
Deterministic Routing of
�

-relations on the Multibutterfly �
Andrea Pietracaprina

Dipartimento di Matematica Pura e Applicata
Università di Padova

Padova, Italy
andrea@artemide.dei.unipd.it

Abstract

In this paper we devise an optimal deterministic algo-
rithm for routing � -relations on-line on an � -input/output
multibutterfly. The algorithm, which is obtained by gener-
alizing the circuit-switching techniques of [3], routes any� -relation with messages of � bits, in �����
	��� log �����
steps in the bit model, and in � � ������� log ����� log � �
communication steps in the word model. Unlike other re-
cently developed algorithms, our algorithm does not need
extra levels of expanders, hence minimizes the layout area.
Moreover, the network topology does not depend on � .
1. Introduction

A communication network can be regarded as a graph
whose nodes represent input/output ports or internal
switches, and whose edges represent direct links between
pairs of nodes. A routing problem for such a network is
defined as a set of point-to-point messages to be delivered
from the inputs to the outputs. A solution to a routing
problem requires selecting a path in the network for each
message, and scheduling message transmissions along the
selected paths. A generic routing problem can be modeled
as an � -relation, where each input/output in the network
sends/receives at most � messages. Although for a number
of years the routing literature has focused on the special
case of partial permutations (i.e., ��� 1), more recently,
the realization of the advantages gained by the use of batch
communication, has shifted attention towards the more gen-
eral scenario of arbitrary � -relations (see [1] and references
therein). The efficient routing of � -relations is crucial for
the performance of parallel programs executed on coarse-
grained machines. In this respect the � -relation has been
introduced by Valiant [12] as a fundamental primitive in the�

This research was supported, in part, by the ESPRIT III Basic Research
Programme of the EC under contract No. 9072 (project GEPPCOM).

BSP model of parallel computation, which is extensively
used for the development of portable parallel software [5].
Moreover, � -relations naturally arise in the concurrent ac-
cess to shared data in distributed memory systems [13].

There exists a large body of literature on routing algo-
rithms for a variety of interconnections. Most algorithms
deal with the special case of 1-relations, although they can
be often generalized to run for arbitrary � -relations, through
standard techniques. Here, for brevity, we will recall only
the results concerning the multibutterfly, which is the net-
work considered in this paper, and refer the reader to [8] for
an extensive and detailed account of the routing literature.

The multibutterfly, defined by Upfal in [11], is a bounded-
degree multi-stage interconnection obtained by superimpos-
ing a number of butterflies, and by suitably permuting the
edges to achieve certain expansion. The required expan-
sion can be obtained by applying random permutations to
the edges, or by using explicit deterministic constructions,
which, however, increase the complexity of the network. In
its seminal work [11], Upfal devised a deterministic algo-
rithm to route 1-relations in optimal � (log �) worst-case
time on an � -input/output ��	 log ��� 1 � -node multibutter-
fly. He also showed that by augmenting the network with
log � levels of � -node expanders, � (log �) time can be
attained for routing 1-relations when the network is fully
loaded, i.e., when all nodes act as inputs and outputs. The
only deterministic algorithm previously known for routing
permutations in � (log �) time on a bounded-degree net-
work reduced the routing problem to sorting and required
the AKS-based network [2, 7], resulting in impractical con-
stants for both routing time and network topology. Upfal’s
algorithms could not be directly generalized to the case of
arbitrary � -relations, which, hence, was left open.

Recently, Maggs and Vöcking [9] have shown that the
multibutterfly can simulate an AKS network [2] of com-
parable size with constant slowdown. They also show
that � -relations can be routed deterministically in optimal� (��� log �) time on a network with � inputs/outputs, ob-
tained by augmenting an ��	 log ��� 1 � -node multibutterfly

with � levels of � nodes each, where consecutive levels are
connected by expanders. Each node needs only a constant
number of buffers, however the extra levels of expanders
make the network topology dependent on the degree � of
the relation. In a recent and independent work [6], Herley
developed an optimal routing algorithm for � -relations by
using only log � extra levels of expanders, thus avoiding
the dependency on � , at the expense, however, of a rather
involved protocol.

