A Time-Optimal Solution for the Path Cover Problem on Cographs*

K. Nakanof

Abstract

We show that the notoriously difficult problem of find-
ing and reporting the smallest number of vertex-digoint
paths that cover the vertices of a graph can be solved time-
and work-optimally for cographs. Our algorithm solves
this problemin O(logn) time using 5 processors on the
EREW-PRAM for an n-vertex cograph G represented by its
cotree.

1 Introduction

A graph-theoretic problem with alarge number of prac-
tical applicationsis the path cover problem, which involves
finding a minimum number of vertex-disjoint paths that to-
gether cover the vertices of agraph. A graph G that admits
a path cover of size one is referred to as Hamiltonian. It
is, therefore, clear that the path cover problemisat least as
hard as the problem of deciding whether a graph G has a
Hamiltonian path.

The class of cographs, or complement-reducible graphs,
is defined recursively as follows: (1) A single-vertex graph
isacograph; (2) If G = (V, E) isacograph, then its com-
plement G = (V,V x V — E) isalso acograph; (3) If both
G1 = (V1, Eq1) and G2 = (Va, Ep) satisfyingVinV, = ¢
are cograph, then their union G = (ViU V;, E;UV;) isalso
acograph.

The cographs admit a tree representation unique up to
isomorphism. Specifically, one can associate with every
cograph G = (V, E') aunique rooted tree T'(G) called the
cotree of G featuring the following properties: (4) Every
internal node of T'(G) has at least two children; (5) The
internal nodes of T'(G) are labeled by either O (0-node)
and 1 (1-node) in such a way that labels alternate along

*Thiswork was supported in part by NSF grant CCR-9522093, by ONR
grant N00014-97-1-0526, and and by the Australian Research Council

 Department of Electrical and Computer Engineering, Nagoya I nstitute
of Technology, Showa-ku, Nagoya 466-8555, JAPAN

Department of Computer Science, Old Dominion University, Norfolk,
VA 23529, U.SA.

§ Department of Electrical and Electronic Engineering, The University
of Western Australia, Perth, WA 6970, AUSTRALIA

S. Olariut

A.Y.Zomaya

Figure 1. A cograph and the corresponding
cotree.

every path in T(G) starting a the root; (6) Each leaf of
T(G) corresponds to a vertex in V, such that, (z,y) € E
if and only if the lowest common ancestor of the leaves
corresponding to « and y isa 1-node. Werefer the reader to
Figure 1illustrating a cograph and its cotree. He[5] showed
that the cotree of a cograph with n vertices and m edges
can be built in O((logn)?) time using O(n + m) CRCW
processors.

Lin et al. [7] showed that an instance of size n of the
path cover problem for a cograph can be solved in O(n)
sequential time. Quite a while back Adhar and Peng [1]
presented aparalléel algorithm to find a minimum path cover,
a Hamiltonian path, and a Hamiltonian cycle in n-vertex
cographs. Their algorithm runsin O(log?n) time and using
O(n?) processors on the CRCW. Surprisingly, the algorithm
in [1] takes O(log?n) time and O(n?) processors on the
CRCW even to determine whether a cograph contains a
Hamiltonian path or cycle.

As afirst step towards solving this open problem, Lin et
al. [8] showed that one can determine the number of paths
in aminimum path cover for cographsin O(logn) timeand
O(n) work on the EREW. At the same time, Lin et al. [8]
proposed an algorithm to report al the pathsin aminimum
path cover running in O(log?») time, using @ processors
on the EREW. Since, asshownin [7], aminimum path cover
can be returned in O(n) sequential time, the algorithm in
[8] is suboptimal.

The main contribution of this work is to offer a time-

and work-optimal solution to the path cover problem for
cographs. Our agorithm runsin O(logn) time using og 7
processors on the EREW for an n-vertex cograph G repre-
sented by its cotree. Due to the page limitation, we omit the

proof of the time- and work-optimality.

2 Findingaminimum path cover: afirst look

We begin by reviewing the sequential algorithm of [7] for
finding a minimum path cover of n-vertex cograph in O(n)
time, as well as the parallel algorithm of [8] for computing
the number of paths in a minimum path cover in O(logn)
timeusing o processors on the EREW.

For convenience and ease of presentation we now show
how to binarize the cotree T'(G) corresponding to acograph
G, in such away that each of itsinternal nodes has exactly
two children [8]. Let u be an internal node with children
U1, U2, . .., Uk, (K > 3). Wereplace node « by k& — 1 nodes
w1, uo, ... up_1 suchthat u, haschildren v, and v,, and each
u;, (2 < i < k), haschildren u;_; and v;. We shall refer to
the binarized version of T'(G) asT,,(G) and notethat T, (G)
satisfies properties (4) and (6) above.

