
A Consistent History Link Connectivity Protocol �

Paul LeMahieu Jehoshua Bruck

California Institute of Technology
Mail Code: 136-93

Pasadena, CA 91125

Email: flemahieu,bruck g@paradise.caltech.edu

Abstract

The RAIN (Reliable Array of Independent Nodes) project
at Caltech is focusing on creating reliable distributed sys-
tems by leveraging commercially available personal com-
puters and interconnect technologies. Fault-tolerance is
introduced into the communication infrastructure by using
multiple network interfaces per compute node.

When using multiple network connections per compute
node, the question of how to monitor connectivity between
nodes arises. We examine a connectivity protocol that guar-
antees that each side of a point-to-point connection sees the
same history of activity over the communication channel. In
other words, we maintain aconsistent historyof the state of
the channel. The history of channel-state is guaranteed to
be identical at each endpoint within some boundedslack.

Our main contributions are: (i) a simple,stableprotocol
for monitoring connectivity that maintains aconsistent his-
tory with bounded slack, and (ii) proofs that this protocol
exhibitscorrectness, bounded slack, andstability.

1. Introduction

Given the prevalence of powerful personal workstations
connected over local area networks, it is only natural that
people are exploring distributed computing over such sys-
tems. Whenever systems become distributed the issue of
fault tolerance becomes an important consideration. In the
context of theRAINproject (Redundant Arrays of Indepen-
dent Nodes) [4] at Caltech (see Figure 1 for a photo), we’ve
been looking into fault tolerance in several elements of the
distributed system. One important aspect of this is the intro-

�Supported in part by the NSF Young Investigator Award CCR-
9457811, by the Sloan Research Fellowship, and by DARPA through an
agreement with NASA/OSAT.

duction of fault tolerance into the communication system by
introducing redundant network elements and redundant net-
work interfaces at each compute node. For example, a prac-
tical and inexpensive real-world system could be as simple
as two Ethernet interfaces per machine and two Ethernet
hubs. The work we have done is not specific to any net-
working technology, but we have been working primarily
with Myrinet [3] networking elements as well as with Eth-
ernet networks. The protocol described in this paper has
been implemented as part of the Caltech RAIN system.

Figure 1. RAIN system (ten nodes).

An elementary piece of information about the system is
whether there isconnectivitybetween an interface on one
machine and an interface on another. We describe here a
modifiedpingprotocol that guarantees that each side of the
communication channel sees the same history. Each side is
limited in how much it may lead or lag the other side of the
channel, giving the protocolbounded slack. This notion of
identical history can be useful in the development of appli-
cations using this connectivity information. For example, if
an application takes error recovery action in the event of lost

connectivity, it knows that both sides of the channel will see
the exact same behavior on the channel over time and will
thus take the same error recovery action. Such a guarantee
may simplify the writing of applications using this connec-
tivity information.

The protocol can be run at a high level, potentially as
high as the application layer. At the same time, it can ben-
efit greatly from low-level hardware hints about link condi-
tions. A primary application for such a protocol is within a
communication layer where its information can be used to
mask or report connectivity problems between machines.

Although in some sense this is a consensus problem
since the history of channel activity must be seen the same
at both sides, it is not the general consensus problem people
think of. We are only really interested ineventualconsensus
when the link is functioning. When the link has failed, we
only care that the nodes see the failure. However, it is still
useful to look at past work on consensus, such as Fischer,
Lynch, and Paterson in [7], or in Lynch’s book [10].

The connectivity problem has been addressed with dif-
ferent goals by Rodeheffer and Schroeder in the Autonet
system [11, 12]. They were concerned with adaptive rates
and skepticism in judging the quality of a link, whereas we
are concerned with consistency in reporting the quality of a
link. The connectivity problem has no doubt been consid-
ered in routing algorithms in the past, but we have seen no
reference to keeping the history consistent at each side of a
link.

Other than our own practical motivation for a consistent
history of the channel state, Birman [1] gives general mo-
tivation for consistency in failure reporting for the purpose
of improving reliability of distributed systems.

Our main contributions are: (i) a simple,stableprotocol
for monitoring connectivity that maintains aconsistent his-
tory with bounded slack, and (ii) proofs that this protocol
exhibitscorrectness, bounded slack, andstability.

The structure of the paper follows closely the contribu-
tions listed above. In Section 2 we define the problem. In
Section 3 we explain the protocol. We omit the proofs for
correctness, bounded slack, and stability in this shortened
paper. A full version of the paper can be found in [9]. We
finish in Section 5 with conclusions.

2. Problem Definition

We consider the following problem (Figure 2): given
two nodes connected by some bidirectional communication
channel, what is the state of the channel connecting them?