In all of the aforementioned results, running times are ex-
pressed in the word model, which assumes that in one step
(word step) � (1) words can be sent across a link and manip-
ulated at a node. In contrast, the bit model, often used in cir-
cuit switching, assumes that in one step (bit step) only � (1)
bits can be sent across each edge, and each node, regarded
as a finite automaton, can perform a transition to a new state.
The switching capabilities of the multibutterfly have been
studied by Arora Leighton and Maggs in [3]. Specifically,
they show that a multibutterfly with ��	 log � � 1 � nodes and
Θ (�) inputs and outputs is rearrangeable, in the sense that
any set of one-to-one connections between inputs and out-
puts can be realized through node-disjoint paths. Moreover,
they present an on-line deterministic algorithm to establish
the paths in � (log �) steps in the bit model. The algorithm
can be employed to route an arbitrary partial permutation
optimally in � (�� log �) bit steps, where � is the maxi-
mum bit size of a message.

In this paper, we present a deterministic algorithm for
routing � -relations on a multibutterflywith � inputs/outputs
and ��	 log �!� 1 � nodes. Specifically, we generalize the
result of [3] and devise an optimal algorithm that routes
any given � -relation along paths of congestion � (�). The
congestion bound is enforced by employing a novel weight-
based technique that generalizes the one adopted in [3] for
attaining node-disjoint paths. Our main result is stated be-
low.

Theorem 1 Any arbitrary � -relation, with messages of� bits, can be routed in �����
	��"� log ����� bit steps on
an � -input/output multibutterfly, using Θ � min #$�
%&��')(�
bits of storage at each node, for any positive constant*,+ 1. In the word model, the routing can be accomplished
in ���-�����.� log ����� log �/� communication steps, using
Θ � min #0�1� log �/%&��'&(2� bits of storage at each node, for
any positive constant *3+ 1.

Our algorithm is simple and attains optimal performance,
although we must remark that in the word model we ac-
count only for communication steps (i.e., link traversals)
which are conceivably more expensive than local computa-
tion steps. However, we can show that for long messages
(Ω � log2 � � bits) optimal performance can be attained, in
the word model, fully accounting for both communication
and local computation.

Unlike the algorithms in [9] and [6], our algorithm at-
tains optimal performance on the standard multibutterfly
without requiring additional levels of expanders. As a con-
sequence, our network can be laid out in Θ � � 2 � area,
whereas the networks used in [9] and [6] require Θ ���4� 2 �
and Θ ��� 2 log �/� area, respectively. Furthermore, no de-
pendency on � arises in the network topology, and the rout-
ing algorithm is fairly simple. Finally, we observe that all
paths selected by our algorithm have length log � , while
the paths used in the aforementioned algorithms can be of
length up to Θ (�5� log �).

2. Preliminaries

Let � be a power of 2 and let 6 be an integral constant. An	7�/%&68� -multibutterfly [11] consists of ��	 log �9� 1 � nodes
arranged in � rows, numbered from 0 to �;: 1, and log ��� 1
columns, numbered from 0 to log � . A node is identified
by a pair 	7<$%&=>� , where < and = denote the node’s row and
column, respectively. For 0 ?@= + log � , the nodes in
columns = and =,� 1 are connected to form 2 A parallel = -
splitters, namely B�C AED0 %FB�C AED1 G2GHG %&B�C AED2 I)J 1. A = -splitter B�C AEDK is a
bipartite graph 	�LM%ONQPR%>NTSU� , where

L � #8	7<$%&=>� : V7<$�W	7��� 2 A �)XY� Z8(NQP � #8	7<$%&=
� 1 � : V7<$�[\�]� 2 AE^ 1 �EX,� 2Z8(NTS_� #8	7<$%&=
� 1 � : V7<$�[\�]� 2 AE^ 1 �EX,� 2Z,� 1 (G
The nodes in L are referred to as the inputs of the splitter,
while the nodes in N8P and N`S are referred to as the upper and
lower outputs of the splitter, respectively. Each node acbdL
is connected to 6 nodes of N8P (up-neighbors of a), and to6 nodes of N`S (down-neighbors of a), while each node inN P,e N S is connected to 2 6 nodes of L .

