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Abstract distancg7'C D) which is the summation of all the distances
a broadcast message traverses during the broadcast process.

In this paper, we propose a new minimum total commu- Obviously, the overall network traffic contention, as well as
nication distance T'C D) algorithm and an optimal’C D the communication delay, depends onTh@D. Therefore,
algorithm for broadcast in a 2-dimension mesh. The former minimizing the7'C' D has become an importantissue in de-
generates a minimufiC' D from a given source node, and  signing an efficient broadcast. inimumI’C' D algorithm
the latter guarantees a minimu®C' D among all the pos-  for broadcast in a mesh starting from a given source node
sible source nodes. These algorithms can be generalizedis the one that generates the minim@@ D among all the
to ad-dimensional mesh or torug:C D can potentially be possibleT'C Ds from the same source node. Aptimal
used as a measurement for other types of collective commu4'C D algorithm is the one that generates a minimfigiD
nication operations. amond!'C Ds for all the possible source nodes, not just for

L . a given source node.
Keywords: Broadcast, communication distance, mesh, torus. 9

Given a 2-dimensional (2-D) mesh, sayarx n mesh

with n = 2%, wherek is a non-negative integet (is
1. Introduction used as an integer throughout this paper), we only con-
sider broadcast algorithms that can complete a broadcast in
logn? = 2k time steps, i.e., a time-step optimal broadcast
algorithm will be simply denoted as a broadcast algorithm.
Under the cut-through switching technique [2], forwarding
a message from one node to any other node is considered
as one time step which is irrelevant to the distance between
these two nodes, provided there is no traffic contention. We
assume that in each time step a node may do one of the fol-
lowing: sending a message to one node, receiving a mes-
sage from one node, or being idle. The challenge in de-
signing a minimum’C'D of a time-step optimal broadcast
algorithm (for a given source node) is to generate a rout-
ing path that guarantees a minimuhd' D without traffic
contention at any time step.

In a multicomputer system, a collection of processors
(also called nodes) work together to solve large application
problems. The mesh-connected topology is one of the most
thoroughly investigated network topologies. It is of large
importance due to its simple structure and its good perfor-
mance in practice and is becoming popular for reliable and
high-speed communication switching.

In order to minimize communication latency it is im-
portance to design an efficient implementation of collective
communication operations [5] which include multicast and
broadcast. Multicast is an important system-level commu-
nication service [4] in which the same message is delivered
from a source to an arbitrary number of destination nodes.
Broadcast [3] is a special case of multicast in which the  One related work [6] deals with the simplest case in
same message is delivered to all the nodes. which the source node of broadcast is always a corner node

A major source of communication delay for broadcast of a given 2-D mesh. This case rarely occurs in real ap-
in a network is the communication time spent on sending plications. Therefore, we need to find a minimdd@' D
messages from one node to all the other nodes. This com-broadcast algorithm for any given source node. In this pa-
munication time is influenced by many factors. One im- per, we identify certain unique nodes calleges If we
portant factor is the traffic generated during the broadcaststart a broadcast from one of these eyes and follow certain
process. We measure such traffic iyl communication  rules defined in this paper, we will obtain an optirial' D.



Specifically, we propose: (1) A minimuffiC D algorithm of FD, SD andRD. Clearly,Dy(x,y) = FD+SD+ RD
for a given source node in a 2-D mesh. (2) An optimal for a particular broadcast algorithm.

TCD algorithm for a 2-D mesh. (3) Expressions of opti-  Now let's look at some simple broadcast examples with
malT'C' D and minimuni’C'D for a given source node. (4)  the source node being the upper-left corner node of a given
Extensions of the above results tal@ mesh and ai-D mesh. A2 x 2 mesh(k = 1) is the simplest case. Fig.1 (b)
torus. shows the process of a broadcast starting from 54de0).

