiently. Using their framework they present
how and when different loop constructs can be substituted
by another loop construct.

In the remainder of this paper we will use the forall state-
ments of Booster, CM Fortran, and HPF as representatives of
the many forall definitions that can be found in literature on
data parallel languages.

4. The semantics of the V-nus forall

Similar to the other languages, the V-nus forall statement
is represented by the syntax: forall IndexSpace Body. The
term IndexSpace specifies the range of the index variable;
the term Body represents the block of statements that will be
executed for each value of the index variable (see Example

4.1).
Example 4.1 The V-nus forall statement
Consider: forall [i:3] fa := ig. The index variable is i and ranges
over 0; 1 and 2. The body is a := i; an example of a body-instance is a
:= 1. �

Body-instances of the V-nus forall statement are to be ex-
ecuted completely independently. By this we mean that data
that can be changed by a body-instance i will not affect the
computation of another body-instance j. However, a global
interference is still possible when there is a define-define
dependence between the possible body-instances; i.e. two
body-instances that write to the same variable. We say that a
forall statement is deterministic if no define-define depend-
ence is present between any two different body-instances of
the forall statement.

We want to record the concept of the forall statement in
a semantic model, such that we can use this model to reason
about a program. We use denotational semantics [1] [16],
in which the meaning of a program can be expressed by the
composition of the meanings of its parts. The denotational
semantics are useful when we want to rewrite only parts of
a program, and leave the meaning of the whole program as
it is.

In denotational semantics a program state captures all ne-
cessary information about the context in which a program
fragment is executed. A program state is valid only if each
variable of the program state is given exactly one value (see
Example 4.2).
Example 4.2 Program states.
Consider the forall statement of Example 4.1. A valid program state after
execution of the body-instance a := 1 is: (a = 1). The program state
(a = 0; a = 1) is invalid, because the variable a is given two values. �

The semantics of a program fragment are given by a pro-
gram state change, represented by a pair (ps; ps0) of pro-
gram states. In case of the forall statement, program state
changes are computed for all body-instances. Say, for body-
instance i the state change (ps; psi) is computed. Then the
different program states psi (for all i) are merged into the fi-
nal program state ps0, which will be the program state after
the forall statement has been executed. This merge opera-
tion consists of two actions. First psi is compared with ps,
providing only the difference di�i between these program
states. Secondly, all elements of di�i will be put into ps.
This is done for all psi in arbitrary order.

The mathematical framework for the denotational se-
mantics of V-nus (including the forall statement) is de-
scribed in [6].

5. Mathematical model

In this section we will show how the forall statement of V-
nus can be expressed by a semantic function. It is therefore
necessary to introduce some mathematical concepts.



In our model, functions are just special sets. A (partial)
function f from a set X to a set Y is a set f � X� Y such
that

8x 2 X 8y; y0 2 Y: ((x; y) 2 f ^ (x; y0) 2 f)) y = y0

For a function f � X� Y we will also write f : X ! Y .
Functions are used to represent the state of the variables

of a program. When another value is assigned to an exist-
ing variable x, the function representing the state of x needs
to be updated. For this purpose we introduce a replacement
function which will change a pair or add a pair to the set of
pairs defining a function. Let P = P(X� Y ) be the power-
set of the Cartesian product of X and Y . For two functions
f; g : X ! Y the replacement function / : P � P ! P

is defined as

f / ; = f

8(x; y) 2 g: f / g = f 0 / gn(x;y)

where f 0(z) =

�
y if z = x

f(z) otherwise

We have constructed a set� of all possible program states
� for an arbitrary V-nus program. A program state � is a
function that assigns a value to a program variable. Such
a program state is defined for all variables in a given V-nus
program, except for the variables defined in an index-space
specification. These index variables play an important role
in specifying the meaning of an iteration. A separate set �
of index states ' has been constructed that represent the cur-
rent values of the index variables in a loop nest. The mean-
ing of some V-nus program fragment is then given by the
meaning function

M : Vnus! � ! � ! �

So given a V-nus fragment c, an index state ', and a pro-
gram state �, the program state �0 after c has been executed
is represented by �0 =M(c)(')(�).