A splitter 	�LM%>N8P8%>NTSU� has 	\fM%)g
� -expansion if every subset�ihL , with j;�@k �lkm?nfokpL�k , is adjacent to at least g
j
upper outputs and g
j lower outputs. The multibutterfly is
said to have 	7f3%Eg
� -expansion if every component splitter
has such expansion. The following technical fact is shown
in [3].

Fact 1 A random splitter has 	\f3%Eg
� -expansion with nonzero
probability, as long as 6R%Ff and g satisfy

2 fqg + 1 and 6�rsgt� 1 � gt� 1 � ln 	 2 g
�
ln 1

2 uTv G
We define an additional property of a splitter, which is a
variant of the < -neighbor property defined in [3]. A split-
ter 	�LM%>N P %>N S � has 	7f3%)w0%&xy� -neighbor property if for every
subset �zh9L with j��{k �lk|?!f,k}L.k , there are two sets� P %)� Sc~ � such that k � P k|��w`j , k � S k��nw`j , and each
node in ��P (resp., �1S) is adjacent to at least x nodes of N8P

(resp., NTS) that have only one neighbor in � . The multibut-
terfly is said to have the 	7f3%Ew$%&xy� -neighbor property if every
component splitter exhibits such property. The following
lemma can be proved by slightly modifying the proof of
Lemma 5.5 in [3] (see also [4]).

Lemma 1 A splitter with 	7f3%)g
� -expansion has the	7f3%Ew$%&xy� -neighbor property with

w5� 2 g/:�6y:lxl� 16�:�x � 1

3. The Routing Algorithm

In this section we present an algorithm for routing an� -relation on an 	7�/%&68� -multibutterfly. The input and output
ports of the network, which are the sources and destinations
of messages, are the nodes in column 0 and column log � ,
respectively. We assume that the multibutterfly has 	\f3%Eg
� -
expansion and the 	7f3%)w$%Fxy� -neighbor property, where f , g ,w and x are constant such that f + 1, g�r 1, w + 1 andx is a power of 2 greater than 4. Based on Fact 1 and
Lemma 1, a set of parameters that ensures these properties
for a randomly-wired multibutterfly is, for example, 6l�
40 %&f�� 1 �W	 48 � 2 �>%)g�� 24 %&x@� 8 and wl� 1 � 33. (No
attempt is made here to optimize the parameters.)

As well known, for each message there is a unique log-
ical path that connects its source to its destination, in the
sense that the sequence of splitters that the path traverses
is uniquely determined by the bits of the destination row.
However, there are 6 distinct edges which a message can
choose to move from one column to the next along its path.
In our algorithm messages follow their unique paths and,
exploiting the expansion properties of the network, select
the actual edges they traverse isuch a way to minimize con-
gestion. Let ��� 2 �Tf . For convenience, we assume that
only the input/output ports in rows �\� , for 0 ?�� + ���`�
are active, i.e., send/receive messages. The case when all
input/output ports are active requires minor modifications
that increase the running time by only a constant factor.

