
Dynamically Scheduling the Trace Produced During Program Execution into
VLIW Instructions

Alberto Ferreira de Souza1 and Peter Rounce
Department of Computer Science

University College London
Gower Street, London WC1E 6BT - UK

a.souza@cs.ucl.ac.uk, p.rounce@cs.ucl.ac.uk

1 Sponsored by CAPES (Brazilian Government Agency).

Abstract
VLIW machines possibly provide the most direct way to

exploit instruction level parallelism; however, they
cannot be used to emulate current general-purpose
instruction set architectures. Programs scheduled for a
particular implementation of a VLIW model cannot be
guaranteed to be binary compatible with other
implementations of the same machine model with different
number of functional-units. This paper describes an
architecture, named dynamically trace scheduled VLIW
(DTSVLIW), which can be used to implement machines
that execute code of current RISC or CISC instruction set
architectures in a VLIW fashion, with backward code
compatibility. Some preliminary performance
measurements of the DTSVLIW, obtained with an
execution-driven simulator running the SPECint95
benchmark suite, are also presented.

1. Introduction

Very Long Instruction Word (VLIW) machines can
execute several scalar operations in a single clock cycle [1].
They have long instructions (hundreds to thousands of
bits), with fields to control each of their many functional
units. These long instructions are fetched from memory,
one per processor clock cycle, and issued to functional
units that operate in parallel. In VLIW machines, the
compiler has complete responsibility for creating a package
of operations that can be simultaneously issued. The
hardware does not dynamically make any decisions about
multiple operation issue, and thus the VLIW hardware is
simple and fast. However, the assumptions built into the
object code by the compiler about this hardware prevent
object code compatibility between different
implementations of the same VLIW instruction set
architecture (ISA). VLIW processors with different levels
of parallelism require recompilation of the source code.
This problem, known as the VLIW object code
compatibility problem, has made VLIW machines of
limited commercial interest [7]. Furthermore, it is not

possible to implement current RISC or CISC general-
purpose machines as a standard VLIW architecture.

This paper presents an architecture, implementing a
concept first proposed by Nair and Hopkins [9], that has
the potential to overcome the VLIW drawbacks and
preserve its advantages. This architecture, named
dynamically trace scheduled VLIW (DTSVLIW) [2], has
two execution engines: the Scheduler Engine and the
VLIW Engine, and two instruction caches: the Instruction
Cache and the VLIW Cache. A block diagram of the
DTSVLIW architecture is shown in Figure 1. The Scheduler
Engine fetches instructions from the Instruction Cache and
executes them singly the first time using simple pipelined
hardware. In addition, it dynamically schedules the trace
produced during execution into VLIW instructions, placing
them as blocks of VLIW instructions in the VLIW Cache. If
the same code is executed again, it is fetched by the VLIW
Engine from this cache and executed in VLIW fashion. In a
DTSVLIW machine, the Scheduler Engine provides for
object-code compatibility, and the VLIW Engine provides
VLIW performance and simplicity.

In order to evaluate the DTSVLIW architecture, a
parametric simulator has been implemented and execution-
driven simulation performed using the SPEC95 benchmark
suite. Experimental results presented here show that the
DTSVLIW executes VLIW instructions on almost 90% of
the cycles on average and achieves significant Instruction
Level Parallelism (ILP).

This paper is organised as follows. In the next section,
related work is discussed. The DTSVLIW machine is fully
described in Section 3. In Section 4, the experimental
methodology and the results of the experiments carried out
to evaluate the DTSVLIW architecture are presented.
Section 5 contains the conclusions and proposals for
future work.

2. Related Work

Existing techniques to get over the VLIW code
compatibility problem can be divided into software [3, 4, 5,
6] and hardware [7, 8, 9] techniques. The simplest software
technique is off-line recompilation of source programs. The
drawbacks of this approach are that it is awkward to use

and the source code may not always be available. Binary
translation [3] is a variant of this technique that can be
performed without the source code, but is also awkward to
use. Alternatively, interpreters can be used to emulate
different architectures at run-time; however, this approach
usually suffers from poor performance. Binary translation
and emulation can be combined [4]. Dynamic
Rescheduling, proposed by Conte and Sathaye [5], is
another software technique. When a program is invoked in
a system that implements dynamic rescheduling, the
operating system reschedules the first program page and
saves it in a new page, which is compatible with the system
hardware. This process is repeated each time a new page
fault occurs. Ebcioglu and Altman [6], with their DAISY
machine, extended the concept of dynamic rescheduling to
dynamic compilation, in order to use a generic ISA.
Dynamic rescheduling and dynamic compilation rely on the
ability of the operating system to translate code rapidly
and on the reusability of this code. However, since it is
implemented in software, the cost of the translation is high.