Now we can present the semantic function PL that
defines the state change of a parallel loop.

Definition 5.1 Let (j0; : : : ; jn) be a predefined permuta-
tion of (0; : : : ; n). The function PL : Vnus ! P(�) !
� ! � ! � is defined as follows:

PL(Body)(ff0; : : : ; fng)(')(�) = �0

where

8>><
>>:

8i 2 f0; : : : ; ng: 'i = ' / fi
8i 2 f0; : : : ; ng: �i = M(Body)('i)(�)
8i 2 f0; : : : ; ng: �0

i = �in�

�0 = � / �0
j0
/ : : : / �0

jn

�

The argument Body represents the loop body of the for-
all statement. The second argument is a set of functions,

each defining an element of the index space. For instance,
the index space specification [i:2,j:3] would be represen-
ted by the set of functions: ff0 = f(i; 0); (j; 0)g; f1 =
f(i; 0); (j; 1)g; : : : ; f5 = f(i; 1); (j; 2)gg. The third and
fourth argument represent the current index state and pro-
gram state respectively. The result is the program state after
execution of the body instances.

The index states'i all have a different index value for the
index variables of the loop. The program state �i represents
the meaning of the loop body Statements executed in the in-
dex state 'i and the original program state �. Then the dif-
ferences between these final program states and the original
program state can be computed, which is represented by � 0

i.
The last step in the computation merges all differences into
the final program state �0.

The meaning of the program construct forall IndexSpace
Body is given by the following definition of the meaning
functionM:

M(forall IndexSpace Body)(')(�) =
PL(Body)(F )(')(�)

where F = DP (IndexSpace)(')(�)

The domain propagation function DP computes an index
state for each element of the index space. It is out of the
scope of this paper to define this in more detail. For a com-
plete definition of the semantic functions we refer to [6].

6. The implementation

Implementing the forall statement as presented in Section
4 and 5 may cause problems. Merging the different program
states of the body-instances is inefficient, since computing
the difference between program states is time consuming.

To arrive at an efficient implementation of the forall
statement, we take the following approach. At the start of
a forall statement the program state ps is preserved. For the
execution of a body-instancea subset qsi of ps is used for the
context in which this body-instance will be executed. Only
the data that is needed in the body-instance is extracted from
ps and will be used for qsi. Each time something must be
read from memory, it is read from qsi. When something
must be written to memory, it is not only stored in qsi, but
also in ps. In this way, each change that is made by a single
body-instance is also visible in the global program state, but
will not affect the other body-instances. This is how the final
program state ps0 arises from the original program state ps,
without the need for a merge or a difference operation (see
Figure 1).

The construction of qsi is dependent on the information
the compiler has about the data that is used in the body-
instance. This information can be generated automatically
by standard dependence analysis techniques and manually
by pragmas. A pragma is an annotation for the compiler that



gives additional information about a certain program con-
struct. Pragmas that can be used for a forall statement spe-
cify which data should be copied in qsi.

If a forall statement is not annotated by a pragma, then
the local program states qsi are created as explained above.
If a pragma is present the compiler relies on this informa-
tion and only copies the given data structures for the accom-
panying program states qsi. In our opinion, it is more use-
ful to specify for which data structures a dependency exists,
than those for which no dependency exists. The syntax of a
pragma for a forall statement is: <<dependsOn Expressions>>

which expresses a dependency for the data structure(s) Ex-
pressions. An empty list of specifications (i.e. <<dependsOn
[]>>) means that no data needs to be copied. Of course, it is
the responsibility of the programmer to avoid the introduc-
tion of non-determinism due to a pragma.