For an internal node « of T,(G) its left and right chil-
dren will be denoted by v and w, respectively. Let G(u)
denote the subgraph of & induced by the leaf descendants
of u in T,(G). Further, let L(«) denote the number of leaf
descendants of « in T, (G), that is, the number of vertices of
G(u). Let p(u) denote the number of paths in a minimum
path cover of G'(u). Wesay that T),(G) isleftist, if for every
internal node «, the condition L(v) > L(w) issatisfied. Let
T,(G) denote the | eftist binarized cotree of G.

We now review the ideas in [7] for finding a minimum
path cover of a cograph G, given its leftist binarized cotree
T (G). Suppose that the minimum path coversof G(v) and
G(w) have already been obtained. If « is 0-node, then no
edgein G/(u) connects verticesfrom G(v) and G(w). Thus,
aminimum path cover for G is just the union of minimum
path coversfor G(v) and G(w).

If « is 1-node, recall that every vertex in G(v) is adja
cent to all the vertices in G(w). Referring to Figure 2, we
distinguish the following two cases.

Casel, p(v) > L(w) : Weusethe L(w) verticesin G(w)
to bridge L(w) + 1 of the paths in aminimum path cover of
G(v) into one path and the resulting minimum path cover
has p(v) — L(w) paths. In Figure 2, L(w) = 2 vertices
bridgep(v) = 4 pathsinto p(v) — L(w) = 2 paths.

Case2, p(v) < L{w): Inthiscase, p(v)—1verticesin G(w)
are used to bridge the p(v) paths in @ minimum path cover
of G(v) into one path. These vertices are said to be bridge
vertices. The remaining L{w) — p(v) + 1 vertices, called
insert vertices, will be inserted into the path thus obtained.
Theresulting minimum path cover isaHamiltonian path. In
Figure2, p(v) — 1 = 3verticesare used to bridge p(v) = 4

Gv) Gw) Gv) G(w)

Case2

Q

8 Casel
[)

bridge vertex ® insert vertex

Figure 2. lllustrating Case 1 and Case 2.

paths into one path and L(w) — p(v) + 1 = 4 vertices are
inserted into the path.

We refer the reader to [7] for a detailed proof of the
correctness of this approach. Asit turnsout, al the pathsin
a minimum path cover of G can be obtained by traversing
Ty,(G) in a bottom-up fashion from the leaves to the root.
A careful implementation guaranteesthat the corresponding
agorithm runs in time linear in the size of T3;(G). Thus,
we have the following result.

Lemma 2.1 [7] Given the cotree T'(G) of an n-vertex co-
graph G, a minimum path cover can be returned in O(n)
sequential time.

Lin et al. [8] showed that the simpler problem of com-
puting the number of pathsin aminimum path cover can be
computed in O(logn) time. Theideais as follows. From
the construction of the minimum path cover, the number
p(u) of paths in the minimum path cover of G(«) can be
computed by the following formula:

plu) = p(v)+p(w) ifuisO-node
= max{p(v) — L(w),1} if wisl-node

The well-known tree contraction technique [6] enablesusto
evaluate this formula for each internal node «. Using this
idea, the following result was proved in [8].

Lemma 2.2 [8] For every internal node « in T3;(G), the
number p(u) of pathsin a minimum path cover of G(«) can
be computed in O(log n) time using fognn EREW processors.

We now further modify T3;(G). The vertices of the co-
graph G (i.e. leaves of T, (G)) will be partitioned into
three categories as follows. bridge vertex: avertex bridg-
ing paths at a 1-node; insert vertex: avertex to be inserted
in the path at a 1-node; primary vertex: a vertex neither
bridging nor being inserted. Note that a primary vertex cor-
responds to a leaf of T},;(G) such that every internal node

Figure 3. A path tree and the corresponding
path.

along apath from the root to theleaf is not theright child of
al-node. Conversely, abridge or insert vertex belongsto a
subtree rooted at an internal node that is the right child of a
1-node.

3 Finding a minimum path cover using path
trees

The main goal of this section is to introduce path trees
that will turn out to be key ingredients in our time- and
work-optimal parallel algorithm for the path cover problem.

Let G be acograph. A path tree is arooted binary tree
with each node of the path tree corresponding to a vertex of
some path 7 in G. The path 7 is captured by the inorder
traversal of the path tree. We refer the reader to Figure 3
illustrating a path tree and the corresponding path. Clearly,
once a path treeis available it can be readily converted into
the desired path by using the Euler tour technique. Multiple
vertex-digoint paths will be captured by digjoint collections
of path trees.

Let « be an internal node of T3;(G) with left and right
children v and w, respectively. We are interested in com-
puting a path tree of G/(u) using those for G(v) and G(w).
First, suppose that « is a 0-node and the path trees of G(v)
and G(w) are aready available. Since no edge in the graph
connects edges from G(v) and G(w), the union of the path
treesfor G(v) and G(w) yields the path treesfor G(u).

