
-3386 LA-UR-96- '

Los Alamos Natlonal Laboratory Is operated by the Universlly of Califomla for the Unlted States Department of Energy under contract W-7405-ENG-36.

RECEIVED
OCT 3 0 1996

TITLE: Extensible Message Passing Application Development and Debuggin@ 8 ;T I
with Python

Atuhors David M. Beazley
Peter S. Lomdahl

T o International Parallel Processing Symposium (IPPS'97)
April 1-5, 1997, Geneva Switzerland

By acce tance of this artlcle, the publisher recognized that the U S Government retains a nonehsive, royalty-free license to ublish or reproduce
the publghed form of thls contribution or to allow others to do so for U S Gove National Laboratory requests that the publisher ifentify this article as work performed
the auspices of the U S Department of Energy.

FORM NO. 836 R4
ST. NO, 2629 5/81

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

i

Extensible Message Passing Application Development
and Debugging with Python

David M. Beazley Peter S. Lomdahl .
Department of Computer Science

University of Utah
Salt Lake City, Utah 84112

Theoretical Division
Los Alamos National Laborat,ory
Los Alarnos, New Mexico 87545

beazley@cs . U t a h . edu pxl@lanl.gov

September 19, 1996

Submitted to the International Parallel Processing Symposium (IPPS’97)

Abstract
W e describe how we have paralleked Python, an interpreted object oriented scripting lan-
guage, and .used it to build an extensible message-passing C/C++ applications for the CM-5,
Cray T3D, ‘and Sun multiprocessor servers running AIPI. Using a parallelized Python inter-
preter, it is possible to interact with large-scale parallel applications, rapidly prototype Rew
features, and perform application specific debugging. It is even possible to write message
passing programs in Python itself. We describe some of the tools we have developed to extend
Python and applications of this approach.

1 Introduction
Some of the greatest problems encountered when working with massively parallel machines
is the complexity of software development, the difficulty of building flexible applications,
parallel debugging, and dealing with the massive amounts of data that can be generated
by large-scale parallel applications. While much has been said about the “lack of tools”
available for parallel computing, the situation seems to have improved little over the past
few years-a fact which we feel is unfortunate, but perhaps indicative of the rapid growth
(and demise) of parallel computing systems [l].

Given the complexity of working with parallel machines, there is tendency to develop
parallel “problem solving environments” that attempt to hide the underlying complexity of
running in parallel by relying on. sophisticated object oriented programming frameworks,
software libraries, or language extensions. Unfortunately, we feel that this tends to result in
large monolithic software systems that are too complicated to adapt to new uses, diEcult

1

mailto:pxl@lanl.gov

2

to integrate with existing code, and almost impossible to debug (since the user is effectively
isolated from all of the underlying implementation details). For scientific computing research
applications, this is simply unacceptable. Research codes need to be simple to modify and
use. Ideally, they should be reusable in a variety of situations. It must be possible to
understand exactly what is going on inside the code in order to verify ccrrect operation (and
to fully understand the experiment!).

If we turn to the workstation and PC world, a very different style of computing
is emerging. Rather than building large monolithic systems, applications are being built
from small modules and “applets” (for lack of a better word). Languages such as Tcl/Tli,
Perl, Python, Visual Basic, and Java have been highly successful not because they are better
languages, but because they allow extremely powerful applications to be built out of existing,
often diverse, components. More often than not, a useful application can be built in only
a matter of hours- not days or weeks. Unfortunately, this does not seem to be the case for
parallel machines.

In this paper, we describe how we have parallelized Python to serve as E “glue lan-
guage“ for building highly modular and component based parallel applications. The resulting
system serves as the basis for developing extensible and flexible parallel codes without relying
on a large software infrastructure or a parallel computing framework. It also provides us with
a nice debugging, prototyping, and user environment for working with large parailel codes.
We hope to illustrate the system with a large-scale molecular dynamics application we have
been developing, but the methods are easily applicable to other kinds of applications.