Especially when the compiler can not determine at
compile-time what dependencies exist between the body-
instances, it is useful to be able to give additional inform-
ation to the compiler. In Example 6.1 is shown how the effi-
ciency of a forall statement can be optimized by introducing
a pragma.
Example 6.1 Using pragmas for a forall statement.
Consider the program fragment:
forall [i:n] fA[i]:=B[C[i]]; B[C[i]]:=A[i+1];g

At compile-time it is unknown what elements of B are referenced. The
conservative approach is taken so that this forall is characterized as non-
deterministic. Furthermore, for each body-instance qsi a complete copy of
B is created. If all elements of C are different then each body-instance will
write to a different element of B. In that case, there is no need to create a
copy of B in each qsi. Note that for A it is necessary to create a local copy.
So we can safely annotate the forall statement as follows:

<< dependsOn [A[i+1]] >> forall [i:n] f
A[i] := B[C[i]]; B[C[i]] := A[i+1]; g

which means that each body-instance qsi must have a copy of A[i+1],
and no other copies are needed. When a pragma is used, it is assumed that
the forall is deterministic. �

When using pragmas the execution model is slightly
changed. Each time something must be read from memory,
it is read from qsi if it exists in qsi; otherwise it is read
from ps. Proper use of pragmas still guarantees determin-
ism provided the original program was deterministic.

In the implementation of a deterministic forall statement,
all differences between the program states qsi are collected
in the global program state ps0. This is exactly as it is de-
scribed by the denotational semantics.

The denotational semantics use the same computation for
both deterministic and non-deterministic forall statements.
That makes the result of a non-deterministic forall statement
dependent on the computation order. In this case the ef-
ficient implementation of a forall statement may compute
other results than the theory prescribes. In Example 6.2 a
possible difference is presented between the computation
used in the implementation, and the computation used in the

semantics.
Example 6.2 Difference between theory and implementa-
tion.
Consider the program fragment: forall [i:2] fa := i; b := ig.
The denotational semantics predict that the body-instance for i = 0 will
result in the program state ps0 = (a = 0; b = 0). The body-instance for
i = 1 will result in the program state ps1 = (a = 1; b = 1). ps0 will then
be either ps0 or ps1.
The implementation, on the other hand, may cause the following execution
orders:
a := 0, b := 0, a := 1, b := 1 or

...
a := 0, a := 1, b := 1, b := 0 or
a := 1, a := 0, b := 0, b := 1

which will lead to the same possible program states as predicted by the
theory, plus the program states (a = 0; b = 1) and (a = 1; b = 0). �

ps

psi psj

psi' psj'

diffi diffj

ps'

a := 1a := 0

ps

qsi qsj

qsi'' qsj''

a := 1a := 0

ps''

(Implementation)

b := 0 b := 1

psi'' psj''

qsi' qsj'

b := 1b := 0

ps'

(Theory)

Figure 1. Program state changes caused by a

forall statement.

In Example 6.2 both the body-instances write to the
variables a and b, which makes the forall statement non-
deterministic. Theory and implementation only differ for
non-deterministic forall statements. We want to use a se-
mantic model in which the outcome of a program (fragment)
is unambiguous. When non-determinism is forced by a non-
deterministic forall statement it is sufficient to mention that
the outcome is unpredictable. For now, there is no need for
a semantic function that defines the set of all possible out-
comes.

7. The forall compared

As shown in Section 3, many languages have a nota-
tion that describes some independent iteration over an index
space. However, the semantics of these constructs differ for



each language. In this section, we compare the forall state-
ments of the data parallel languages Booster, CM Fortran,
and HPF, and we show how these differently defined forall
statements can be mapped to the V-nus forall statement.

CM Fortran as well as HPF use the same method for the
evaluation of forall IndexSpace Body: first, evaluate the
expressions in IndexSpace, then, evaluate all expressions
present in Body, and finally, perform the assignments of
Body. More detailed descriptions are given in the appropri-
ate language specifications.

Consider the following examples in pseudo code:

(7.1) forall i=0,n j=0,m a[i,j]=expr end

(7.2) forall i=0,n j=0,m a[i,j]=F(X) end

(7.3) forall i=0,n j=0,m a[i,j]=expr, a[i+1,j]=F(X) end

where the expressions n and m are not dependent on each
other, expr is some arbitrary expression that does not con-
tain a function call, F represents a function, and X is an ac-
tual argument list that is not dependent on the array a. In
each of the languages Booster, CM Fortran, and HPF the
index space over which is iterated is the Cartesian product
[0 : : : n]� [0 : : :m].

In CM Fortran, Example 7.1 will cause the assignments
to be executed on the CM in parallel. The assignments of
Example 7.2 will be executed sequentially because of the
function call on the right hand side. Example 7.3 is not valid
since CM Fortran allows only one statement in a forall body.