Next, supposethat « isal-nodeand thepathtreesof G(v)
have already been computed. Weconsider thefollowing two
cases:

Casel, p(v) > L(w) : The L(w) verticesin G(w) bridge
L{w) + 1 paths and the resulting minimum path cover of
G(u) hasp(v) — L(w) paths. To perform the corresponding
operation on the path trees, we construct abinary tree having
the L(w) verticesin G(w) as internal nodes and the roots
of L(w) + 1 path trees in G(v) as leaves. This process is
illustrated in Figure 4, where we construct abinary treewith
verticesa, b, ¢ having theroots of thepathtrees B, C, D, E

G(v) G(w)
A

B b
c a
CV b
a
D
E A B C D E

Figure 4. Construction for Case 1.

AG(’U) G(w)

Figure 5. Construction for Case 2

astheir children. The inorder traversal of the path tree thus
obtained is

B—-c—-(C—-b—>D—a—E,

which corresponds to the path we should obtain.

Case 2, p(v) < L(w) : Werefer the reader to Figure 5 for
an illustration of the construction of a path tree in Case 2.
In this case, p(v) — 1 bridge vertices from G(w) connect
the roots of the path treesin away similar to Case 1. Inthe
figure, two vertices « and b connect three path trees. Each
of the L(w) — p(v) + 1 insert vertices is connected to path
trees as leaves. In the figure, five vertices ¢, d, e, f, and ¢
are connected to path trees as leaves.

Notice that in this process, a vertex of the original path
trees with at most on child may end up with one (or two)
insert vertices from G(w) as leaves. However, not al such
vertices can have a child. For example, C'; cannot have an
insert vertex as a left child; if vertex ¢ were a left child of
C1, then « and ¢ would be adjacent in the corresponding
Hamiltonian path. However, it is not necessarily the case
the a and ¢ are adjacent in the underlying graph G. For the
samereason, B3 cannot have aninsert vertex asaright child.

Figure 6. lllustrating a pseudo path tree

Moregenerally, wemay haveillegal childrenasfollows: Let
11, I3, ..., Ty, denote the path trees placed |eft-to-right
in this order such that their roots are connected by p(v) — 1
bridge vertices.

1. Theright child of the rightmost vertex (i.e. the vertex
that appears last in the inorder traversal) of 7;, (1 <
i < p(v)—1). If aninsert vertex is connected as the
right child, then it must be adjacent to the bridge vertex
that is the lowest common ancestor of 7; and 75,1, a
contradiction.

2. The left child of the leftmost vertex in T;, (2 < i <
p(v)), by amirror argument.

For later reference, we introduce a pseudo path tree,
which may have illegal insert vertices. Figure 6 illustrates
a pseudo path tree: vertices e and f are illegal, and the
corresponding path is invalid in the graph since the edges
(f,a)and (a, e) are not present.

4 Constructing path treesusing brackets

To begin, we demonstrate how pseudo path trees can be
constructed efficiently. Once this is done, we can convert
pseudo path trees to (correct) path trees. For constructing
pseudo path trees efficiently, we will generate a sequence
of brackets, each corresponding to a vertex in the pseudo
path tree. We use two types of brackets: square brackets
(“I" and “]") and round brackets (“(* and “)*). By finding
matching pairs of square brackets and matching pairs of
round bracketsindependently, we can construct pseudo path
trees as follows.

Let « be a node of T;;(G) and let v and w denote,
respectively, its left and right children if any. We as
sociate with » a sequence B(u) of brackets as follows:
If v is a leaf corresponding to a primary vertex, then

B(u) =] ((. If uisO-nodethen B(u) = B(v) - B(w).
If v is 1-node and p(v) > L(w) (i.e. Case 1), then,

P
51

N

55 5bs} SL(w)SL(w) L(w)
111 - | [. where s;

B(u) = () Il
den otes the bndge vertices of w. The

]
l<i<l))

matching pair [and] (1 < i < L{w) — 1) corresponds

to an edge connecting the right child s; and the parent s;1.
sbosb Sl[,(“,) s7

Further, each of]1,]z,...,] and]1 matches a square

bracket in B(v), and corresponds to an edge connecting

with aroot of apath tree of G(v).

If « is 1-node and p(v) < L(w) then B(u) =
515187555555 51530 1 p(0) 1) Lo (41
Be) 110110 -]

ot o tp(ntpo 41 e
) C - (), where

(1 < i < p(v) — 1) denotes the bridge vertices, and ¢;
(p(v) < i < L(w)) denotes the insert vertices. The square
brackets for s; work similarly to Case 1. Each of the round

tr 24
plw) p(u)+1 "Lw)

brackets)) -+) isusedtofindaparentoftl-in

I I’
G(v). Further, the round brackets (((p(w) < i < L(w))
are used to find the left and the right children, which will
appear in theright of B(u).