We desire a stable protocol that guarantees both sides see
the same history of the channel up to some givenbounded
slack. Figure 3[b] shows what we desire in a consistent his-
tory between ends of a communication channel. We desire

Node A Node B

?

Figure 2. The problem: is the communication
channel Up or Down?

that neither side be permitted to lag or lead the other by an
arbitrary number of observed channel state transitions.

A B
U

UU

U

U
D

D

D

DTime

D = link Down
U = link Up

Link History

A B
U

D
U

U U

U U

U

D

D D

D
D

Time

Link History

U = link Up
D = link Down

(a) (b)

Figure 3. (a) Node A sees many more transi-
tions than node B (b) Node A and B see tightly
coupled views of the channel.

2.1. Defined Terminology

Below, we define some of the terminology used in this
paper.

Nodes and Communication Channels.A distributed
computing system is composed of a set of interconnected
nodes. We are unconcerned with the underlying intercon-
nect, but are interested in the existence of logicalcommuni-
cation channelsbetween a node and the other nodes in the
system, on a point-to-point basis. The protocol runs over a
pair of nodes connected by a communication channel.

Connectivity and Channel State. We consider two
compute nodesconnectedonly if bidirectional communi-
cation exists between them. Bidirectional communication
is necessary for the implementation of reliable communi-
cation over unreliable channels. If a node finds itself con-
nected to another node via a given channel, it considers that
channel in theUp state. If a node finds itself not connected
to another node via a given channel, it considers that chan-
nel in theDownstate.

History. The sum of decisions made up about the state
of a channel makes up that channel’shistory. Each of the

endpoints of the channel adds to its view of the channel-
state history each time it decides the channel isUp orDown.
A channel’s history will be a series of channel states:Up,
Down, Up, Down,.... Since the channel state is binary, a
simple count of the number of state transitions suffices to
fully describe the history.

Slack. As a node makes decision about the state of a
channel, it may lead or lag the node on the opposite end of
the channel.Slack is the amount a node may lead or lag
its peer node. Ifta andtb are the number of channel state
transitions seen by node A and node B, respectively, andN

is the slack parameter, thanjta � tbj � N at all times.
Real Channel Event. A real channel eventwould be

any spontaneously occurring information about the chan-
nel. The simplest would be “the channel appears to be up”
or “the channel appears to be down.” We’ll look at the
timeout(tout) event that signifies that bi-directional com-
munication has been lost. We’ll also permit thetimein(tin)
event, the complement to the timeout, that signifies that
bi-directionally communication has been re-established.
These arereal events in the sense that they reflect infor-
mation about channel activity beyond our control, not an
event due to the protocol itself. Thetin event is not used in
this shortened version of the paper since we only present the
slack-2 case. Thetin event only plays a role in the protocol
for slack greater than two.

Stability. A protocol determining the state of a commu-
nication channel should bestable. More precisely, for each
channel event some bounded number of transitions (prefer-
ably one) should be seen by each endpoint.

Reliable Message Passing.The protocol we will de-
scribe requiresreliable message passing. Since this is a pro-
tocol intended to work over unreliable channels, we are re-
ferring to software implemented reliability, such as a sliding
window protocol. We require message passing that gives
(eventual) guaranteed, in-order delivery.

2.2. Precise Problem Definition

We now present all the requirements of the protocol:

� Correctness: the protocol will eventually correctly re-
flect the true state of the channel. If the channel ceases
to perform bi-directional communication (at least one
side sees timeouts), both sides should eventually mark
the channel asDown. If the channel resumes bi-
directional communication, both sides should eventu-
ally mark the channel asUp.

� Bounded Slack: the protocol will ensure a maximum
slack ofN exists between the two sides. Neither side
will be allowed to lag or lead the other by more than
N transitions.

� Stability: each real channel event (i.e., timeout) will
cause at most some bounded number of observable
state transitions, preferably one, at each endpoint.

The system model is one in which nodes do not fail, but
links intermittently fail. The links must be such that a slid-
ing window protocol can function. See the discussion on
data link protocols by Lynch in [10].

3. The Link Connectivity Protocol

This protocol usesreliable message passingto ensure
that nodes on opposing ends of some faulty channel see the
same state history of link failure and recovery. The reliable
message passing can be implemented using a sliding win-
dow protocol, as mentioned above. At first it may seem odd
to discuss monitoring the status of a link using reliable mes-
sages. However, it makes the description and proof of the
protocol easier, preventing us from essentially re-proving
sliding window protocols in a different form. For actual im-
plementation, there is no reason to actually build the proto-
col on an existing reliable communication layer. The proto-
col can be easily implemented on top of ping messages (sent
unreliably) with only a sequence number and acknowledge
number as data (in other words, we can easily map reliable
messaging on top of the ping messages).