2 The Python Language
Python is an interpreted object oriented scripting language developed by Guido van Rossum,
at Cb’I, Amsterdam [2, 31. It has been steadily increasing in popularity and is often com-
pared to languages such as Tcl/Tk and Perl [4, 51. For controlling parallel applications. we
wanted to provide a command driven model similar to that used in scientific pzckages such
as Mathematica, MATLAB, or IDL. We chose Python for a variety of reasons :

0 It is highly portable and runs under UNIX, MacOS, and Windows.

0 The language is built around a small extensible core. This makes i t easier to port to
parallel machines.

0 It has an exceptionally clean syntax that is easy to read and easy to learn.

0 Python is interpreted and can run interactively.

0 The language is dynamically typed and has a number of high-level constructs that are
often only found in functional languages.

0 It is easy to build C/C++ extensions to Python.

0 A large number of extension modules are already available.

3

0 It is fully object oriented, making it possible to write sophisticated and powerful scripts.

0 The language has seen increased use in the scientific community and has a number of
numerical extensions [6, 71.

0 Python is free, but well supported by the Python Software Activity (PSA).

0 We like it.

More information about Python caa be found on the internet, or the forthcoming
book “Programming Python” by Mark Lutz [3]. Fortunately, the syntax of the language is
easily understood and shouldn’t present a problem for understanding later examples. The
remainder of this paper will focus primarily on the use of Python rather than the language
itself.

3 Paralleliaing Python
Within a message passing environment, parallelizing the Python interpreter involves being
able to safely running a copy of Python on every processor. Like C or Fortran, processors
may only be loosely synchronized and will execute code independently unless message passing
calls are involved. However, unlike C or Fortran, Python itself is written in C and uses the
the C s t d i o library for many operations, including reading scripts from files, importing
modules, getting input from the user, and writing byte-compiled versions of modules back
to disk. Given the extremely poor state of parallel 1/0 support on most machines, this
presents a serious portability and usability problem. We need to make sure that Python can
run properly on all processors without clobbering itself during 1/0 operations. At the same
time, we don‘t want to have to modify significant portions of the Python source.

In addressing the 1/0 problems, we assume that all 1/0 takes place on a common
file system and that files may be shared between multiple processors simultaneously. This
is the model most commonly found on large parallel machines and multi-processor servers.
It may not be the model on distributed workstation clusters or heterogeneous systems: but
the techniques we describe could still be applied (with modification) to those systems.

3.1
To remap the 1/0 operations used in Python, we have written a special C header file
p s t d i o . h. This file is included into the Python header files prior to the inclusion of the
C s t d i o . h header file. This remaps all of the stdio operations to a collection of “wrapper”
functions that we will implement in a manner similar to tbat described in [SI.

Remapping 1 / 0 Functions in Python

/* pstdi0.h : Wrappers around s tdi0 .h for parallel I/O */
#define f open
#define ff lush
#define f c lose

PIO-f open
PIO-fflush
PIO-fclose

4

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#def in8
#define
#define
#define

rename
s etvbuf
f read
fwrite
fprintf
fge t s
fputc
fputs
printf
f seek
f t e l l
read
write
open
close

PIO-rename
P IO-set vbuf
PIO-f read
PIO-fwrite
PIO-fprintf
PIO-f ge t s
PIO-fput c
PIO,fp?lts
PIO-printf
P I 0 2 seek
PIO-f t e l l
PIO-read
PIO-write
PIO-open
PIO-close

3.2 Implementation of Wrapper Functions
The 1/0 wrapper functions are implemented using a combination of the C s t d i o library and
message passing operations. File descriptors are managed in two different I/@ modes :

0 BROADCAST. In this mode, processor 0 reads data and broadcasts it to all of
the other nodes. When writing, output is assumed to come from only one processor
(usually processor !I: but this can be remapped). This mode is primarily used for
handling interactive T/O using s t d i n and s tdout .