Rau [7] presented a new type of VLIW machine, named
dynamically scheduled VLIW (DSVLIW), which tackles the
software compatibility problem at the hardware level. A
DSVLIW machine splits each instruction member of a long
instruction (the term used in this paper to refer to a VLIW
instruction) into two components: phase1 and phase2. The
phase1 component is the original instruction with its
destination renamed, while phase2 is a copy instruction
copying the phase2 result to the original destination. Both
instruction components can be issued simultaneously to
functional units’ reservation stations. Once execution of
phase1 finishes, the reservation station with phase2
receives the result. The execution of each original
instruction is completed after the execution of phase2,
which can be done in just one more cycle.

Despite the ability to implement a family of VLIW
machines with different functional units’ latency and the
same ISA, the DSVLIW concept cannot be used to
implement an existent sequential ISA. In addition, it
requires dynamic scheduling hardware in the main data
path of the machine, which can have a negative effect on
the clock period.

Franklin and Smotherman [8] proposed the use of a fill
unit [10] to compact a dynamic stream of scalar
instructions into long instructions: the fill unit accepts
decoded instructions from the machine decoder, compacts
them into a long instruction, and saves the long instruction
in the shadow cache. At the same time, the fill unit sends
the long instruction to the functional units for execution.
Fetch accesses that hit in the shadow cache provide long
instructions directly to the functional units. The fill unit
does not rename registers, resulting in a reduction in the
capacity to deal with output data dependencies, and works
within a window of only one long instruction. For these
reasons it cannot exploit ILP extensively.

Nair and Hopkins [9] suggested a VLIW based
architecture named DIF (Dynamic Instruction Formatting),
which is an improvement of the Franklin and Smotherman
proposal. The DIF architecture incorporates two engines:
the VLIW Engine and the primary engine. The latter is a

simple processor, less aggressive in exploiting parallelism,
which executes instructions when first fetched.
Simultaneously with the execution of a code sequence, this
engine reformats the code, generating groups of long
instructions as opposed to a single long instruction.
Groups are saved in a special cache – the DIF Cache.
Following accesses to the same sequence will hit the DIF
Cache and the long instructions fetched will be executed
for the VLIW Engine.

The DTSVLIW architecture is similar to the DIF and was
developed shortly after it, but without knowledge of its
existence. This was beneficial because permitted a
significantly different implementation. The differences
between then are detailed in Section 3.12.

The DTSVLIW long instruction resembles the tree
instruction introduced by Nakatani and Ebcioglu [11].
However, the DTSVLIW long instruction is particularly
suitable for a VLIW machine that executes scheduled trace
code, while the tree instruction was proposed to hold
VLIW code produced by VLIW compilers. The DTSVLIW
long instruction can be viewed as a special case of the tree
instruction, although it has not been derived from this
approach.

A core scheduling operation performed by the
DTSVLIW, the move up operation (see Section 3.2), is
similar to the move-op with renaming operation of the
enhanced pipeline percolation scheduling technique [11].
However, their application is different, reflecting their

different purposes: move-op was designed for scheduling
during compile time, and move up was designed for
scheduling during execution time. The move-op operation
is applied in a sequential fashion by the compiler; in
contrast, the move up operation is applied here in a
pipelined parallel fashion by the hardware.

Figure 1: The Dynamically Trace Scheduled VLIW Machine.

3. A DTSVLIW Machine

In this section, an implementation of the DTSVLIW
architecture is presented. This implementation executes
SPARC Version 7 ISA [12] code.