The protocol consists of two parts:

� First, we have the sending and receiving of tokens us-
ing reliable messaging. Tokens are conserved, neither
lost nor duplicated. Tokens are sent whenever a side
sees an observable channel state transition. The ob-
servable channel state is whether the link is seen as
Up or Down. The token-passing part of the protocol
essentiallyis the protocol. Its job is to ensure that a
consistent history is maintained.

� Second, we have the sending and receiving of ping
messages using unreliable messaging. The sole pur-
pose of the pings is to detect when the link can be
consideredUp or Down. This part of the protocol
would not necessarily have to be implemented with
pings, but could be done using other hints from the
underlying system. For example, hardware could give
instant feedback about its view of link status. For
all the proofs to be valid, we must have that atout
is generated when bi-directional communication has
(probably) been lost, and atin is generated when
bi-directional communication has (probably) been re-
established.

The token-passing part of the protocol maintains the con-
sistent history between the sides, and the pings give infor-

mation on the current channel state. The token-passing pro-
tocol can be seen as a filter that takes raw information about
the channel and produces channel information guaranteed
to be (eventually) consistent at both ends of the channel.
The state machine of Figure 4 describes how each side of
the protocol functions in the total system forN = 2.

Below we show the base case: the state machine for a
slack ofN = 2. Although not shown here, the full version
of the paper [9] describes the similar general slack-N state
machine. In Sections 4.1, 4.2, and 4.3 we discuss correct-
ness, bounded slack, and stability for the protocol.

Now we describe the protocol for the base case where
we have slack ofN = 2. This is a significant case since it is
the smallest value of slack for which any such protocol can
work. Its description is hopefully somewhat simpler than
the general case. A state machine as described in Figure 4
runs at each end of the link, at each node.

Intuitively, the state machine of Figure 4 shows the reac-
tion to tout events andT (token-receipt) events by the node
at one end of the communication channel. The number of
tokens currently held ist, and2 � t is then the number of
unacknowledged transitions the node has made. Note that
2� t is at most2, corresponding to the slack bound of two.
The states can be described as follows:

1. Up(t=2): The node is in the stable state. No unac-
knowledged transitions have been made by this node.

2. Down(t=2): The node is catching-up with a transition
seen by the other node that it itself did not see via a
timeout. No unacknowledged transitions have been
made by this node.

3. Down(t=1): The node has seen a time-out and marked
the channel as down. One unacknowledged transition
has been made by this node (Up! Down).

4. Up(t=1): The node has received acknowledgement
(via a received token) for theUp ! Down transition.
One unacknowledged transition has been made by this
node (Down! Up).

5. Down(t=0): The node has seen a time-out and marked
the channel as down, and is now blocked from further
transitions by the bounded-slack constraint. Two un-
acknowledged transitions have been made by this node
(Down! Up! Down).

Each state in Figure 4 is characterized by whether the
node sees the channel asUp or Down, and how many to-
kenst are held by the node. The state transitions are labeled
by theaction triggering the transition, and theaction taken
upon transition. A trigger event is either a timeouttout or
receipt of a tokenT . The action taken is always whether a

Up
t=2

Up
t=1

Down
t=1

Down
t=0

Down
t=2

T: token arrival event
tout: time-out event

t: token count

tout/1

tout/1

T/1

T/1

T/0 T/0T/1

Start

trigger event / token sent

Figure 4. State machine for the connectivity
protocol, slack N = 2.

token is sent (1) or not (0). Note that a tokenT is sent when-
ever a transition for aUp state to aDown state, or from a
Downstate to aUp state is made.

4. Protocol Properties

The proofs of the following three theorems can be found
in the full version of this paper [9].

4.1. Bounded Slack

This theorem is not actually specific to the protocol given
above. A limited subset of the protocol (the token passing
conditions) are sufficient to establish that slack is bounded.

Theorem 1 We take any protocol between two communi-
cating nodes (A and B) with the following characteristics:

1. Each side starts withN tokens.

2. Tokens are never generated or destroyed

3. Tokens are sent exactly when a node decides the chan-
nel has made a change of state (Up ! Down or
Down! Up). In other words, tokens are sent forob-
servable state transitionsof the node.

Any protocol that meets these criteria will have abounded
slackproperty. If we calldA anddB the number of observ-
able state transitions for node A and B, respectively, then

jdA � dB j � N

4.2. Stability

By stability, we mean that the protocol will exhibit finite
response to a physical (timeout) event. We wouldn’t want

a protocol that could repeatedly mark a channel asUp and
Down in response to a single timeout. We require that the
number of channel-state transitions is bounded by the num-
ber of physical timeouts in the system. More specifically,
every timeout causes at most twoU ! D transitions: one
at the side that sees the timeout explicitly, and possibly one
at the peer node.