Arrows 1 and 2 represent the first and second steps of broad-

. The remainder of _the paper s organized as f.O”OWS' Sec- cast, respectively. Th&CD of this case is calculated by
tion 2 shows some simple examples and describes the nota-

tion used in the paper. In Section 3, we provide our major D1(0,0) = FD.+ S.D =1l+2= .3' Ob\.”OUSW’ starting
) from any node in this mesh, we will obtain the same result.
results oril’C Ds for 2-D meshes. We generalize our results

to d-D meshes in Section 4. In Section 5, we conclude this This means thad/ D: (z, y) = D1(z,y) =3, wherez, y =
paper Oorl. A2 x 2 mesh is a basic unit for broadcast and is

called aunit mesh
. In a time-step optimal broadcast, after each step the
2. Notation and Examples number of nodes having received the message must be dou-
bled. As shown in Fig.1 (c), we divide the givérx 4 mesh
For a giverv. x n mesh withn = 2%, we assume thatthe  into four2 x 2 submeshes. By treating each of these sub-
distance between any two adjacent nodes is one. The locaimeshes as wrtual node we reduce & x 4 mesh problem
tion of a node in a mesh is denoted by a pair of coordinatesto a2 x 2 mesh one. Therefore, in the first two steps we
(z,y). The origin of the coordinate system is assumed to can use the same approach fa& a 2 mesh withF'D = 2
be the upper-left corner of the mesh, as shown in Fig.1 (a).andSD = 4. After two steps, all the virtual nodes receive
Both z andy are integergz,y = 0,1,2,...,n — 1). The the message. In the remaining two steps, each of these four
node af(z, y) is denoted byV (z, y). 2 x 2 submeshes completes the broadcast process within its
submesh withD, (0,0) = 3, i.e.,RD = 4 x 3 = 12. Over-
all, D5(0,0) = FD+SD + RD =244+ 12 = 18. This
turns out to be the minimufiC D by comparing it with re-
0 - g0 1 Lo 1 sults of all the other arrangements; thatli§D, (0, 0) = 18.
: It is not difficult to deriveM D, (0, 1) = 16 andM D(1,1)
=15 in the same way.
(x. 2 2 o2 | Ly However, in a8 x 8 mesh, the minimunT’C'D cannot
‘ be easily determined as in the above two examples. If the
source sends the message to the upper-left corner nodes of

® : sourcenode | the other thred x 4 submeshes, i.ely(4,0), N(0,4), and
Y N (4,4), in the first two steps, we have; (0, 0) = 84, which
y @ (b) © is not M D5(0,0), because there are better results. For ex-

amples, ifN(5,0) is the destination node of the first step,

) e ) N(0,5), andN (5,4) are the destination nodes of the sec-
Figure 1. (a) A mesh with its coordinate sys- ond step,D3(0,0) = 80. If N(5,1) is the destination node
tem. (b) Broadcastina 2x2mesh. (c) Broad- of the first step,N(1,5) and N(5,5) are the destination
castina 4 x4 mesh. nodes of the second steP3(0,0) = 79. Therefore, to
find the minimumT'C D, the first two steps are extremely
important. The selection of the upper-left corner node of
the upper-right submesh in the first step may not generate a
minimum result. The exact location depends on the size of

Definition 1: DenoteDy(z,y) as theT'C'D of a broad-
cast algorithm originated from a source nod&x,y) in
a 2% x 2¥ mesh andM Dy, (z,y) as the minimun?’CD

o the given mesh as we will discuss in the next section.
originated from a source nodg(z,y) among all the pos- i o )
sible broadcast algorithms. ObviouslyM Dy.(z,y) = To give some insights on the Iocatlon(s_) of tkhe si)urce
min{Dy(z,y)}. node that can generate an optird@l D of a given2® x 2

mesh, we calculate the minimufiC D for each node in the
DenoteF'D as the communication distance in the first mesh. Fig.2 (a), (b), and (c) show the minimdré’'D for
step of a broadcasfD as the communication distance in each nodein d x 4, 8 x 8, and16 x 16 mesh, respectively.
the second step, am@lD as the communication distance in  We place results for each mesh in a matrix. Within such
the remaining steps. Obviously, for a given source node a matrix, the number at a particular position represents the
S(x,y) in amesh, different algorithms lead to different sets minimumT'C D of the node corresponding to this position



in the corresponding mesh.

Clearly, each mesh has an optirial’ D, which appears

For examples, the inner four nodes of & 4 mesh, as
shown in Fig.3 (b), are eyed)» (i), i = 1,2,3,4. Some-

at four different locations (marked with an underline) inthe times, we also usé, to represent (i) to simplify our
matrix. These locations are in four different submeshes andnotation, and denote= 1, 2, 3, 4 as the index of the upper-
are called eyes of the mesh to be defined in the next sectionleft, upper-right, lower-left, and lower-right submesh and

For thel6 x 16 mesh, we just show the upper-I&ftx 8

eye, respectively, and we follow this convention throughout

submatrix, since the matrix is symmetric with respect to the this paper.

center of the matrix.
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Broadcast in a 2-D Mesh

In the following definition, we define special nodes,
called eyes, in a given mesh. We will show later that the
minimumZ'C D with respect to an eye is the optinia’' D.