3.1 The Scheduler Engine

The Scheduler Engine is composed of the Primary
Processor plus the Scheduler Unit (Figure 1). The Primary
Processor is a simple pipelined processor that is capable of
executing all instructions defined in the SPARC ISA. When

Instruction
Cache

VLIW
Cache

Primary
Processor

Data
Cache

Fetch Unit

VLIW
EngineScheduler

Unit

From
Memory

Scheduling
List

Scheduler
Engine

To/From
Memory

an instruction completes execution, the Primary Processor
sends it to the Scheduler Unit. The Scheduler Unit
implements in hardware a simplified version of the First
Come First Served (FCFS) algorithm, which historically has
been used to statically schedule microcode [13]. We have
chosen this algorithm for three reasons. First, it operates
with one instruction at a time and considers instructions in
the strict order that they appear during program execution,
which perfectly fits the DTSVLIW mode of operation.
Second, the FCFS algorithm produces optimum or near-
optimum scheduling [13]. Finally, the FCFS algorithm is
easy to implement in hardware in a pipelined fashion in the
form it is presented here (see Section 3.5).

for (sum = 0, i = 0; i < x; i++)
{

sum = a[i] + sum;
}

(a)

or r0, 0, r9 # r9 = sum
sethi hi(56), r8 # r8 = temp
or r8, 8, r11 # r11 = *a
or r0, 0, r10 # r10 = 4*i

loop: ld [r10+r11], r8
add r9, r8, r9
add r10, 4, r10
subcc r10, 4*x-1, r0
ble loop
or r0, 0, r0 #nop

(b)

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:

slh-> or r0, 0, r9 sethi hi(56), r8
slt-> or r8, 8, r11

slh -> or r0, 0, r9 sethi hi(56), r8 or r0, 0, r10
 or r8, 8, r11
 ld [r10+r11],

r8
add r10, 4, r10

slt -> add r9, r8, r9 subcc r10, 4*x-
1, r0

slh -> or r0, 0, r9 sethi hi(56), r8 or r0, 0, r10
 or r8, 8, r11 add r10, 4, r32
 ld [r10+r11],

r8
COPY r32, r10 subcc r32,

4*x-1, r0
slt -> add r9, r8, r9 ble loop

slh -> or r0, 0, r9 sethi hi(56), r8 or r0, 0, r10
 or r8, 8, r11 add r10, 4, r32
 ld [r10+r11],

r8
COPY r32, r10 subcc r32,

4*x-1, r0
slt -> add r9, r8, r9 ble loop ld [r10+r11],

r8
(c)

Figure 2: Scheduling algorithm running example. (a) C code
segment. (b) Assembly language version of the C code (c)
Four snapshots of a three instructions wide and four long
instructions deep scheduling list, filled with instructions
coming from the Primary Processor after 3, 8, 9, and 11
cycles of the completion of the first instruction. The shaded
instructions in each snapshot are also candidate
instructions.

3.2 The Scheduling Algorithm

The implemented version of the FCFS algorithm acts on

a list, the scheduling list. This list has a limited number of
elements, each containing one long instruction and a
candidate instruction, which holds an instruction for
scheduling into the long instruction. A broad overview of
the algorithm is that an instruction completing execution
by the Primary Processor is placed at the end of the
scheduling list on the next clock cycle. On each
subsequent cycle it can move up to the next higher element
in the list if: it has not reached the head of the list; there is
space for it in the next element; there is not a dependency
with instructions in next element. Figure 2 shows an
example of the algorithm scheduling a simple segment of
code that adds all elements of a vector. In Figure 2, slh and
slt stand for scheduling list head and tail, respectively, and
the destination register of the instructions is the rightmost.
The scheduling algorithm ignores the nop instruction. The
details of the algorithm’s operation follow.

An instruction finishing execution in the Primary
Processor in one cycle can be inserted into the list in the
next, by placing a copy of it in a candidate instruction and
also in a suitable slot of the corresponding long
instruction. The copy in the long instruction slot is called
the companion instruction and its position in the long
instruction (the slot number) is recorded in the candidate
instruction. If there is no data, control, or resource
dependencies on any instruction in the list’s tail element,
the incoming instruction becomes a candidate instruction
in the list’s tail element; otherwise, the incoming
instruction becomes a candidate instruction in a new tail
element added to the list. In Figure 2b, instructions 1 and 2
are inserted in the first way, while instruction 3 is inserted
in the second way due to a flow dependency on r8 (there is
a flow dependency on instruction i if it reads from any
position written by any instruction j before i).

On clock cycles following the insertion of an instruction
into the end of the list, the instruction and its companion
are moved up as far they can go in the list of long
instructions. An instruction can move up from long
instruction i to long instruction i - 1 if it is not flow
dependent on any instruction in the long instruction i - 1
and there is a suitable slot available. If the instruction
cannot move up, it is installed in long instruction i by
invalidating the candidate instruction and leaving its
companion in long instruction i. In Figure 2, instruction 3 is
installed in the fourth cycle, while instruction 8 is moved
up in the ninth cycle.