Theorem 2 For a system comprised of two nodes each run-
ning the state machine of Figure 4 and connected by a bi-
directional communication channel, everyUp ! Down
transition is directly caused by a timeout.

4.3. Correctness

By “correctness” we mean the simplest aspect of cor-
rect behavior: if the channel is down, both sides mark it
as Down, and if the channel is up, both sides mark it as
Up. The correctness requirement eliminates trivial proto-
cols that always mark the channel as eitherUp or Down,
and protocols that would allow themselves to get in a state
where they must keep reporting the channel asUp simply to
satisfy the bounded slack property, despite persistent time-
outs.

Theorem 3 For a system comprised of two nodes each run-
ning the state machine of Figure 4 and connected by a bi-
directional communication channel:

1. Each node will eventually mark the channel as
Up, given that neither side sees timeouts (i.e., bi-
directional communication exists).

2. Each node will eventually mark the channel asDown,
given that both sides see timeouts (i.e., bi-directional
communication does not exist).

5. Conclusions

Our main contributions are the creation of a a simple,
stable protocol for monitoring connectivity that maintains
a consistent history with bounded slack, and proofs that
the protocol satisfies all these criteria. The protocol we’ve
explained provides a mechanism for keeping the reporting
of the channel state between two nodes consistent within
a given slack. Consistency in the reporting of errors such
as link connectivity problems can simplify the writing of
applications acting on such error conditions, improving the
overall reliability of a distributed system. A minimal slack
of N = 2 is necessary for any protocol trying to guarantee
consistency and still reflect the true state of the channel. A
greater value for the slack permits the user of such a pro-
tocol tailor the degree to which the connectivity reporting

truly reflects the current state of the channel at the expense
of how tightly coupled the two nodes’ histories must be.

There exists more work to be done in monitoring net-
work errors in a distributed system. One straightforward ex-
tension is the reporting of connectivity of a clique of nodes.
Such a protocol would tell whether a group of nodes is fully
connected or not, and make the same guarantees of consis-
tent history as the link protocol. Another useful protocol
would be one that reports whether a given node is isolated
from the group. Then, if any single node ever sees itself as
isolated, all other group members also see it as isolated. A
common trait to all these problems is that the decision being
made is abinaryone, for only then can one part of a system
make a decision about a change in statewithout communi-
cating with other components. This is a necessary condition
so that decisions can be made independently, and eventual
consistent history can still be guaranteed.

References

[1] K. P. Birman and B. B. Glade. Reliability through consis-
tency. IEEE Software, 12(3):29–41, May 1995.

[2] K. P. Birman and T. Joseph. Reliable communication in the
presence of failures.ACM Transactions on Computer Sys-
tems, 5(1):47–76, February 1987.

[3] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,
C. L. Seitz, J. N. Seizovic, and W. K. Su. Myrinet: A gigabit
per second local area network.IEEE-Micro, 15(1):29–36,
February 1995.

[4] V. Bohossian, C. Fan, P. LeMahieu, M. Riedel, L. Xu,
and J. Bruck. Computing in the RAIN: A Reliable Ar-
ray of Independent Nodes. Electronic technical report,
http://www.paradise.caltech.edu/papers/etr029.ps.

[5] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest
failure detector for solving consensus.Journal of the ACM,
43(4):685–722, July 1996.

[6] T. D. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems.Journal of the ACM, 43(2):225–
267, March 1996.

[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty process.Journal of
the ACM, 32(2):374–382, April 1985.

[8] G. J. Holzman.Design and Validation of Computer Proto-
cols. Prentice Hall, New Jersey, 1991.

[9] P. S. LeMahieu and J. Bruck. A Consistent History
Link Connectivity Protocol. Electronic technical report,
http://www.paradise.caltech.edu/papers/etr023.ps.

[10] N. Lynch. Distributed Algorithms. Morgan Kaufman, New
Jersey, 1996.

[11] T. L. Rodeheffer and M. D. Schroeder. Automatic reconfig-
uration in autonet. InProceedings of the 13th ACM Sym-
posium on Operating Systems Principles, volume 25, pages
183–197. ACM, October 1991.

[12] T. L. Rodeheffer and M. D. Schroeder. A case study: Au-
tomatic reconfiguration in autonet. In S. Mullender, edi-
tor, Distributed Systems, chapter 11, pages 283–313. ACM
Press, New York, second edition, 1993.

