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Abstract 
W e  describe how we have paralleked Python, an interpreted object oriented scripting lan- 
guage, and .used it to build an extensible message-passing C/C++ applications for the CM-5, 
Cray T3D, ‘and Sun multiprocessor servers running AIPI. Using a parallelized Python inter- 
preter, it is possible to interact with large-scale parallel applications, rapidly prototype Rew 
features, and perform application specific debugging. It is even possible to write message 
passing programs in Python itself. We describe some of the tools we have developed to extend 
Python and applications of this approach. 

1 Introduction 
Some of the greatest problems encountered when working with massively parallel machines 
is the complexity of software development, the difficulty of building flexible applications, 
parallel debugging, and dealing with the massive amounts of data that can be generated 
by large-scale parallel applications. While much has been said about the “lack of tools” 
available for parallel computing, the situation seems to have improved little over the past 
few years-a fact which we feel is unfortunate, but perhaps indicative of the rapid growth 
(and demise) of parallel computing systems [l]. 

Given the complexity of working with parallel machines, there is tendency to develop 
parallel “problem solving environments” that attempt to hide the underlying complexity of 
running in parallel by relying on. sophisticated object oriented programming frameworks, 
software libraries, or language extensions. Unfortunately, we feel that this tends to result in 
large monolithic software systems that are too complicated to adapt to new uses, diEcult 
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to integrate with existing code, and almost impossible to debug (since the user is effectively 
isolated from all of the underlying implementation details). For scientific computing research 
applications, this is simply unacceptable. Research codes need to be simple to modify and 
use. Ideally, they should be reusable in a variety of situations. It must be possible to 
understand exactly what is going on inside the code in order to verify ccrrect operation (and 
to  fully understand the experiment!). 

If we turn to the workstation and PC world, a very different style of computing 
is emerging. Rather than building large monolithic systems, applications are being built 
from small modules and “applets” (for lack of a better word). Languages such as Tcl/Tli, 
Perl, Python, Visual Basic, and Java have been highly successful not because they are better 
languages, but because they allow extremely powerful applications to be built out of existing, 
often diverse, components. More often than not, a useful application can be built in only 
a matter of hours- not days or weeks. Unfortunately, this does not seem to be the case for 
parallel machines. 

In this paper, we describe how we have parallelized Python to  serve as E “glue lan- 
guage“ for building highly modular and component based parallel applications. The resulting 
system serves as the basis for developing extensible and flexible parallel codes without relying 
on a large software infrastructure or a parallel computing framework. It also provides us with 
a nice debugging, prototyping, and user environment for working with large parailel codes. 
We hope to illustrate the system with a large-scale molecular dynamics application we have 
been developing, but the methods are easily applicable to other kinds of applications. 

2 The Python Language 
Python is an interpreted object oriented scripting language developed by Guido van Rossum, 
at Cb’I, Amsterdam [2, 31. It has been steadily increasing in popularity and is often com- 
pared to languages such as Tcl/Tk and Perl [4, 51. For controlling parallel applications. we 
wanted to provide a command driven model similar to that used in scientific pzckages such 
as Mathematica, MATLAB, or IDL. We chose Python for a variety of reasons : 

0 It is highly portable and runs under UNIX, MacOS, and Windows. 

0 The language is built around a small extensible core. This makes i t  easier to port to 
parallel machines. 

0 It has an exceptionally clean syntax that is easy to read and easy to  learn. 

0 Python is interpreted and can run interactively. 

0 The language is dynamically typed and has a number of high-level constructs that are 
often only found in functional languages. 

0 It is easy to build C/C++ extensions to Python. 

0 A large number of extension modules are already available. 
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0 It is fully object oriented, making it possible to write sophisticated and powerful scripts. 

0 The language has seen increased use in the scientific community and has a number of 
numerical extensions [6, 71. 

0 Python is free, but well supported by the Python Software Activity (PSA). 

0 We like it. 

More information about Python caa be found on the internet, or the forthcoming 
book “Programming Python” by Mark Lutz [3]. Fortunately, the syntax of the language is 
easily understood and shouldn’t present a problem for understanding later examples. The 
remainder of this paper will focus primarily on the use of Python rather than the language 
itself. 

3 Paralleliaing Python 
Within a message passing environment, parallelizing the Python interpreter involves being 
able to safely running a copy of Python on every processor. Like C or Fortran, processors 
may only be loosely synchronized and will execute code independently unless message passing 
calls are involved. However, unlike C or Fortran, Python itself is written in C and uses the 
the C s t d i o  library for many operations, including reading scripts from files, importing 
modules, getting input from the user, and writing byte-compiled versions of modules back 
to disk. Given the extremely poor state of parallel 1/0 support on most machines, this 
presents a serious portability and usability problem. We need to make sure that Python can 
run properly on all processors without clobbering itself during 1/0 operations. At the same 
time, we don‘t want to have to modify significant portions of the Python source. 