0 BROADCAST-WRITE. This mode allows all processors to read data indepen-
dently, but only one processor can write data. This mode is used for most file opera-
tions in Python. For example, when reading a script, every node can simply open the
file and process its contents independently. By restricting write access, we elimina.te
problems that occur when multiple copies of Python attempt to write to the same file
(which would normally result in garbage). This mode is somewhat faster than the
normal broadcast mode since it is not necessary for processor 0 to broadcast input
data to the other nodes.

Currently, we have implemented the wrappers under CMMD on the CM-5, the shared
memory library on the T3D, and MPI [9, 10, 111. Eventually, we would hope to implement
the library using parallel 1/0 libraries such as MPI-IO [12].

3.3 Other Changes to Python
Finally, three other changes were required to the Python core.

0 .4 putc() call was changed to fpu tc () since it could not be remapped otherwise (since
putc() is implemented as a C macro).

5

0 A switch was installed to disable dynamic loading of modules. While supported on
most workstations, this capability is not avaiiable on larger machines such as the CM-5
or Cray T3D.

e An initialization call was added to Python's main() program. This is sometimes needed
to initialize MPI and other packages.

3.4 Compilation
The 1/0 remappings and minor fixes required less than 10 lines of modifications to the
entire Python source (consisting of more than 50000 lines of C code). The 1/0 wrappers
have been implemented in about 1000 lines of supporting C. Together with the Python
source, everything is combined into new version of the Python interpreter and a C library
for embedding a parallelized version of Python in other applications.

4 Using SWIG to build Python extensions
While Python is designed to be easily integrated with C/C++ code: doing so requires one to
write special "wrapper" functions that provide the glue between the underlying C function
and the Python interpreter. For example, the C code and Python wrapper for a factorial
function are shown below :

/* A f a c t o r i a l function */
i n t fa .c t (int n) {

if (n <= 1) return 1;
else return n*f act (n-1) ;

2-

/* A Python wrapper function f o r it */
PyObject *wrap-fact(Py0bject *self , PyObject *args) C

i n t r e s u l t ;
i n t a r g ;
i f (! PyArg-ParseTuple (a r g s , "d" ,&arg)

return NULL;
r e s u l t = fact (arg);
return Pp-BuildValue("d", r e s u l t) ;

3

While writing a single wrapper function isn't too hard, it quickly becomes tedious if
there are a large number of functions. Since we would like to use Python as a rapid protptyp-
ing and extension language, having to write all of these functions by hand is unacceptable.
Thus; we have developed a tool, SWIG (Simplified Wrapper and Interface Generator), that
automatically generates Python bindings from ANSI C/C++ specifications (in fact, it also
produces Tcl and Per1 bindings) [E!]. Using SWIG, the user would extend Python by writing
the following file :

6

// file : fact.i
‘/Jodule fact
%(
/* Put headers and support code here */
%3

extern int fact (int n) ;

The module is then compiled arid added to Python as follows (under Solaris):

unix > swig -python fact. i
unix > gcc -c f act-wrap, c -I/usr/local/include/Py
unix > Id -G fact-wrap.0 -0 factmodule.so
unix > pgthon
Python 1.3 (Hay 2 1990) CGCC 2.5.81
Copyright 1991-1996 Stichting Hathematisth Centrum, Amsterdam
>>> import fact
>>> fact. f act (6)
720
>>>

While this is only a simple example, SWIG supports almost all C/C++ datatypes,
C structures, and C++. More information about SWIG can be found in [13]. We now focus
on how these tools can be used to build extensible parallel applications.

5 An Extensible Molecular Dynamics Code
Since 1992, we have been developing a short-range molecular dynamics code, SPaSRI, for use
on the Connection Machine *5 acd Cray T3D systems at Los Alamos National Laboratory [14].
This code has been capable of performing production simulations with more than 100 million
atoms, yet managing such simulations in practice has proven to be nearly impossible-
primarily due to the overwhelming amount of data generated,the difficulty of debugging and
development, and the lack of analysis tools.