The candidate instruction in i can be placed in long
instruction i - 1 even if there is an output dependency on
any instruction in i - 1 (there is an instruction in i - 1 that
writes in a storage position written by the candidate
instruction in i), or an anti dependency on any instruction
in i (there is an instruction in i that reads from a storage
position written by the candidate instruction in i), or a
control dependency on any instruction in i (there is an
conditional branch or indirect branch in i). However, in
such cases, the candidate instruction has to be split. The
split is done by renaming the candidate instruction’s
output that has caused the anti or output dependency, or
all outputs if there is a control dependency, and by
transforming the companion instruction into a copy

instruction and leaving it permanently in the slot it
occupies in long instruction i. This copy instruction
performs the copy of the renaming register (or the
renaming registers) content to the instruction’s original
output (or instruction’s original outputs). In Figure 2,
instruction 7 is split in the ninth cycle.

When there is no free element for an incoming
instruction, the scheduling list is flushed to the VLIW
Cache as a block and the incoming instruction is inserted
into an empty list as the first instruction of a new block.
The list is saved as a block, but on a one long instruction
per cycle basis; nevertheless, instructions can be
continuously inserted into the new block at the same time
as the old block is being saved. This is achieved by making
the scheduling list circular, and by using three registers to
handle it: the scheduling list head register, the scheduling
list tail register, and the output long instruction pointer
register. The scheduling list tail register together with the
scheduling list head register delimits the active elements of
the scheduling list. The output long instruction pointer
register is used to flush the list to the VLIW Cache. All
three are zeroed after the DTSVLIW is reset.

The scheduling list tail register is incremented when
new entries are added to the scheduling list. If the number
of valid elements in the list exceed the block size (a
hardware constant), the list is full. When the list is found
full on inserting a new instruction, the content of the
scheduling list tail register is copied to the scheduling list
head register, which makes the last different from the
output long instruction pointer register and the list empty.
When the output long instruction pointer and the
scheduling list head registers are different at the start of a
cycle, the long instruction that is pointed at by the output
long instruction pointer is sent to the VLIW Cache and the
output long instruction pointer is incremented. These
repeats until the output long instruction pointer register
becomes equal to the scheduling list head register again
and the block has been flushed. As instructions are
inserted into the list at the maximum rate of one instruction
per clock cycle, one action does not interfere with the
other.

3.3 Long Instruction Addresses Generation

Each element in the scheduling list contains two stores
to hold the current and the next long instruction addresses:
the long instruction address store, and the next long
instruction address store. Each of these has an address
field to hold a SPARC ISA address and a line index field to
record the position of the element in the list. When an
instruction is inserted into an empty scheduling list, its
original memory address is copied to the address field of
the element, while the line index field of this long
instruction is zeroed. When instruction insertion causes a
new element to be added to the list, the long instruction
address store of this element receives a copy of the long
instruction address store of the previous tail element with
the line index field incremented modulo of the scheduling
list size. The next long instruction address store of the
previous tail element also receives this long instruction

address. The overall effect of this is that the next long
instruction address store of the last long instruction of a
block points to the first long instruction of the fall-through
block, which happens when inserting an instruction in an
empty list to create the fall-through block. The content of
the long instruction address and next long instruction
address stores are not saved into the VLIW Cache;
instead, a unique next block address is saved for each
block, as detailed next.

3.4 The VLIW Cache

The VLIW Cache is a set associative cache with line
size equal to one block of long instructions. It is tagged
with the SPARC ISA address of the first instruction placed
in the block by the Scheduler Unit. In the VLIW Cache,
each long instruction can be accessed directly by using
addresses in the long instruction address format, with the
line index field of the address choosing the specific long
instruction in the block. An additional feature associated
with each cache line is a next block address (nba) store
with the same format as the long instruction address. The
nba store prevents redundancy of information in the VLIW
Cache. When a long instruction is saved, the address field
of its next long instruction address store is saved in the
address field of nba and the line index field of its long
instruction address store is saved in the line index field of
nba. Thus, each nba store ends up with the address field of
the next long instruction address store of the last long
instruction saved in each block – the address of the fall-
through block – and with the order of the last long
instruction of this block (in the nba line index field). The
nba value is used in the VLIW Engine fetch, as described
next.