Definition 2: There are foueyesin a 2* x 2% mesh, labeled
asE.(i), i = 1,2,3,4. These eyes are recursively defined
as follows: All four nodes in & x 2 mesh are eyedy, (i),

i = 1,2,3,4, as shown in Fig.3 (a). R x 2* mesh is
partitioned into four2*—! x 2¥~! submeshes, each of which

has four eyesEy,_; (7).

Eyes,E;(i), ¢ = 1,2,3,4, are
selected from sixteeh,_; (i)s. Specifically, eyes;, (i) are
the four E,_1 (i)s that are the closest to the center of the
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2k x 2k mesh, as shown in Fig.3 (c).
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Figure 3. The recursive definition of eyes of
(& a2 x2mesh, (b) a 4 x 4 mesh, and (c) a
2k x 2% mesh.

Definition 3: Define the square, formed by four eygg7)

of a2* x 2*¥ mesh as its four corners, to be thge-square
of the2* x 2¥ mesh. Denote,, as the length of the side of
this eye-square.

Based on Definition 2, it is obvious from Fig.3 (c) that
two axs plus twoa_1S equals the length of side of the
2k x 2k mesh plus one, i.€2a;, + 2ax—1 = n = 2*, where
ax—1 is the length of the side of eye-square @Fa' x 281
mesh. This immediately leads to

ar=2""—ap_1, k>2, (1)

anda; = 1. This recursive formula leads to
ak:%[Zk—(—l)k], k1. @)

Using Eq. (2), we can easily determine locations of all
four eyes of a give@”* x 2* mesh.

By taking the advantage of the recursive definition of
eyes, we propose the following broadcast algorithm: If we
start a broadcast from eys, (1), it first sends the message
to E;(2), then these two eyes send the messagBii3)
and Ey (4), respectively. Each of fou*—! x 2¢~! sub-
meshes will have one node with the message after the above
two steps. According to the definition of eyes, each of these
four nodes is also an eye of the submesh. Repeating the



above procedure, i.e., each of the four submeshes delivers
the message to eyes within its submesh, the message will be
delivered down to submeshes level by level, and the broad- STN)
cast completes when all the nodes obtain the message. Note
that Dy (Ey(i))s (¢ = 1,2,3,4 ) are the same, due to the ‘ :
symmetry of the mesh. Therefore, we can U5 E},) to o ol a}(
represent them to simplify the notation. Cleadyy (E}) Uy E(D) E(2
can be calculated recursively by the following formula 3

Dk(Ek) =3a; + 4Dk_1(Ek_1). (3)

We will show later in Theorem 2 that thi3;, (E}) corre- - EO Ek(4‘f o
sponds to the optimd@'C'D. Now we consider an algorithm E 3 :

in which a broadcast starts from any ndtim the mesh, but

the message are still forwarded to the eyes of the mesh in
the first two steps.

Algorithm 1: (Minimum T'C'D broadcast algorithm for a

given source nod§ in a2* x 2 mesh.) Figure 4. The uj, — v, coordinate system in a
2k x 2% mesh and calculation of the first two

¢ Divide the giver2* x 2¥ mesh into fouR*—1 x 2¢-1
steps of Dy (S).

submeshes. Rotate the mesh, if necessary, until the
source nodé is in the upper-left submesh, as shown
in Fig.4.
¢ The expressionfab, (S) varies based on differentloca-
tions of S(uy, vg) in the upper-left submesh. For examples,
if 0 < up < ap_1/2,and0 < vy, < 2=t —1 —q4/2, as
e In the second step, the source node sends the messagghown in Fig.4 and regiofiv) in Fig.6,F'D = ax+ur+vx,
to either the lower-left ey&}, (3) or B, (1) depend- ~ SD = (ar + ug + v) + ap, andRD = Dy, (S) +
ing on which one is closer to the source node, and 3Pk-1(Ek-1). S0 theDy(S5) in this case is

Ej(2) sends the message to the lower-right £y¢4), Di(S) = 2us + 204 + 3ak + Di1(S) + 3D4_1 (Ep_1).
as shown in Fig.4.

e The source node sends the message to the upper-righ
eyeE(2) in the first step.