To address these problems, we have adopted the idea of “computational steering”
and reorganized the code with a focus on modularity and integration of various components
such as data analysis, visualization, and simulation [15, 16, 171. Python serves as the glue
of this system as shown in Figure 1.

Rather than having a large monolithic application, the new organization features a
collection of loosely organized modules. Most of the functionality is found in a collection
of C library files for running simulations, performing data analysis, message passing and
other things. These are integrated into Python using a collection of SWIG interface files.
A collection of Python scripts are also available. These scripts perform common tasks, and
form the foundation of an object oriented visualization system we are developing.

The user provides C code for initial conditions, boundary conditions, numerical in-.
tegration methods, and any problem specific features. IYhile this code relies heavily on the
base set of C libraries, it completely independent of the Python interface (and can, in fact,

.

C Libraries Python Scripts

Vlsuallrallon
Debugglng
Data Management
Modules

M-1
M-1
pzi i i r j

& Interface Files

Initial condlllons
Boundcry Condltlons
Physki
Special purpose andysl

User C Code

Python

Slmlallon parameters
Production jobs
Data analysls

User Python Scripts

Figure 1: System organization.

be compiled without it). However. if the user would like to use Python. they simply write
an interface file for their functions. Simulation scripts and new functionality can then be
written in Python as needed.

5.1
This approach provides an extremely straightforward and easy mechanism for extending the
system and controlling large simulations. A user would provide an interface specification
such as the following :

Extending and Controlling the System

%nodule spasm

#include “spasm. h”

%include SPaSH. i
%include graph.i // Graphics library
%include ana1ysis.i // Visualization library
%include debug. i // Debugger
%include meth0ds.c // Output methods

%(

%>
// Include the SPaSH library

extern void ic,shock(int nx, int ny, int nz, double vel, double width, double gap,
double temp, double rO, double cutoff);

extern int
extern void set-boundary-periodic0 ;

timesteps(int nsteps, int energy-n, int output-n, int checkp-n);

e x t e r n void set-boundary-free0 ;
extern void energy();

Real D t ,TotalTime;

// D i f Perent poten t ia l energy methods

e x t e r n void i n i t - l j (double eps i lon , double sigma, double cu tof f) ;
extern void in i t - t ab le -pa i r0 ;

Functions, variables, and constants defined in the interface specification correspond
directly to their underlying C counterparts. When the code is compiled, all of the functions
appear automatically as Python commands. They can then be used as shown in the following
simulation script:

Shock wave problem (Python s c r i p t)
nx = 15
nY = 15
nz = 50
shock-velocity = 8.5

width = 0.3333 # Shock width
r O = 1.0901733 # Lattice spacing
gap = 0.10 # Gap
cu to f f = 2.0 # In t e rac t ion cutoff
cva r . D t = 0.0025 # Timestep

temp = 0.1

i c - shockbx , ny ,nz, shock-velocity ,width, gap, temp,rO, cutoff)
i n i t - 1 j (i ,i , cutoff)
set-boundary-periodic (1
set~path("/sda/sdal/beazley/shock2")
t imes teps(10000,25,25,500)

When new functionality is needed, an ordinary C function can be written. Its proto-
type is placed into the interface file and that's it. Since no Python specific code is involved,
any new functionality is easy to re-use in other kinds of C/C++ applications (even if they
don't involve Python).

5.2 Interactive Simulation
Since Python is interpreted, it is possible to run SPaSM in an interactive mode. in this
mode, the user is presented with a single prompt even though tens to hundreds of copies of
the interpreter are running (our parallel 1/0 wrappers make this possible). Any commands
typed by the user are executed in a pure SPMD mode with execution taking place on all
processors. This environment is particularly useful for setting up problems and examining
the state of a simulation. Here is a sample session :

.cm5-5 (106) > SPaSM -p4:4:2
SPaSM 3.0 (alpha) ==== Run 190 on cm5-5 ==== Xed Sep 18 10:57:11 1996