3.5 The VLIW Engine

The VLIW Engine of the DTSVLIW has a simple fetch-
execute-write back pipeline (multicycle instructions can
have more than one execute stage) for each functional unit.
A decode stage is not necessary as decoded instructions
are saved in the VLIW Cache. Its program counter (PC) has
the long instruction address format – on a fetch from the
VLIW Cache, the line index field of PC is incremented,
while its address field is left unchanged. On a long
instruction fetch, the nba value associated with the cache
line is fetched as well. If the line index field of PC is equal
to the line index of nba, then, at the end of the cycle, the
content of the address field of nba is copied to the address
field of PC and the line index field of PC is zeroed. These
actions cause the fetch of the first long instruction of the
fall-through block in the following cycle without causing
pipeline bubbles.

All conditional and indirect branches are resolved in the
execute stage of the VLIW Engine. The direction taken by
them during the scheduling, recorded in the VLIW Cache,
is used during the execution to determine a possible
misprediction. If a target is different from that recorded, the
current VLIW fetch is annulled and the address field of PC
receives the new target with its line index being zeroed,

causing a one cycle deep bubble in the VLIW Engine
pipeline.

3.6 DTSVLIW Program Execution Paradigm

In a DTSVLIW machine, the VLIW Engine and the
Primary Processor never operate at the same time and no
machine state has to be transferred between them, as they
share the DTSVLIW machine state. This simplifies the
design of both, even allowing the VLIW Engine to share
register file and data cache’s ports with the Primary
Processor. The cost in cycles of swapping between them is
equal to the sum of a number of pipeline stages of both
processors only (the pipeline stages discarded in one
processor plus the pipeline stages refilled in the other).

While the Primary Processor is executing the code, the
Fetch Unit (Figure 1) issues different addresses to the
Instruction Cache and the VLIW Cache. To the Instruction
Cache is issued the PC contents. To the VLIW Cache is
issued the address of the instruction in the execute stage
of the Primary Processor: if this instruction has executed
before, there may be a block in the VLIW cache. On a
VLIW Cache hit, the VLIW Engine takes over execution.
The block being constructed by the Scheduler Unit is
flushed to the VLIW Cache – this block is made to point at
the hit block. The contents of all but the write back pipeline
stage of the Primary Processor are annulled and PC
receives the memory address that hit the VLIW Cache. In
subsequent cycles, the VLIW Engine controls the PC.

On a VLIW Cache miss, the Primary Processor takes
over execution, fetching from the last PC value computed
by the VLIW Engine. The Fetch Unit does not issue
fetches to the VLIW Cache again until an instruction
arrives at the execute stage of the Primary Processor. At
this point, the Scheduler Unit restarts to schedule a new
block, the address of which will be the last address
produced by the VLIW Engine when executing the
previous block. This connects these blocks forming a
block chain. In steady state, the VLIW Cache contains all
most frequently executed traces.

Figure 3: Scheduler Unit pipeline.

Figure 4: Scheduling list. Rd(i), Td(i), Od(i), Ad(i), and Cd(i)
stand for resource dependency, true data dependency, output
data dependency, anti data dependency, and control
dependency on candidate instruction i, respectively. CRd(i),
CTd(i) and COd(i) stand for resource dependency, true data
dependency and output data dependency on candidate
instruction i caused only by the candidate instruction in
long instruction i - 1, respectively.

3.7 Scheduler Unit Implementation

The Scheduler Unit can be implemented in a pipelined
fashion as depicted in Figure 3. One or more pipeline
stages can be used for inserting instructions into the
scheduling list, each scheduling list entry can be made a
pipeline stage, and none, one or more pipeline stages can
be used for saving the scheduled long instructions into the
VLIW Cache.

The checking operations required on the scheduling list
on each clock cycle are just comparison operations
between each candidate instruction and the instructions in
the current and next element of the list. Each check
operation is independent. However, the decision to install,
split, or move up a candidate instruction may depend on a
chain of decisions as long as the scheduling list.
Nevertheless, the information necessary to each one can
be gathered in a way similar to carry propagation in carry-
lookahead adders, and the logic required can be made as
fast as an and-or gate delay. It can be proved with the help
of Figure 4.