- . If —ay/2 < 0 and0 < 261 1 — qy/2,
e In the remaining steps, the four submeshes deliver the 4 reg;li](c){l(z'i?igllc:iaﬁ FD — ;kqffu; o, SD = &fk/_

message within their own submeshes of the nextlevel ,,, ) + q,, andRD = Dy _1(S) + 3Dy (Ej_1). S0
following the above procedure. In this way the mes- the Dy (S) in this case is

sage is delivered down to submeshes level by level un-

til reaching the unit meshe® x 2 meshes, and all these Dy (8S) = 2vy + 3ak + Dy—-1(S) + 3Dk—1(Ex-1)-

unit meshes complete the broadcast within themselves

in two steps. There are totally six different expressions 10 (S) cor-

responding to six different locations 6f To simplify our

Based on the definition of eyes, each node in a given discussion, we introduce a functigi(u, vx) (or simply
mesh is an eye of exactly one submesh (including the given f;(S)) so that we can represeiX, (S) with a general ex-
mesh). Each eye will be visited exactly once in Algo- pression.
rithm 1.

To calculate D (S), the TCD obtained from Algo-
rithm 1, we use a new set of relative coordinate systems.
For a2* x 2* mesh, we set upa, — v, coordinate system Di(S) = fr(ur,vx) + [3ar + D _1(S)+3Dx_1(Ex_1)], (4)
with the origin being or& (1), as shown in Fig.4. Each of
the four2#—1 x 2¥=1 submeshes has its own coordinate sys- Wherek > 2, and

Lemma 1. Dy (S) can always be expressed by a general
form:

tem. For example, they, _; (i) — v,—1 () coordinate system 0 0
is for theith submesh (see Fig.5). 20k (i1)
Now assume tha$ is u; andv, away fromEj(1) in Qup, (i)
thewuy, andvy, direction respectively, as shown in Fig.4, i.e., Fi (uk, vi) = Qup + 2vp (iv) ©)
the coordinates of are (uy,vx). Also S is in the upper- up + |ug — ap—1] (v)
left submesh, because we can always do so by rotating the up + |ug — ag—1| +2v  (vi)

mesh.
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Figure 5. Calculation of
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D (S) in a 2% x 2*

where(i) to (vi) represent six regions in the upper-left sub-
mesh where the source node locates (see Fig.6):

(¢) :
K
iti) -

(
(
(i
(

(—ak/2 < up < 0) N (—ak/2 < v < 0)
—ap/2 <up <0)A (0 <wvp <2871 —1—ar/2)
0<up < ak,1/2)/\ (—ak/2 <wvp < 0)
0<ur <ap_1/2) A0 <wp <2871 —1—ay/2)

(
(
w): |
(ap—1/2 < up <2871 —1 —ap/2)A
(
(

v) :
(vi) :

—ar/2 < vp <0)
ak,1/2 <up < k-1 _ 1 ak/2)/\
(0 <wp <2871 — 1 —ap/2)
In the second step of Algorithm 1, if the source node is
in (v) or (vi), it sends the message K., (1); otherwise,
it sends taEy(3).

Functionf (S) is a function of the location of the source
nodeS. Itis always greater than or equal to zero, i.e.,

(6)
By comparing Eqg. (3) and (4), it is easy to see that

fr(ug, vg) > 0.

Dk(s) - Dk(Ek) = fk(S) + Dk—l(S) - Dk_l(Ek_l).
Repeatly substitutind;,_1(S) andDy,_; (Ey—1) in the
above equation by Eq. (3) and (4), respectively, we have

k
Di(8) = ) fi(S) + Du(Er). ©)

Because eaclf;(S) > 0in Eq. (7) is greater than 0, we
immediately have
Dy(S) = Di(Ek),

where the equal sign is taken only whén= Ej,. This
result leads to the following theorem.

Lo /240,
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Figure 6. Six different regions of the source
node S(uyg,vr) in the upper-left submesh of a
2% x 2% mesh.

Theorem 1 If the source node is an eye of the mesh, the
TCD obtained by Algorithm 1 is the minimum among all the
possible source nodes that also use Algorithm 1.

The following theorem shows that the Algorithm 1 is the
best possible broadcast algorithm.

Theorem 2 TheT'C'D obtained from Algorithm 1 is the
minimumI'C D for a given source node.