Define ¯� as the smallest power of 2 greater than
4 68�4�W	7x�: 4 � . Each node 	\<$%F=O� consists of the follow-
ing components: 2¯� buffers, divided into ¯� upper and ¯�
lower buffers; four counters, denoted by �/P�	\<$%&=>� , �cS`	7<$%&=>� ,�Q� 	7<$%&=>� and �Q�}� 	\<$%F=O� ; and two flags �qP�	\<$%&=>� and �mS$	7<$%&=>� .
Buffers are used to store either real messages or special
messages called ghosts. Specifically, a message/ghost at
a node is put in an upper or lower buffer depending on
whether it must proceed towards an up-neighbor or a down-
neighbor. Ghosts are similar in spirit to Arora-Leighton-
Maggs’ placeholders, since they are used to trace paths for
messages temporarily blocked somewhere in the network.
They eventually disappear either because the messages they
were tracing paths for have been sent along other paths, or

because they are replaced by actual messages. A buffer is
full if it contains a message or a ghost, and it is empty oth-
erwise. A full buffer can be either alive or dead. A buffer
containing a ghost is always alive. A buffer storing a mes-
sage is alive until the message is forwarded to another buffer.
At that time the buffer becomes dead and does not play any
further role in the algorithm, i.e., it cannot be reused for
storing other messages or ghosts. (Note that the number of
buffers required at each node grows linearly with � . We will
later indicate how this number can be made independent of� .)

The routing protocol is organized in Stages, numbered
starting from 0. In Stage � only the nodes in columns= ?���� 1 are active, and, if � + log � , nodes in col-
umn �
� 1 are activated (i.e., start receiving messages) in
this stage. Initially, each node 	7<$% 0 � partitions its messages
(if any) between the upper and lower buffers, according to
their destinations, and sets ��Pm	\<$% 0 � (resp., �cS0	\<$% 0 �) equal
to the smallest power of two greater than the number of mes-
sages in the upper (resp., lower) buffers. Buffers containing
messages are marked full and alive. All other buffers in the
network are empty and all other counters are 0. Also, all
flags are set to 0.

For ��� 0, the operations of Stage � are organized in two
consecutive Phases, described below.

Phase 1 The following sequence of steps is executed in par-
allel in every = -splitter, with =�?�� .
1. Every input 	7<�%F=>� with � P 	7<$%&=>�,� 0 and � P 	7<$%&=>��?��
selects x arbitrary up-neighbors and sets � P 	7<$%&=>��� 1.

2. Substeps 2 G 1 � 2 G 3 are repeated � times, for a suitable
integer ��r 1.

2.1. Every input 	\<$%&=>� with � P 	\<$%F=O��� 0 and � P 	7<�%F=>��r�� ,
sends a request to each up-neighbor, asking permission to
route a batch of ��Pm	\<$%F=O�E�`x messages to it.

2.2. Every upper output 	\<$%&=`� 1 � grants permission for each
batch of size 2

K r��4�Tx , if and only if it received no other
request for a batch of the same size.

2.3. Every input 	7<$%&=>� with �qPm	7<$%&=>�Y� 0 that got permis-
sions from at least x up-neighbors selects x such neighbors
and sets �qP4	7<�%F=>�y� 1. It also sends a cancellation signal
to every up-neighbor, withdrawing the requests sent to it in
Step 2.1.

3. Every input 	\<$%&=>� that set �
Pm	\<$%F=O� to 1 either in Step 1
or Step 2, assigns each full upper buffer to one of the se-
lected up-neighbors, making sure that each up-neighbor is
assigned at most � P 	\<$%F=O�E�`x buffers.

4. Every upper output 	7<$%&=�� 1 � computes � � 	7<$%&=�� 1 �y�� K
: 2 �&�m�H�)� min #0� K % 1 (2K , where � K denote the number of

batches of size 2
K

for which it received requests in the last it-

eration of Step 2 and for which no cancellations were given.

5. If � + log � , each upper output 	7<�%F�[� 1 � of an � -splitter
computes in �8�}� 	\<$%F�W� 1 � the total number of messages held
by the inputs of the splitter, which reside in buffers assigned
to it in Step 3. It then fills �Q� 	7<�%F�8� 1 �m� �8�}� 	\<$%&�Q� 1 � empty
upper buffers and �8� 	7<$%&�m� 1 ��� �Q�}� 	7<�%F�R� 1 � empty lower
buffers with ghosts, marking such buffers full.