In addressing the 1/0 problems, we assume that all 1/0 takes place on a common 
file system and that files may be shared between multiple processors simultaneously. This 
is the model most commonly found on large parallel machines and multi-processor servers. 
It may not be the model on distributed workstation clusters or heterogeneous systems: but 
the techniques we describe could still be applied (with modification) to those systems. 

3.1 
To remap the 1/0 operations used in Python, we have written a special C header file 
p s t d i o  . h. This file is included into the Python header files prior to the inclusion of the 
C s t d i o  . h header file. This remaps all of the stdio operations to  a collection of “wrapper” 
functions that we will implement in a manner similar to tbat described in [SI. 

Remapping 1 / 0  Functions in Python 

/* pstdi0.h : Wrappers around s tdi0 .h  for  parallel  I/O */ 
#define f open 
#define ff  lush 
#define f c lose  

PIO-f open 
PIO-fflush 
PIO-fclose 
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#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#define 
#def in8 
#define 
#define 
#define 

rename 
s etvbuf 
f read 
fwrite 
fprintf 
fge t s  
fputc 
fputs 
printf 
f seek 
f t e l l  
read 
write 
open 
close 

PIO-rename 
P IO-set vbuf 
PIO-f read 
PIO-fwrite 
PIO-fprintf 
PIO-f ge t s  
PIO-fput c 
PIO,fp?lts 
PIO-printf 
P I 0 2  seek 
PIO-f t e l l  
PIO-read 
PIO-write 
PIO-open 
PIO-close 

3.2 Implementation of Wrapper Functions 
The 1/0 wrapper functions are implemented using a combination of the C s t d i o  library and 
message passing operations. File descriptors are managed in two different I/@ modes : 

0 BROADCAST. In this mode, processor 0 reads data and broadcasts it to all of 
the other nodes. When writing, output is assumed to come from only one processor 
(usually processor !I: but this can be remapped). This mode is primarily used for 
handling interactive T/O using s t d i n  and s tdout .  

0 BROADCAST-WRITE. This mode allows all processors to read data indepen- 
dently, but only one processor can write data. This mode is used for most file opera- 
tions in Python. For example, when reading a script, every node can simply open the 
file and process its contents independently. By restricting write access, we elimina.te 
problems that occur when multiple copies of Python attempt to write to the same file 
(which would normally result in garbage). This mode is somewhat faster than the 
normal broadcast mode since it is not necessary for processor 0 to broadcast input 
data to the other nodes. 

Currently, we have implemented the wrappers under CMMD on the CM-5, the shared 
memory library on the T3D, and MPI [9, 10, 111. Eventually, we would hope to implement 
the library using parallel 1/0 libraries such as MPI-IO [12]. 

3.3 Other Changes to Python 
Finally, three other changes were required to the Python core. 

0 .4 putc() call was changed to fpu tc ( )  since it could not be remapped otherwise (since 
putc()  is implemented as a C macro). 
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0 A switch was installed to disable dynamic loading of modules. While supported on 
most workstations, this capability is not avaiiable on larger machines such as the CM-5 
or Cray T3D. 

e An initialization call was added to Python's main() program. This is sometimes needed 
to initialize MPI and other packages. 

3.4 Compilation 
The 1/0 remappings and minor fixes required less than 10 lines of modifications to the 
entire Python source (consisting of more than 50000 lines of C code). The 1/0 wrappers 
have been implemented in about 1000 lines of supporting C. Together with the Python 
source, everything is combined into new version of the Python interpreter and a C library 
for embedding a parallelized version of Python in other applications. 

4 Using SWIG to build Python extensions 
While Python is designed to be easily integrated with C/C++ code: doing so requires one to 
write special "wrapper" functions that provide the glue between the underlying C function 
and the Python interpreter. For example, the C code and Python wrapper for a factorial 
function are shown below : 

/* A f a c t o r i a l  function */ 
i n t  fa .c t ( int  n)  { 

if (n <= 1) return 1; 
else return n*f act (n-1) ; 

2- 

/* A Python wrapper function f o r  it */ 
PyObject *wrap-fact(Py0bject *self ,  PyObject *args) C 

i n t  r e s u l t ;  
i n t  a r g ;  
i f  ( ! PyArg-ParseTuple ( a r g s  , "d" ,&arg)  

return NULL; 
r e s u l t  = fact (arg);  
return Pp-BuildValue("d", r e s u l t )  ; 