The proof of Theorem 2 is in Appendix. One special
application of the minimun¥’'C' D algorithm is when the
source node is a corner node of a given mesh. In this
case, the source node doesn’t need to compa(8) and
Ej_1(1) in the second step of the algorithm. It just sends
the message t&)_;(1). Clearly, our result here is a gen-
eralization of the one in [6], where the source node is re-
stricted to a corner node.

In fact, the minimum’C'D for S(0,0), the upper-left
corner node, can be calculated by

M D;,(0,0) 5x 287" — 2 —2a4_1 + MD;y_1(0,0) +

3MDy_1(Ek_1), k> 2, 8

andM D, (0, 0) = 3. The following is the exact expression
for Eq. (8),

SO A gk g L qr 2
MDk(O,O)—5x2 +3><2 2k 30><( 1) 2,(9)
where k > 1. For examples, M D,(0,0) = 18,

MD3(0,0) = 79, and MD4(0,0) = 318. These

MDy,(0,0)s match the results of the previous examples in
Section 2. The detailed derivation of Eq. (9) can be found
in [1].



Definition 4: Inann xn mesh{ = 2*), the optimall'C D
is defined asnin{M Dy (z,y)}, wherel < z,y <n — 1.

From Theorems 1 and 2, we immediately have the fol-
lowing corollary.

U

Corollary 1: If we start a broadcast from an eye of a mesh ’ 3 3
and follow Algorithm 1, thel'C'D obtained is an optimal a 3
TCD,i.e.,MDy(Ey) = min{MDy(x,y)}.

The optimall’C' D broadcast for 2% x 2*¥ mesh is just
a special case of Algorithm 1, in which the broadcast orig-
inates from an eye of a mesh. In this case, the source node
sends the message to efgg(3) in the second step, since s

the source node is in regidn) (see Fig.6). yb
z
X

The recursive formula foil Dy (E}) is the same as
Eq. (3). The exact expression can be derived as follows:

0
L N ©
M Dy (Ep) = £[3 x 2T _ (1)) —2%,  k>1. (10)

For examples, MDi(Ei) = 3, MDz(E:) = 15, Figure 7. (a) and (c) Broadcastina 4 x4 x 4
MDs(Es) = 69 and M D4(Es) = 291. These MDi(Ex)s mesh. (b) Broadcastina 2 x 2 x 2 mesh.
match the results of the previous examples in Section 2. The

detailed derivation of Eq. (10) can be found in [1].

MD3}(E)) =FD+SD+TD = 2°+2' +22 = 7, where

4. Minimizing TC'D of a Time-Step Optimal TD is denoted as the total distance of the third step . It

Broadcast in ad-D Mesh takes three steps to complete the broadcast with each step
responsible for one dimension and the number of the nodes
d to be delivered doubles in each step. Using the same way

for a d-D unit mesh, we immediately deduce that it takes

k k k i k
A2° 28 x ... x 2" meshis also called@D 2° mesh, d steps to complete a broadcast in-® unit mesh. The

or simply ad-D 2¥ mesh. The definition of an eye in such

a mesh is defined as follows: optimalTC D is

Definition 5: There are2¢ eyesin a d-D 2* mesh, labeled 4 .

asE{(i), 0 < i < 2?—1. These eyes are recursively de- MDi(E:) = Z 2=2-L (11)

fined as follows: AlR¢ nodes of ad-D 2' mesh are eyes, =

E{(i). Ad-D 2* mesh is partitioned int@¢ d-D 2*~! sub- Fig.7 (a) and (c) show the process of a broadcast in a

meshes, each of which has eyes,E{ | (i). EyesE{ (i) 4 x4 x4 mesh from an eye. Fig.7 (a) shows that4het x 4

are selected from?? Ejl_, (i)s. Specifically, eye&} (i) mesh consists of eightx 2 x 2 submeshes (unit meshes)

are the2? E¢_, (i)s that are the closest to the center of the and Fig.7 (c) shows a partition of tHex4 x4 mesh into four

d-D 2* mesh. 4 x 4 submeshes along dimensienDuring the first three

steps, the message is delivered to eight eyes including the

For example, @-D 2* mesh consists df* d-D 2" sub-  source. All these eyes are located in differ2mt2 x 2 sub-

meshes, each of which hag Ef(i)s, 0 < i < 2¢ - 1. meshes. In the remaining three steps, eight submeshes com-

Among all these*? E{(i)s, the inne2” ones, which are  piete delivering the message within themselves following
the closest to the center of tkeD 2* mesh, are the eyes  the same process as shown in Fig.7 (b). The optii@D
of thed-D 2% mesh,E{(i). Sometimes, we usB{ to rep- is MD3(E,) = (20 + 2! + 2%)ay + 2°MD3(E,) = 63.
resentE¢ (i) to simplify our notation. Here we restrict our | the same way, it is easy to obtain the optirigl D for
attention only to the cases where the source node is an eyg 8 x 8 x 8 mesh, MD3(E;) = (2° + 2! + 22)as +

of ad-D mesh. 23 M D3(Es) = 525.