(Steps 1 � 5 are repeated with respect to ��SH	7<$%&=>� , �cS`	7<$%&=>� ,
the lower buffer and the down neighbors.)

Phase 2
1. Substeps 1 G 1 � 1 G 2 are executed � times, for a suitable
integer �nr 1, in parallel in every = -splitter, with =�?�� .
1.1. Every input 	\<$%F=O� with � P 	7<$%&=>�,� 1 sends each mes-
sage stored in a full and live upper buffer to the up-neighbor
assigned to the buffer, and marks the buffer dead.

1.2. Every upper output 	\<$%F=3� 1 � stores each newly re-
ceived message in a full buffer, upper or lower according
to the message’s destination, replacing a ghost. Moreover,
it updates �Q�}� 	7<$%&=3� 1 � to account for the current number
of ghosts held by the inputs of the splitter, which reside in
buffers assigned to it. It then cleans up its buffers maintain-
ing exactly � � 	7<�%F=�� 1 �m� � �}� 	\<$%&=�� 1 � ghosts in both upper
and lower buffers, possibly deleting ghosts in excess of this
number. For each ghost deleted, the corresponding buffer
becomes empty.

2. For � + log � , every node 	7<$%&�R� 1 � , sets �/Pm	7<$%&�R� 1 �
(resp., �cS0	\<$%F�W� 1 �) to the smallest power of 2 greater than
the number of full upper (resp., lower) buffers.

(Steps 1 and 2 are repeated with respect to � S 	7<$%&=>� , the lower
buffer and the down-neighbors.)

Note that at the end of Stage � , only nodes in column= , with 0 ? =�? ��� 1 may have full buffers. For any
such node 	7<$%&=>� , the number of ghosts in its full buffers
is equal to �Q� 	7<$%&=>�q� �Q�}� 	7<�%F=>� , where �Q� 	\<$%F=O� , computed in
Phase 1, represents the number of ghosts that the node must
keep to trace the paths for messages possibly coming from
neighbors in column =�: 1 which have their flags still set to
1, while � �}� 	7<$%&=>� , computed in Phase 2, accounts for ghosts,
hence future messages, coming from neighbors in column=�: 1 which have their flags set to 1. Since the destinations
of messages for which the ghosts trace paths are not known,
the node must keep the same number of ghosts in both upper
and lower buffers.

4. Analysis

Observe that for a node 	\<$%&�7� , the counters � P 	7<�%F�\� and� S 	7<$%&�7� , which are initially set to 0, are updated only in

Stage ��: 1 (Phase 2, Step 2). In what follows, we will
use � P 	7<$%&�7� and � S 	\<$%F�\� to denote the updated value after
Stage �|: 1. It can be seen that such counters provide an
upper bound to the number of messages/ghosts that will ever
reside in the node’s upper and lower buffers, respectively.
For every � -splitter B , let us define

�/P�	\B��¡� ¢C¤£E¥ ¦ D\§`¨ ��Pm	7<�%F�\��cS�	\B��¡� ¢C¤£E¥ ¦ D\§`¨ �tS$	7<$%&�7� G
For every jc��� and every input 	\<$%&�7� of B , we use ��Cª© DP 	7<$%&�7�
and ��Cª© DS 	7<$%&�7� to denote the values of flags � P 	\<$%&�7� and� S 	7<�%F�\� , respectively, at the beginning of Stage j . Moreover,
we define

B Cª© DP 	\a4�«� ¬�	7<�%F�\��bB : � Cª© DP 	\<$%F�\��� 0 and � P 	\<$%F�\����aq®
B Cª© DS 	\a4�«� ¬ 	7<�%F�\��bB : � Cª© DS 	\<$%F�\��� 0 and �tS$	7<$%&�\����a ® G
Since at the beginning of Stage � all flags of nodes in column� are 0, we have � P 	7B��,� �°¯ � 0 k B C¤¦ DP 	7aR�Hk a and � S 	\B��,�� ¯ � 0 k B Cª¦ DS 	\a4�2k a . It is important to observe that if B Cª© DP 	7aR�
and B Cª© DS 	7aR� are empty for every splitter in the network
and every a�r 0, then each message can proceed to its
destination without being blocked.