In Figure 4, the value of CRd(i), CTd(i), COd(i), Rd(i),
Td(i), Od(i), Ad(i), and Cd(i) for each element i of the list (0
< i < block size – 1) is available at the beginning of each
clock cycle after the comparators delay (xor gate delay).
Invalid candidate instructions never produce CRd(i),
CTd(i), or COd(i) signals. Valid candidate instructions
could influence the Rd(i), Td(i), Od(i), and Ad(i) signal
values; for this reason, their companion position is used
for disabling the comparators associated with the slot
where the companion instruction is. CRd(i) is also disabled
if there is more than one slot available in i - 1 for candidate
instruction i.

Let us analyse the installing case first. A valid
candidate instruction must be installed on true
dependencies or resource dependencies. So, if Td(i) is true
there is an instruction already installed in long instruction i
- 1 causing a true dependency on the candidate instruction
i. In this case, the candidate instruction in i must be
installed. If only CTd(i) is true one cannot tell whether or
not the candidate instruction should be installed, because
the candidate instruction in i – 1 might move up in this
cycle. The same can be said about Rd(i) and CRd(i) signals.
Nevertheless, using the position of the candidate
instruction in the list, which is recorded in the line index
field of the long instruction address store of the long
instruction, an install signal can be computed for each
candidate instruction in the scheduling list as follows:

install signal =
(i⊗0)+
(i⊗1).(Td(1)+Rd(1)+CTd(1)+CRd(1))+
(i⊗2).(Td(2)+Rd(2)+{CTd(2)+CRd(2)}.{Td(1)+Rd(1)+CTd(1)+CRd(1)})+
(i⊗3).(Td(3)+Rd(3)+{CTd(3)+CRd(3)}.

 {Td(2)+Rd(2)+[CTd(2)+CRd(2)].[Td(1)+Rd(1)+CTd(1)+CRd(1)]})

The equation above represents the logic necessary to

compute the install signal for a DTSVLIW machine with a
block size equals 4. The rule to produce equations for
bigger blocks is easily deduced by visual inspection. The
operator “⊗” means binary vector comparison: (i⊗x)
evaluates to true if i is equal to x. The operator “+” means
logic or, and the operator “.” means logic and.

When the line index field of the list element containing
the candidate instruction i is equal to zero, the first line of
the equation evaluates to true and, consequently, the
install signal becomes true. This implements the first rule

op in out op in out op in outop in out …

scheduling list entrycandidate instruction

Td(i)
comparators

Od(i)

Ad(i)

long
inst. i

CTd(i)

COd(i)

Rd(i)CRd(i)

Cd(i)

for installing a candidate instruction, i.e., if the candidate
instruction is in the head of the scheduling list it is
installed. If i is equal to 1, only the second line of the
equation can evaluate as true. In this case, i will be
installed if there is an true dependency on any instruction
installed in long instruction i - 1 (the head of the list), or
there is not a slot available in this long instruction, or there
is a true dependency or resource dependency on a valid
candidate instruction in this long instruction. For i greater
than 1, the information from lower order list elements is
added to each equation line as shown.

A split signal can be computed for each candidate
instruction in the scheduling list of a DTSVLIW machine
with a block size equals 4 as follows:

split signal =
(i⊗1).(Od(1)+Ad(1)+Cd(1)+COd(1))+
(i⊗2).(Od(2)+Ad(2)+Cd(2)+COd(2).{Td(1)+Rd(1)+CTd(1)+CRd(1)})
(i⊗3).(Od(3)+Ad(3)+Cd(3)+COd(3).{Td(2)+Rd(2)+[CTd(2)+CRd(2)].

 [Td(1)+Rd(1)+CTd(1)+CRd(1)]})

Again, the rule to produce equations for bigger blocks

is easily deduced by visual inspection. It is important to
observe that part of this equation comes from the previous
one. This is so because an output dependency caused by
COd(i) generates a split signal only if the candidate
instruction in element i - 1 of the scheduling list is going to
be installed.

If the install and the split signals are both true the
respective candidate instruction is only installed. If the
candidate instruction is not going to be installed or split, it
is moved up.

The install and split signal generation is the most
complex operation performed by the Scheduler Unit, and its
complexity is governed by the block size. Since the logic
necessary for generating these signals is equivalent in
complexity to the logic for an adder and a block of 32 long
instructions is a large block, the Scheduler Unit design
does not pose constraints on the cycle time of a 32-bit or
more DTSVLIW machine.