9

Figure 2: (a) Memory usage display (left), (b) Particles and processor assignments (right)

Using Python 1.3 (Sep 8 1996) CGCC 2.6.31
Copyright 1991-1995 Stichting Hathematisch Centrum, Amsterdam

SPaSM [I901 > ic-test0
Setting up test initial condition.
23776 particles created.
SPaSM [I901 > from vis import *
Setting image server to sleipner port 35219
SPaSN [I901 > m = NemoryUseO
SPaSM [I901 > ke = Spheres(KE,0,20)
SPaSM [I901 > ke.drau,processors=l
SPaSM C1901 > ke.shou0

SPaSN [I901 > SPaSM,processors(2,4,’4)
...

In the example, the user has set up an initial condition. -4 visuslizaticn module is
then loaded (which attaches to a user’s workstation). At this point the memory use of the
simulation can be displayed as shown in Figure 2a. From this graph, we see that 8 of the 32
processors contain no data. To find out where the load-imbalance is occurring, the particles
and the regions assigned to each processor can be displayed as shown in Figure 2b. At
this point, the user is free to change the geometry of the system or even the arrangement of
processors. At any time, it is possible to start running the simulation and watch its progress.

6 Debugging with Python
Given the direct access to C functions and variables provided by SWIG, it is possible to
interactively call C functions and query the values of system variables. It is also possible
to access C data structures directly. For example, the algorithm used by SPaSM relies on
creating a large collection of small subcells[l4]. The data structure for each Cell is described
by the following:

10

typedef struct <
int n;
vParticle *ptr;

1 Cell;

/* Number of atoms */
/* Pointer to their location */

When added to Python, we can access this structure directly. In fact, with a little
extra work it is even possible to manipulate arrays of Cells in an entirely natural manner.
In the following example, we extract the first subcell in a simulation and loop over all of the
subcells to find the maximum number of particles in any given subcell on each processor.
When printing the value, output is from processor 0, but we can easily switch to another
processor and print out its value a s shown.

SPaSH C321 > c = first-cello
SPaSH C321 > print c
Cell C ptr = f3c78, n = 0 I
SP~SH C321 > m a x = 0
SPaSH C321 > for i in range(O,cvar.Xcells*cvar,Ycells*cvar.Zcells):

SPaSH C321 > print max
14
SPaSM C321 > pn(5)
(pn 5) SPaSH [321 > print rnax
16
(pn 5) SPaSH 1321 >

... if cCi1.n > m a x : m a x = cCi1.n

Thus, it is possible to perform sophisticated debugging and diagnostic operations
entirely within the Python interpreter. This can be done without recompiling the C code
or quitting a running simulation. While this type of debugging certainly won’t replace
existing parallel debuggers, it provides an extrzmely powerful application specific debugging
capability that can be used to explore data and examine the system in ways not commonly
found in traditional debuggers.

7 Interpreted Message Passing
One of the most interesting features of this approach is that it is even possible to add message
passing operations to the Python interpreter itsel€. For example, consider the following SWIG
interface file :

Y’aodule message
%€

int reduce-int-max(int a) <
int result;
MPI,Allreduce(&a,&result , I, WPI,INT, HPI-KAX, HPI,COMM,WORLD) ;
return result;

3
%3

int reduce-int-max (int a) ;

11

When added to Python, we can modify our earlier debugging session in a natural way by
perforiiiing a global reduction :

...
SPaSH C321 > rnax = 0
SPaSH C321 > for i in range(O,cvar.Xcells*cvar.Ycells*cvar.Zcells):

SPaSN C321 > rnax = reduca,int,max(ma%)
SPaSN C321 > print rnax
18
SPaSN C321 >

... if cCi1.n > rnax : rnax = cCi1.n

With a little more work, it is possible to add direct counterparts to various MPI,
PVM, or CMMD message passing operations to the Python interpreter [ll, 18, 91. .4s a
result, Python scripts may send messages to each other just as can be done in C/C++. The
following session shows a user interactively sending a Python list from processor 0 to all of
the other processors using the PVM library on the Cray T3D.