The analysis of the algorithm presented in the previous
section, relies on the following technical lemmas, whose
proofs are omitted here, for brevity, and can be found in
[10].

Lemma 2 Let B be an � -splitter. For every acr 0 and j.���
k B Cª© DP 	7aR�Hk±? ² © J ¦ k B Cª¦ DP 	\a4�2kk B Cª© DS 	7aR�Hk±? ² © J ¦ k B Cª¦ DS 	\a4�2kª%

where ²]��	 1 :�w`�E³ .

Lemma 3 For every node 	\<$%&�7� , we have ��Pm	\<$%F�\��? ¯� and�tS$	7<$%&�\��? ¯� .
The next theorem is a consequence of the above lemmas.

Theorem 2 Let �´� log1 � C 1 JRµ D 	 32 68�`xy� and �nr 2. Then,� (log �) stages are sufficient to deliver all messages to
the destinations. Moreover, no more than 2¯� messages are
routed through the same node.

Proof: Observe that for every � -splitter B and everya¶r 0 k B�Cª¦ DP 	\a4�2kª%$k B�Cª¦ DS 	\a4�2ky?i�]� 2 ¦ . By Lemma 2, we
have that at the beginning of Stage j , with j9�·�,�
1 � log 	7��� 2 ¦ �)� log 	 1 �$²8�.�¸� (log �), both B Cª© DP 	7aR� and

B�C¤© DS 	\a4� are empty. Thus, after � (log �) stages every mes-
sage can proceed to its destination without being blocked,
and at most log � additional stages are sufficient bring all
messages to their destinations in column log � . The con-
gestion bound is an immediate consequence of Lemma 3
and the observation at the beginning of the section. ¹

We are now ready to prove the main result stated in the
introduction as Theorem 1

Proof of Theorem 1: (Sketch) We consider only the case
when one every � � 2 �`f inputs/outputs send/receive mes-
sages. The general case requires trivial modifications which
only increase the running time by a constant factor. The
correctness of the algorithm is easy to establish. As for the
running time we will first analyze it in the bit model. Ob-
serve that in a stage a link is traversed by � (�) messages
and a constant number of values representable with � (log �)
bits, while each node has to inspect � (�) bits and perform
a constant number of arithmetic operations on values rep-
resentable with � (log �) bits. Clearly, the local operations
can be accomplished in � (�) bit steps, however, since mes-
sages are �9� log � bits long, their movement across the
links may take up to � � �
	��"� log ��� � bit steps per stage,
which is too much for our purposes. In order to attain the
stated bit complexity we make a simple modification to the
algorithm, preserving its correctness, so that messages tra-
verse the network in a worm-like fashion. Specifically, in
Step 1.1 of Phase 2, where message transmissions take place,
we forward only two bits of each message, starting from the
address bit needed to decide the next transition of the mes-
sage. A buffer is declared dead only when the last bit of the
message it stores is forwarded. Note that buffers of � (1)
bits are sufficient. It is easy to see that the new protocol is
correct and that, based on Theorem 2, after � (log �) stages
the first bit of each message reaches its destination. At this
point, � (�) additional stages are sufficient to deliver the
entire message. Since each stage takes � (�) bit steps, it fol-
lows that the algorithm takes �����
	 log ���º����� bit steps,
overall. Moreover, only Θ (�)-bit storage is needed at each
node.