In Booster, both Example 7.1 and Example 7.2 will
perform the assignments in arbitrary order. Because in
Booster functions are referentially transparent, the function
call causes no side effects, and therefore it is guaranteed that
each element is used as a source before it is used as a target.
In Booster too, only one assignment is allowed in the forall
body, which makes Example 7.3 invalid.

In HPF, Examples 7.1 and 7.2 have the same meaning as
in Booster. Although pure functions in HPF need not be ref-
erentially transparent, it is forbidden for those functions to
have side effects. This allows the different body instances
of a forall statement to be evaluated in arbitrary order. Ex-
ample 7.3 is semantically equivalent to the following con-
secutive forall statements:

forall i=0,n j=0,m a[i,j] = expr,
forall i=0,n j=0,m a[i+1,j] = F(X)

Note that the second forall statement only starts when the
first forall statement has finished. It can not be rewritten
to one INDEPENDENT DO loop, because a define-define depend-
ence exists for a[i], 1 � i � n� 1.

Example 7.1 interpreted in Booster, CM Fortran, or HPF

can be represented in V-nus by:

forall [i:n+1, j:m+1] a[i,j] := expr

Example 7.2 interpreted in CM Fortran needs a sequen-
tial loop in V-nus, such as:

for [i:n+1, j:m+1] a[i,j] := F(X)

In Booster and HPF this example can be represented in the
same way as Example 7.1 is represented. Example 7.3 inter-
preted in HPF can be rewritten to two single assignment for-
all statements as presented above. These can easily be trans-
lated to V-nus. Note that if Example 7.3 was interpreted in V-
nus directly, it would denote a non-deterministic forall state-
ment because of the define-define dependencies. Define-
define dependencies are allowed if they occur in the same
body-instance. For example, if the subscript i+1 of Example
7.3 is replaced by i then the forall statement has become de-
terministic.

Every INDEPENDENT DO loop in HPF can be represented by
the V-nus forall statement, since no loop carried dependen-
cies occur at all. Due to V-nus pragmas the effectuality of
the INDEPENDENT directive can also be utilized.

The NEW directive in HPF is used to create variables that
are local to a single body-instance. In V-nus it is possible to
use loop-bodies as scope-boundaries. So, the named vari-
ables in the NEW directive of HPF can be represented in V-nus
by locally declared variables in a loop.

Since V-nus requires functions to be referential transpar-
ent, functions of other languages that are less restrictive need
to be rewritten in V-nus. If a non-V-nus function uses (or
writes to) a global variable, it can be represented by a corres-
ponding V-nus function where this global variable is passed
via another function parameter (and consequently becomes
local to the function). As a result, an HPF forall statement
with a call in its body to a pure function that uses a global
variable can be represented in V-nus while fully preserving
the semantics and effectiveness.

Now, we show an example of an optimization that can
only be expressed by using the V-nus forall. Consider the
following matrix operation:

for [j:m] forall [i:n]
a[i,j]:=a[i,j-1]+a[i,j+1]+a[i-1,j]+a[i+1,j]

The optimization we have in mind is based on synchron-
ization elimination [12]. By reversing the i and j loop the
operation can be expressed as

forall [i:n] for [j:m]
a[i,j]:=a[i,j-1]+a[i,j+1]+a[i-1,j]+a[i+1,j]

which has no computational differences in the result. In-
stead of executing forall statements in sequence, the forall
body-instances can now be executed concurrently, yet obey-
ing the j sequence. It is easy to see that no define-define de-
pendence occurs, which makes it a deterministic forall state-
ment. This forall statement is not ‘valid’ in the other parallel
languages mentioned in this paper.



8. Conclusion

For non-deterministic forall statements an unambiguous
program state change is forced by the specification of a com-
putation order. The program state change of a deterministic
forall statement is not dependent on the computation order.