.t3d (1183 > python
Starting Python on 32 processors ...
Python 1.3 (Aug 6 1996) CCl
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> from pvm3 import *
>>> execf ile("parallel.py")
>>> me = pvm,get-PE(pvm,mytidO 1
>>> nproc = pvm-gsize("")
>>> if me == 0:

e . . a = C1,2,3,41 . , . else:
... a = C l
>>> print a
Cl ,2,3,41
>>> if me == 0: ... for i in range(1,nproc): ... pw-init send (PvmDataRaw)
... pack-1 i st (a)
... pw,send(i, I)
. . . else:
... pvm-recv(0,i) ... a = unpack-list()
>>> pprint (a,range(O,nproc)>
pn 0 : Cl, 2, 3, 41
pn 1 : [I, 2, 3, 41
pn 2 : C1, 2, 3, 41
pn 3 : Cl, 2, 3, 41 ...
>>>

'4s with C,C++, or Fortran, it is still possible to deadlock the machine and to ex-
perience all of the other problems associated with message passing. However: having an

12

interpreted scriptable message passing environment is aE interesting way to experiment with
message-passing since it is unnecessary to write any C code (or to recompile after every code
modification).

8 Conclusions
We have been using the techniques described in this paper with great success with our
molecular dynamics application. While it is too early to provide any sort of formal "user
study", we would like to outline some of the results of taking this approach :

0 Emphasizing code modularity has resulted in a system that is more robust, reliable,
and flexible. In fact, code size has dropped by more than 25%.

0 Scripting languages such as Python provide an extremely lightweight mechanism for
building interactive parallel applications. The addit.ion of Python to our code resulted
in only a 10% memory overhead and still permits us to perform very large calculations.
Currently, we are using Python scripts to control production simulations running on
our ,512 processor CM-5.

0 We have recently built an object oriented data analysis and visualization system that
is directly integrated with our simulation code. The high performance aspects of the
system are implemented in C while the object oriented design is implemented entirely
in Python. This system allows us to remotely visualize 100 million atom datasets from
ordinary UNIX workstations and standard internet connections. Since visualization
is performed on the parallel machine itself, we can make images in only a matter
seconds-not minutes or hours (This work is still in progress and will be reported
elsewhere.)

0 Extending the system is now extremely easy. Users do not need to understand the
details of the underlying Python implementation and can add new functions by simply
declaring them in an interface file.

0 This approach has resulted in the reuse of various software components. For example,
the graphics library we developed for visualizing MD simulations can be used as a
stand alone package in unrelated systems (in fact, with SWIG we were even able to
turn it into a Per15 module for making 3D graphs from http server logs).

0 By eliminating most of the problems of building highly modular and interactive ap-
plications, we have been able to focus on the real problem at hand-performing large
scale materials science simulations.

By providing a simple set of tools, we have been able to build an extremely powerful
parallel application capable of dealing with 100 million particle data sets. Yet, we have we
have been able to do this without relying on any sort of special purpose parallel computing .

13

environment, rewriting all of our C code, sacrificing performance, or making things unnec-
essarily complicated. We firmly believe that this is a model than can be successfully applied
to other large-scale parallel computing applicatioiis that demand flexibility, portability, and
high performance. In the future we hope to extend this system to provide better support for
shared memory architectures including multiprocessor Sun and SGI workstations.

9 Acknowledgments
&‘e would like acknowledge Brad Holian, Shujia Zhou, and Niels Jensen of Los Alamos Na-
tional Laboratory, Tim Germann at UC Berkeley, and Bill Kerr at Wake Forest University
for their work on the SPaSM code. Paul Dubois and Tser-Yuan (Brian) Yang at Lawrence
Livermore National Laboratory have also provided valuable feedback concerning the paral-
lelization of Python and its use in physics applications. We would also like to acknowledge
the Scientific Computing and Imaging group at the University of Utah for their contin-
ued support and Guido van Rossum for many discussions concerning the implementation of
Python (and for making such an excellent tool). Finzlly, we would like to acknowledge the
Advanced Computing Laboratory at Los -4lamos National Laboratory. Development of the
SPaSM code has been under the auspices of the United States Department of Energy.