By finding matchings for square brackets and round
brackets in the sequence B(R) of brackets of root R of
Ty, (G), wecan construct pseudo path trees. For the readers
benefit, we now show an example of B(R). The following
seguence of brackets correspondsto the cotreeillustrated in
Figure 7.

aPalabPbl b P el d T d dP e [P et fLFT

(OGN DY

Note that « and ¢ are primary vertices, b, ¢, and f are insert
vertices, and d is a bridge vertex. Assume that matching
of square brackets and that of round brackets are computed
independently. In the above sequence of brackets, we can
find the following matching:

a?d' c?d” a"b? LfP cTe?

(10100, 0) - (),
These matchings corresponds to an edge of a pseudo path

a?d
tree. For example, [] corresponds to an edge connecting
the vertex « to the parent d as al€ft child.

In order to convert a pseudo path tree to the correct one,
we need to remove illegal insert vertices. For this purpose,
we will use 2p(v) — 2 dummy vertices. Figure 8 illustrates
2p(v) — 2 = 4 dummy vertices dy, dy, ds, and da connected
to a pseudo path tree. The dummy vertices can have one
child. After constructing the pseudo path trees with dummy
vertices, for each insert vertex we check whether it isille-
gal. Further, we also check whether each dummy vertex is
illegd, that is, it is adjacent to a bridge vertex. If there are

Figure 7. Construction of a pseudo path tree
using brackets

Figure 8. Construction of a path tree using
dummy vertices

illegal insert vertices, they are exchanged with legal dummy
vertices. In Figure 8, ¢ and f are illegal insert vertices.
Also, dummy nodes d, and d3 areillegal. Thus, ¢ and f
are exchanged with d; and d4, respectively. Note that this
exchanging is not only for the vertices but also for the sub-
trees. That is, exchanging of e and d; means that the parent
of d; becomes new parent of e and vice versa. After that,
bypassing dummy verticesin the path tree, we can obtain a
correct path tree.

5 Paralle algorithm for finding the minimum
path cover of a cograph

Wewill show that, for giventhe cotree T'(G) of acograph
G, the minimum path cover can be exhibited efficiently. The
algorithm is spelled out as follows:

Input: the adjacent list of the cotree T'(G) of a cograph G}
Output: the minimum path cover of G;

Step 1: Find the leftist binarized T3, (G);

Step 2: Generate a sequence of brackets B(R) of theroot R
of T, (G);

Step 3:Find the pseudo path tree by finding all matchings of
B(R);

Step 4:Convert the pseudo path tree into the (correct) path
tree;

Step 5: Find the minimum path cover using the path trees.

The reader should have no difficulty to confirm that the
algorithm above correctly exhibitsthe minimum path cover.
Further, it is not so difficult to confirm that the above al-
gorithm can be implemented to run in O(logn) time using
| Ogn processors on the EREW PRAM by thefollowing basic
algorithms: the prefix-sums, list ranking, bracket matching,
preorder, postorder and inorder numberings[2, 3, 4, 6, 9].

Finally, we have

Theorem 5.1 The task of exhibiting the minimum path
cover of a cograph can be done efficiently, that is, in
O(logn) time using processors on the EREW PRAM.

Iogn
References

[1] G. S. Adhar and S. Peng, Parallel Algorithm for Path
Covering, Hamiltonian Path, and Hamiltonian Cycle
in Cographs, Proc. Internat. Conf. on Parallel Pro-
cessing, 1990, 111, 364-365.

[2] R.J. Anderson, G. L. Miller, Deterministic parallel list
ranking, Algorithmica, 6, (1991), 859-868.

[3] R.ColeandU. Vishkin, Approximate parallel schedul-
ing. Part I: The basic technique with applications to
optimal parallél list ranking in logarithmic time, SAM
Journal on Computing, 17, (1988) 128-142.

[4] A. Gibbons and W. Rytter, Efficient Parallel Algo-
rithms, Cambridge University Press, 1989.

[5] X.He, Parallel agorithm for cograph recognition with
applications, J. Algorithms, 15, 2, (1993), 284-313.

[6] J. JaJa, An Introduction to Parallel Algorithms,
Addison-Wesley, 1992,

[7] R. Lin, S. Olariu, G. Pruesse, An optimal path cover
algorithm for cographs, Computers and Mathematics
with Applications, 30, (1995), 75-83.

[8] R. Lin, S. Olariu, J. L. Schwing, and J. Zhang, A
fast EREW algorithm for minimum path cover and
hamiltonicity for cographs, Parallel Algorithms and
Applications, 2, (1994), 99-113.

[9] R. E. Tarjan and U. Vishkin, An efficient parallel bi-
connectivity algorithm, SSAM Journal on Computing,
14 (1985) 862-874.