3 

While writing a single wrapper function isn't too hard, it quickly becomes tedious if 
there are a large number of functions. Since we would like to use Python as a rapid protptyp- 
ing and extension language, having to write all of these functions by hand is unacceptable. 
Thus; we have developed a tool, SWIG (Simplified Wrapper and Interface Generator), that 
automatically generates Python bindings from ANSI C/C++ specifications (in fact, it also 
produces Tcl and Per1 bindings) [E!]. Using SWIG, the user would extend Python by writing 
the following file : 
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// file : fact.i 
‘/Jodule fact 
%( 
/* Put headers and support code here */ 
%3 

extern int fact (int n) ; 

The module is then compiled arid added to Python as follows (under Solaris): 

unix > swig -python fact. i 
unix > gcc -c f act-wrap, c -I/usr/local/include/Py 
unix > Id -G fact-wrap.0 -0 factmodule.so 
unix > pgthon 
Python 1.3 (Hay 2 1990) CGCC 2.5.81 
Copyright 1991-1996 Stichting Hathematisth Centrum, Amsterdam 
>>> import fact 
>>> fact. f act (6) 
720 
>>> 

While this is only a simple example, SWIG supports almost all C/C++ datatypes, 
C structures, and C++. More information about SWIG can be found in [13]. We now focus 
on how these tools can be used to build extensible parallel applications. 

5 An Extensible Molecular Dynamics Code 
Since 1992, we have been developing a short-range molecular dynamics code, SPaSRI, for use 
on the Connection Machine *5 acd Cray T3D systems at Los Alamos National Laboratory [14]. 
This code has been capable of performing production simulations with more than 100 million 
atoms, yet managing such simulations in practice has proven to be nearly impossible- 
primarily due to the overwhelming amount of data generated,the difficulty of debugging and 
development, and the lack of analysis tools. 

To address these problems, we have adopted the idea of “computational steering” 
and reorganized the code with a focus on modularity and integration of various components 
such as data analysis, visualization, and simulation [15, 16, 171. Python serves as the glue 
of this system as shown in Figure 1. 

Rather than having a large monolithic application, the new organization features a 
collection of loosely organized modules. Most of the functionality is found in a collection 
of C library files for running simulations, performing data analysis, message passing and 
other things. These are integrated into Python using a collection of SWIG interface files. 
A collection of Python scripts are also available. These scripts perform common tasks, and 
form the foundation of an object oriented visualization system we are developing. 

The user provides C code for initial conditions, boundary conditions, numerical in-. 
tegration methods, and any problem specific features. IYhile this code relies heavily on the 
base set of C libraries, it completely independent of the Python interface (and can, in fact, 
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Figure 1: System organization. 

be compiled without it). However. if the user would like to use Python. they simply write 
an interface file for their functions. Simulation scripts and new functionality can then be 
written in Python as needed. 

5.1 
This approach provides an extremely straightforward and easy mechanism for extending the 
system and controlling large simulations. A user would provide an interface specification 
such as the following : 

Extending and Controlling the System 

%nodule spasm 

#include “spasm. h” 

%include SPaSH. i 
%include graph.i // Graphics library 
%include ana1ysis.i // Visualization library 
%include debug. i // Debugger 
%include meth0ds.c // Output methods 

%( 

%> 
// Include the SPaSH library 

extern void ic,shock(int nx, int ny, int nz, double vel, double width, double gap, 
double temp, double rO, double cutoff); 

extern int 
extern void set-boundary-periodic0 ; 

timesteps(int nsteps, int energy-n, int output-n, int checkp-n); 



e x t e r n  void set-boundary-free0 ; 
extern void energy(); 

Real D t  ,TotalTime; 

// D i f  Perent poten t ia l  energy methods 

e x t e r n  void i n i t - l j  (double eps i lon ,  double sigma, double cu tof f )  ; 
extern void in i t - t ab le -pa i r0  ; 

Functions, variables, and constants defined in the interface specification correspond 
directly to their underlying C counterparts. When the code is compiled, all of the functions 
appear automatically as Python commands. They can then be used as shown in the following 
simulation script: 

# Shock wave problem (Python s c r i p t )  
nx = 15 
nY = 15 
nz = 50 
shock-velocity = 8.5 

width = 0.3333 # Shock width 
r O  = 1.0901733 # Lattice spacing 
gap  = 0.10 # Gap 
cu to f f  = 2.0 # In t e rac t ion  cutoff 
cva r  . D t  = 0.0025 # Timestep 

temp = 0.1 

i c - shockbx ,  ny ,nz, shock-velocity ,width, gap, temp,rO, cutoff)  
i n i t - 1  j (i ,i ,  cutoff)  
set-boundary-periodic (1 
set~path("/sda/sdal/beazley/shock2" ) 
t imes teps(  10000,25,25,500) 

When new functionality is needed, an ordinary C function can be written. Its proto- 
type is placed into the interface file and that's it. Since no Python specific code is involved, 
any new functionality is easy to re-use in other kinds of C/C++ applications (even if they 
don't involve Python). 