.

10 Software Availability
A11 of the tools described in this paper are in the public domain and available. Python can
be obtained from the Python homepage at h t t p : //www .python. org. SWIG is available at
h t t p : //www . cs . U t a h . edu/-beazley/SWIG. The parallel modifications to Python can be
obtained by contacting the authors.

References
C.R. Cook, C.M. Pancake, R. Walpole, Proceedings of Supercomputing ’94, IEEE Com-
puter Society, (1994). pg, 126-133.

Guido van Rossum and Jelke de Boer, Interactively Testing Remote Servers Using the
Python Programming Language, CWI Quarterly, Volume 4, Issue 4 (December 1991),
.4msterdam, pp 253-303.

Mark Lutz, Programming Python, O’Reilly and Associates, (1996).

J.K. Ousterhout, Tcl and the Tk Toolkit, Addison-Wesley (1994).

R. Schwartz, L. Wall, Programming Ped, O’Reilly and Associates (1994).

P. Dubois, K. Hinsen, and J. Hugunin, Numerical Python, Computers in Physics, Vol.
10, NO. 3, (1996), pg. 262-267.

14

[91

T. Yang, P. Dubois, Z. Motteler, Building a Programmable Interface for Physics
Codes Using Numeric Python, Proceedings of the 4th International Python Conference,
Lawrence Livermore National Laboratory, June 3-6, (1996).

D.M. Beazley and P.S. Lomdahl, A Practical Approach to Portability and Performance
Probleins on Massively Parallel Supercomputers, Proceedings of the Workshop on De-
bugging and Tuning for Parallel Computer Systems, Chatham, MA, 1994. IEEE Com-
puter Society (1996). pg. 337- 351.

CMMD User's Guide, Thinking Machines Corporation (1995).

[lo] shmem Library Reference, G a y Research Incorporated (1994).

[ll] MPI: A Message-Passing Interface Standard,
http : //www .mcs . an1 .gov/mpi/index. html.

[12] P. Corbett, et al. MPI-IO : A Parallel File 1/0 Interface for MPI, N.4S Technical
Report NAS-95-002. (1995)

[13] D.M. Beazley, SW7G : An Easy to Use Tool for Integrating Scripting Languages with
C and C++, Proceedings of The Fourth Annual Tcl/Tk Workshop '96, Monterey, Cal-
ifornia, July 10-13, 1996. USEXIX Association, p. 129-139.

[13] D. M. Beazley and P. S. Lomdahl, Message-Passing Multi-Cell Molecular Dynamics on
the Connection Machine 5, Parallel Computing. 20 (1994) p. 173-195.

[15] D M . Beazley and P.S. Lomdahl, Lightweight Computational Steering of Very Large
Scale Molec.ular Dynamics Simulations, Proceedings of Supercomputing '96 (1996). To
appear.

[16] S.G. Parker and C.R. Johnson. SCIRun: A Scientific Programming Environment for
Computational Steering, Supercomputing '9.5, IEEE Computer Society, (1995).

[17] G. Eisenhauer, et al. Opportunities and Tools for Highly Interactive Distributed and
Parallel Computing, Proceedings of the Workshop on Debugging and Tuning for Parallel
Computer Systems, Chatham, MA. 1994. IEEE Computer Society, (1996). pg. 245-278.

[18] A. Geist,et al. PVM : Parallel Virtual Machine-A User's Guide and Tutorial for Net-
work Parallel Computing, MIT Press, (1994).

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof. nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information. apparatus, product, or
process disclosed. or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise dots not nectssarily constitute or imply its endorsement, m m -
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

-
~ - ~- ~~~ ~

~