The approach taken in the implementation requires some
computation overhead compared to a sequential loop. This
overhead is due to the following computations: (1) Be-
fore the body-instances can be executed, each body-instance
must get its own (small subset of the) program state. (2) Dur-
ing execution of a body-instance, each write action is per-
formed twice (to update the local and global program state).
In many cases, one of these two write actions can be omit-
ted. Computation and space overhead can be adjusted by
pragmas. The computation time for the construction of the
program state ps0 is in the order of the number of variables
that are used in the forall body. A direct implementation of
the theoretical scheme would need linear time in the number
of variables of the entire program and the number of body-
instances of the forall statement.

V-nus can be used to capture the meaning of different
definitions of forall statements. Therefore, we think that our
forall definition is suitable for an intermediate representa-
tion. Furthermore, it allows the spawning of more complex
concurrent computations than can be found in other data par-
allel languages. The semantics is easy to understand and is
unambiguous.

However, the programmer must be able to verify whether
the condition for determinism is met. Partially, this can be
done at compile-time. A run-time solution for the other
cases requires too much overhead in general. But while us-
ing execution trace techniques it is possible to recognize a
define-define dependence, when different values are writ-
ten to the same variable. When the same value is written
twice to that variable a define-define dependence is not re-
cognized, but nevertheless the result is deterministic.

More forall examples are available at:
ftp://ftp.cp.tn.tudelft.nl.

References

[1] J.W. de Bakker. Mathematical Theory of Program
Correctness. Series in Comp. Sc. Prentice Hall Intl,
1980.

[2] M. Beltrametti et al. The Control Mechanism for the
Myrias Parallel Computer System. Computer Archi-
tecture News, 16(4):21–30, 1988.

[3] L.C. Breebaart et al. The Booster Language, Syntax
and Static Semantics. Comp. Phys. report series CP–
95–02, Delft Univ. of Technology, 1995.

[4] P. Carlin et al. The Compositional
C++ Language Definition. Revision 0.9
ftp://ftp.compbio.caltech.edu
/pub/CC++/Docs/cc++-def, March 1 1993.

[5] Thinking Machines Corporation. CM Fortran Pro-
gramming Guide. Technical report, January 1991.

[6] P.F.G. Dechering. The Denotational Semantics of
Booster, A Working Paper 2.0. Comp. Phys. report
series CP–95–05, Delft Univ. of Technology, 1995.

[7] P.F.G. Dechering et al. V-cal: a Calculus for the Com-
pilation of Data Parallel Languages. In C.-H. Huang
et al, editors, LCPC, vol 1033 of LNCS, pp 111–125,
USA, 1995. Springer Verlag.

[8] Fortran Forum. Special Issue, Fortran95, Committee
Draft, May 95. Fortran Forum, 12(2), 1995.

[9] High Performance Fortran Forum. High Performance
Fortran Language Specification. Techn. report, Nov.
1994.

[10] G. Fox et al. Fortran D Language Specification.
COMP TR90079, Dep. of Comp. Sc., Rice University,
March 1991.

[11] A. Geist et al. PVM: Parallel Virtual Machine, A
Users’ Guide and Tutorial for Network Parallel Com-
puting. Scientific and Eng. Comp. series. MIT Press,
1994.

[12] A.J.C. van Gemund. Performance Modelling of Par-
allel Systems. PhD thesis, Delft Univ. of Technology,
1996.

[13] P.B. Hansen. Interference Control in SuperPascal – A
Block-Structured Parallel Language. The Computer
Journal, 37(5):399–406, 1994.

[14] J. Li and M. Wolfe. Defining, Analizing and Trans-
forming Program Constructs. IEEE Par. and Distr.
Technology, pp 32–39, 1994.

[15] J.A. Trescher et al. A Formal Approach to the Compil-
ation of Data Parallel Languages. In K. Pingali et al,
editors, LCPC, vol 892 of LNCS, pp 155–169, USA,
1994. Springer Verlag.

[16] G. Winskel. The Formal Semantics of Programming
Languages: An Introduction. Foundations of Comp.
Series. MIT Press, 1993.

[17] H. Zima et al. Vienna Fortran – A Language Specific-
ation, version 1.1. Internal Report 21, ICASE, 1992.

[18] H. Zima and B. Chapman. Supercomputers for Paral-
lel and Vector Computers. Frontier Series. Addison-
Wesley, 1990.