Definition 6: Denote M D{(Ey) as the minimuni’C D We can extend our optiméI’C];D algorithm for a 2-D

for a d-D 2% mesh to complete a broadcast from an eye. ~ Mesh to &-D mesh. In ad-D 2% mesh, it needs totally
Let's look at some examples of 3-D meshes2 A 2 x log n? = dk steps to complete a broadcast. We divide these

2 mesh is 3-D unit mesh. Fig.7 (b) shows the process of dk steps intdk phases, each of which consistsigdteps. In
a broadcast in @ x 2 x 2 mesh. The optimal’'CD is the first phase, the firgt steps are for the broadcast among



all the2? eyes ofd-D 2*¥ meshes. In the second phase, the References
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Appendix
(Proof of Theorem 2)

We prove this theorem using the induction on k. Assume
In this paper we have identified a set of special nodes that the source node is representedsbyrheorem 2 can be
called eyes in a given mesh. Both the minimdi@' D proved by showing
broadcast algorithm from a given source and the optimal
TCD broadcast algorithm (which is the minimum one

amongI'C Ds for all the possible source nodes) are based to be true for any integdr whereD;(S) is theT'C'D ob-
on the idea of eyes. If we start a broadcast from a given tained from Algorithm 1 andD;(S) is theT'C'D obtained
source node and follow the minimuiC'D algorithm, @ from an arbitrarily selected broadcast algorithm.
minimum 7'C D from the source is obtained, which is the Forl = 1, itis a2 x 2 mesh. Algorithm 1 is the only
minimum one among all the possilfi&’ Ds from this given possible approach and henbé(S) = D, (S). Forl = 2,
source node. If we start a broadcast from an eye of a meshit is a4 x 4 mesh. Whers = (0,0), D(0,0) = 18, all
and follow the minimunY’C'D algorithm, an optimal'C'D the other possibl®, (0, 0)s are greater than or equal to 18.
is obtained. WhenS = (1,0) or (0,1), D»(1,0) = D»(0,1) = 17, all
Our results can be easily extended to a torus, which is athe other possibl®}(1,0)s orD, (0, 1)s are greater than or
special mesh in which the nodes at the periphery are con-equal to 17. Whei$ = (1,1), Dy(1,1) = 15, all the other
nected by wraparound connections. This means that eackpossibmpé(l, 1)s are greater than 15. Therefof®,(S) =
node in the torus is equivalent to each other, i.e., each nodeMD2(5), i.e., Eq. (15) is true. Fdr= k — 1, assume that
in a torus is an eye in the corresponding mesh. Therefore,up to this level Theorem 2 is true, i.d2}(S) — D;(S) > 0,
no matter where a broadcast in the torus is initiated, we cany < ;1 < k — 1, andDy,_1(s) = MDy_1(S).
always use the proposed minimund@’ D algorithm and ob- Fori = k, in order to proveD;,(S) — Dy(S) > 0,
tain an optimall'CD. we need to determin®;,(S), which is theT'C'D obtained

5. Conclusion

Di(S) = Di(S) 2 0 (15)



from an arbitrarily selected broadcast algorithm. We denote
the three destination nodes of the first two stepdasVs,
andNy, respectively. Their coordinatés;, 1 (i), ve_1 (7)),

i = 2,3,4, are indicated in Fig.5. Note that the coordinate
system of eacl2*~1 x 2*~! submesh is set up according
to the convention in Fig.4. Following Algorithm 1, the first
step is fromS (ug, vg) t0 Na(ug—1(2), vg—1(2)),

FD =ap +ug — kal(z) + |Uk + uk,1(2)|.