5.2 Interactive Simulation 
Since Python is interpreted, it is possible to run SPaSM in an interactive mode. in this 
mode, the user is presented with a single prompt even though tens to hundreds of copies of 
the interpreter are running (our parallel 1/0 wrappers make this possible). Any commands 
typed by the user are executed in a pure SPMD mode with execution taking place on all 
processors. This environment is particularly useful for setting up problems and examining 
the state of a simulation. Here is a sample session : 

.cm5-5 (106) > SPaSM -p4:4:2 
SPaSM 3.0 (alpha) ==== Run 190 on cm5-5 ==== Xed Sep 18 10:57:11 1996 
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Figure 2: (a) Memory usage display (left), (b) Particles and processor assignments (right) 

Using Python 1.3 (Sep 8 1996) CGCC 2.6.31 
Copyright 1991-1995 Stichting Hathematisch Centrum, Amsterdam 

SPaSM [I901 > ic-test0 
Setting up test initial condition. 
23776 particles created. 
SPaSM [I901 > from vis import * 
Setting image server to sleipner port 35219 
SPaSN [I901 > m = NemoryUseO 
SPaSM [I901 > ke = Spheres(KE,0,20) 
SPaSM [I901 > ke.drau,processors=l 
SPaSM C1901 > ke.shou0 

SPaSN [I901 > SPaSM,processors(2,4,’4) 
... 

In the example, the user has set up an initial condition. -4 visuslizaticn module is 
then loaded (which attaches to a user’s workstation). At this point the memory use of the 
simulation can be displayed as shown in Figure 2a. From this graph, we see that 8 of the 32 
processors contain no data. To find out where the load-imbalance is occurring, the particles 
and the regions assigned to each processor can be displayed as shown in Figure 2b. At 
this point, the user is free to change the geometry of the system or even the arrangement of 
processors. At any time, it is possible to start running the simulation and watch its progress. 

6 Debugging with Python 
Given the direct access to C functions and variables provided by SWIG, it is possible to 
interactively call C functions and query the values of system variables. It is also possible 
to access C data structures directly. For example, the algorithm used by SPaSM relies on 
creating a large collection of small subcells[l4]. The data structure for each Cell is described 
by the following: 
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typedef struct < 
int n; 
vParticle *ptr; 

1 Cell; 

/* Number of atoms */ 
/* Pointer to their location */ 

When added to Python, we can access this structure directly. In fact, with a little 
extra work it is even possible to manipulate arrays of Cells in an entirely natural manner. 
In the following example, we extract the first subcell in a simulation and loop over all of the 
subcells to find the maximum number of particles in any given subcell on each processor. 
When printing the value, output is from processor 0, but we can easily switch to another 
processor and print out its value a s  shown. 

SPaSH C321 > c = first-cello 
SPaSH C321 > print c 
Cell C ptr = f3c78, n = 0 I 
SP~SH C321 > m a x  = 0 
SPaSH C321 > for i in range(O,cvar.Xcells*cvar,Ycells*cvar.Zcells): 

SPaSH C321 > print max 
14 
SPaSM C321 > pn(5) 
(pn 5) SPaSH [321 > print rnax 
16 
(pn 5) SPaSH 1321 > 

... if cCi1.n > m a x  : m a x  = cCi1.n 

Thus, it is possible to perform sophisticated debugging and diagnostic operations 
entirely within the Python interpreter. This can be done without recompiling the C code 
or quitting a running simulation. While this type of debugging certainly won’t replace 
existing parallel debuggers, it provides an extrzmely powerful application specific debugging 
capability that can be used to explore data and examine the system in ways not commonly 
found in traditional debuggers. 