Consider now the word model with � (log �)-bit words.
By suitably packing the bits transmitted over each link
into words, we can ensure that at most ���-�R� log �/� word
steps are taken by link transfers in each stage. It is then
easy to argue the algorithm takes ����������� log ����� log ��
word steps for communication, which is optimal. When�»� Ω � log2 � � we can attain optimal local computa-
tion time, by first selecting the paths for the messages (in� (� log �) word-steps) and then delivering all messages
along the selected paths as streams of words. Details are
provided in [10]

Note that the storage required at each node is a linear
function of � . In order to remove the dependency on � in

the network, and use only � (� ')-bit storage at each node,
as claimed in the theorem, for any constant 0 +�*�+ 1, we
can use the following strategy (a similar strategy is adopted
in [9] for different purposes). We partition the nodes in
column log � into ��' groups of � 1 J ' nodes each. The
partition induces a partition of the rows in �¼' blocks. We
pack together messages destined to the same group of nodes
and deliver them to arbitrary nodes within the group. The
packing induces an � (��')-relation with larger messages
that can be routed using only � (��')-bit storage at each
node. The same strategy is then applied recursively within
each block of rows, to complete the routing. ¹
Acknowledgments The author is grateful to Alessio Gi-
anelle, Kieran Herley and Geppino Pucci for many helpful
discussions and constructive comments on this work.

References

[1] M. Adler, J. Byers, and R. Karp. Scheduling parallel com-
munication: The ½ -relation problem. In Proc. of the 20th
International Symp. on Mathematical Foundations of Com-
puter Science, LNCS 969, pages 1–20, 1995.

[2] M. Ajtai, J. Komlòs, and E. Szemerèdi. Sorting in ¾ log ¿
parallel steps. Combinatorica, 3(1):1–19, 1983.

[3] S. Arora, T. Leighton, and B. Maggs. On-line algorithms for
path selection in a nonblocking network. SIAM Journal on
Computing, 25(3):600–625, June 1996.

[4] A. Gianelle. Instadamento di messaggi in una multibutterfly.
Undergraduate Thesis, Dipartimento di Matematica, Univer-
sità di Padova, Feb. 1997.

[5] M. Goudreau, J. Hill, W. McColl, S. Rao, D. Stefanescu,
T. Suel, and T. Tsantilas. A proposal for the BSP world-
wide standard library. Technical report, Oxford University
Computing Laboratory, Wolfson Building, Parks Rd., Ox-
ford OX1 3QD, UK, 1996.

[6] K. Herley. A note on ½ -relation routing on the multi-butterfly.
ESPRIT-9072 GEPPCOM Report, 1997.

[7] F. Leighton. Tight bounds on the complexity of parallel
sorting. IEEE Trans. on Computers, C-34(4):344–354, Apr.
1985.

[8] F. Leighton. Introduction to Parallel Algorithms and Archi-
tectures: Arrays À Trees À Hypercubes. Morgan Kaufmann,
San Mateo, CA, 1992.

[9] B. Maggs and B. Vöcking. Improved routing and sorting on
multibutterflies. In Proc. of the 29th ACM Symp. on Theory
of Computing, pages 517–530, May 1997.

[10] A. Pietracaprina. Deterministic routing of ½ -relations on the
multibutterfly. Technical Report TR-9/97, Dipartimento di
Matematica, Università di Padova, Padova, Italy, Sept. 1997.

[11] E. Upfal. An Á�Â log Ã.Ä deterministic packet-routing scheme.
Journal of the ACM, 39(1):55–70, Jan. 1992.

[12] L. Valiant. A bridging model for parallel computation. Com-
munications of the ACM, 33(8):103–111, Aug. 1990.

[13] L. Valiant. General purpose parallel computing. In J. V.
Leeuwen, editor, Handbook of Theoretical Computer Sci-
ence, Vol. A, Ch. 18, pages 944–996. Elsevier, NL, 1990.