The second step is froifi to N3 (ug—1(3), vk—1(3)) and
from No(ug—1(2), vk-1(2)) to Ny(ug—1(4), vp—1(4)),
SD = ay +vr — ug—1(3) + |ug + vr-1(3)| + ar
—uk-1(2) = vk—1(4) + [vk-1(2) — up—1(4)].

The remaining stepR D, is calculated by

4
RD =MD, 1(Ny),

i=1
WhereMDk_l(S = Nl), MDk_l(Ng), MDk_l(N3),
andM Dy_,(N4) can be obtained from Eq. (7), i.e.,

k—1
MDy 1 (Ni) = MDi 1 (Bx 1)+ f3(N0),

j=2
wherei = 1,2, 3,4. Therefore,

D;C(S) = U — uk_1(2) — uk_1(3) —+ v — Uk_1(2) — Uk_1(4)

+lok + up—1(2)| + lur + ve—1(3)| + |vk-1(2) — ur—1(4)]
4 k-1

+3ar +4MDy_1(Er-1) + Z ij(Ni)

i=1 j=2

(16)

From Eq. (3) and (7), we have

k
Dy (S) = 3ak +4MDy1(Ei—1) + MDi(Ey) + > _ £;(S) -

j=2
Subtracting Eq. (16) by above equation, we have

D;C(S)—Dk(S):A1+A2+A3+A4+A5, 17

where

Ay = up + vk — f1(S) + |ur + ve—1(3)| + vk + ur—1(2)]
Ap= —up1(2) — vk 1(2) + Y07 £(N2)

As= —ua(3)+ X075 fi(Ne)

As= —o1 (@) + 3,2, fi(Na)

As = Jor_1(2) — ur_1(4)].

It is obvious thatA; > 0. In Ay, Zf;; fi(N2) is al-
ways positive (see Eg. (6)). Whan,_1(2), vx_1(2) <
0, A, > 0 automatically. Whenuy,vy, > 0,
fkfl(uk,1(2),1)k,1(2)) is either2vk,1(2) + Uk71(2) +
|ug—1(2) — ar—a| OF 2u,_1(2) + 2ur_1(2) (see Eq. (5)),
which makesA, > 0. Therefore A, > 0 is always posi-
tive. In the same way, we can show that bathandA 4 are
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Figure 8. Calculation of  f;_2(N3).

always positive. Specificly\s > —ug_1(3)+fr—1(N3) >
0, andA4 > _'Uk—l(4) + fk_l(N4) > 0.

A; in Eq. (17) is rather complex becaugg.S) has six
different expressions corresponding to six different loca-
tions of S. Further more, it depends on the locations of
N, and N;. Here we just consider one case (region)
in Fig.6). The remaining cases can be treated similarly
[1]. For the case 00 < wy < ap—1/2, and0 < v <
2k—1 _ ak/2, fk(S) = 2uy, + 2v. Thus,

A1 = —up — vk + |ug + ve—1(3)| + vk + up—1(2)].

When bothuy_1(2) > 0 andv,_1(3) > 0, A; is obvi-
ously greater than zero. But when bath_,(2) < 0 and
vk—1(3) < 0, A, is less than zero. We have to find other
terms to nullify this negative term. Actually, there are many
positive terms in bot\, andA3. For examplef;_»(Ns)
hasn’t been used when we showed that > 0. There-
fore, we can usg_»(NN3) to nullify the negative value of
A;. Specifically, wherv;_;(3) < 0, as shown in Fig.8,
vp—2(3) = —vg_1(3) > 0. ThUS fi_5(N3) > 2[og—1(3)].
We also use a term frodd, to nullify the negative value of
A;. Itcan be seenthats > |ug—1(2)] whenug_1(2) < 0.
Therefore, Eq. (17) can be written as

Dy (S) = Di(S) > A1 + Az + As

> Ar A fur-1(2)] 4 2lve-1(3)]
(—lun| + |ur + vi—1(3)] + 2ve-1(3)[) +
(—lvk] + vk + ur—1(2)] + ur—1(2)])-

It is not difficult to see that-|u| + |ug + vi—1(3)] +
2|Uk_1(3)| > 0and—|vk|+|vk+uk_1(2)|+|uk_1(2)| > 0.
Therefore D;.(S) — Dy (S) > 0.

We can show thaD},(S) — D (S) > 0 is also true for
all the other cases (corresponding to other five regions in
Fig.6). Therefore, Eq. (15) is true for= k. In summary,
Eq. (15) is true for all, i.e., Theorem 2 is valid. |