7 Interpreted Message Passing 
One of the most interesting features of this approach is that it is even possible to add message 
passing operations to the Python interpreter itsel€. For example, consider the following SWIG 
interface file : 

Y’aodule message 
%€ 

int reduce-int-max(int a) < 
int result; 
MPI,Allreduce(&a,&result , I, WPI,INT, HPI-KAX, HPI,COMM,WORLD) ; 
return result; 

3 
%3 

int reduce-int-max (int a) ; 
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When added to Python, we can modify our earlier debugging session in a natural way by 
perforiiiing a global reduction : 

... 
SPaSH C321 > rnax = 0 
SPaSH C321 > for i in range(O,cvar.Xcells*cvar.Ycells*cvar.Zcells): 

SPaSN C321 > rnax = reduca,int,max(ma%) 
SPaSN C321 > print rnax 
18 
SPaSN C321 > 

... if cCi1.n > rnax : rnax = cCi1.n 

With a little more work, it is possible to add direct counterparts to various MPI, 
PVM, or CMMD message passing operations to the Python interpreter [ll, 18, 91. .4s a 
result, Python scripts may send messages to each other just as can be done in C/C++. The 
following session shows a user interactively sending a Python list from processor 0 to all of 
the other processors using the PVM library on the Cray T3D. 

.t3d (1183 > python 
Starting Python on 32 processors ... 
Python 1.3 (Aug 6 1996) CCl 
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam 
>>> from pvm3 import * 
>>> execf ile("parallel.py") 
>>> me = pvm,get-PE(pvm,mytidO 1 
>>> nproc = pvm-gsize("") 
>>> if me == 0: 

e . .  a = C1,2,3,41 . , . else: 
... a =  C l  
>>> print a 
Cl ,2,3,41 
>>> if me == 0: ... for i in range(1,nproc): ... pw-init send (PvmDataRaw) 
... pack-1 i st (a) 
... pw,send(i, I) 
. . . else: 
... pvm-recv(0,i) ... a = unpack-list() 
>>> pprint (a,range(O,nproc)> 
pn 0 : Cl, 2, 3, 41 
pn 1 : [I, 2, 3, 41 
pn 2 : C1, 2, 3, 41 
pn 3 : Cl, 2, 3, 41 ... 
>>> 

'4s with C,C++, or Fortran, it is still possible to deadlock the machine and to ex- 
perience all of the other problems associated with message passing. However: having an 
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interpreted scriptable message passing environment is aE interesting way to experiment with 
message-passing since it is unnecessary to write any C code (or to recompile after every code 
modification). 

8 Conclusions 
We have been using the techniques described in this paper with great success with our 
molecular dynamics application. While it is too early to provide any sort of formal "user 
study", we would like to outline some of the results of taking this approach : 

0 Emphasizing code modularity has resulted in a system that is more robust, reliable, 
and flexible. In fact, code size has dropped by more than 25%. 

0 Scripting languages such as Python provide an extremely lightweight mechanism for 
building interactive parallel applications. The addit.ion of Python to our code resulted 
in only a 10% memory overhead and still permits us to perform very large calculations. 
Currently, we are using Python scripts to control production simulations running on 
our ,512 processor CM-5. 

0 We have recently built an object oriented data analysis and visualization system that 
is directly integrated with our simulation code. The high performance aspects of the 
system are implemented in C while the object oriented design is implemented entirely 
in Python. This system allows us to remotely visualize 100 million atom datasets from 
ordinary UNIX workstations and standard internet connections. Since visualization 
is performed on the parallel machine itself, we can make images in only a matter 
seconds-not minutes or hours (This work is still in progress and will be reported 
elsewhere.) 

0 Extending the system is now extremely easy. Users do not need to understand the 
details of the underlying Python implementation and can add new functions by simply 
declaring them in an interface file. 

0 This approach has resulted in the reuse of various software components. For example, 
the graphics library we developed for visualizing MD simulations can be used as a 
stand alone package in unrelated systems (in fact, with SWIG we were even able to 
turn it into a Per15 module for making 3D graphs from http server logs). 

0 By eliminating most of the problems of building highly modular and interactive ap- 
plications, we have been able to focus on the real problem at hand-performing large 
scale materials science simulations. 

By providing a simple set of tools, we have been able to build an extremely powerful 
parallel application capable of dealing with 100 million particle data sets. Yet, we have we 
have been able to do this without relying on any sort of special purpose parallel computing . 
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environment, rewriting all of our C code, sacrificing performance, or making things unnec- 
essarily complicated. We firmly believe that this is a model than can be successfully applied 
to other large-scale parallel computing applicatioiis that demand flexibility, portability, and 
high performance. In the future we hope to extend this system to provide better support for 
shared memory architectures including multiprocessor Sun and SGI workstations. 
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10 Software Availability 
A11 of the tools described in this paper are in the public domain and available. Python can 
be obtained from the Python homepage at h t t p  : //www .python. org. SWIG is available at 
h t t p  : //www . cs . U t a h .  edu/-beazley/SWIG. The parallel modifications to Python can be 
obtained by contacting the authors. 
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