3.8 Control-Transfer Ins tructions Handling

During scheduling, one or more control-transfer
instructions can be placed in a single long instruction, but
they cannot move up (their order is preserved). Control
dependencies are caused only by conditional and indirect
branch (subroutine return is a special case of this) and
they do not impede scheduling beyond basic blocks.
Instructions can cross basic block limits imposed by
conditional and indirect branches via splitting.

The VLIW Engine can only execute instructions placed
in a long instruction that already has conditional or indirect
branches if these branches follow the direction observed
during scheduling. A tag system is used to make this
possible. When such a branch is placed it establishes a
branch tag. New instructions placed in the same long
instruction receive this tag. If a new conditional or indirect
branch is placed in the same long instruction, it receives
the old tag and establishes a new one for following
instructions. During execution, the VLIW Engine evaluates

the conditional and indirect branches of the long
instructions and validates their tags. Only instructions
with valid tags have their results written in the machine
state.

Speculative execution is implemented by splitting
instructions and moving up their first part past conditional
or indirect branches, leaving the copy part behind. If a
conditional or indirect branch does not follow the same
direction during execution the copy part of the split
instruction will not be executed, not committing the
corresponding instruction. To avoid the generation of
exceptions from not-committed instructions, exception
information is saved in the renaming registers and
considered only at the execution of the copy instructions.

Conditional branch instructions read the conditional
code register (the flags), which is written by many different
instructions. Output and anti data dependencies caused by
this register are tackled as other dependencies of these
kinds. The VLIW Engine has many conditional code
registers; therefore, instruction splitting can be used to
avoid these dependencies.

3.9 Specifics of Instruction Handling

No-operation and Unconditional branch instructions are
ignored and not placed in the scheduling list.

Load and store instructions can be split and moved up
by the scheduling algorithm without restrictions with the
following dependency testing: memory addresses are
compared with addresses of other load/store instructions,
but only registers of other instructions. Memory renaming
registers provide for the renaming of memory positions.
Load/store address aliasing is discussed in Section 3.10.

Save and restore instructions, which deal with the
register windows of the SPARC ISA [12], are scheduled as
any other integer instruction. To make it possible, the
value of the cwp (current window pointer) register, which
is used for computing the address of the physical integer
registers, accompany the instructions to the scheduling list
and VLIW Cache.

Non-schedulable instructions are a number of
instructions of the SPARC ISA that are not executable by
the VLIW Engine, but must always be executed by the
Primary Processor because they are too complex for the
VLIW Engine handle. When such an instruction is sent to
the Scheduling Unit, it flushes the scheduling list to the
VLIW cache. Thus trap, return from trap, co-processor
handling, and load/store instructions that perform I/O
operations or provide support for cache coherence and
multiprocessing are non-schedulable instructions.

Multicycle instructions require more than one cycle for
their execution and are scheduled in a particular way by the
Scheduler Unit. The scheduling of multicycle instructions
is not described here due to space constraints but has
been publis hed elsewhere [14].

3.10 Memory Aliasing Detection

Memory aliasing [1] can occur, as the memory address
observed during scheduling is not necessarily the same

during VLIW execution. To detect memory aliasing and
generate memory aliasing exceptions during VLIW
execution, load and store instructions receive two extra
fields when they are scheduled: the order and the cross bit
fields. The order field receives the load/store insertion
order, which is copied from the load/store order counter.
This counter is zeroed every time the scheduling list is
found empty and is incremented every time a load/store is
inserted into the scheduling list. The cross bit field is set in
the load/store when it is placed in a long instruction
containing a store or a memory copy instruction generated
from a store split.

The VLIW Engine keeps a store list and a load list.
During VLIW execution, loads and stores with cross bit set
have their addresses and order fields stored in these lists.
Load instructions executed in VLIW mode have their
addresses associatively compared with the store addresses
in their long instruction and all store addresses in the store
list. On an address match, if the order field of the load is
smaller than the order field of the corresponding store, an
aliasing exception is signalled. The store instructions
executed in VLIW mode have their addresses associatively
compared with the load and store addresses in the same
long instruction and all load and store addresses in the
load and store lists. On an address match, if the order field
of the store is smaller than the order field of the
corresponding load/store, an aliasing exception is
signalled.

3.11 Exception Handling

The DTSVLIW implementation presented here uses the
Checkpointing exception handling mechanism, proposed
by Hwu and Patt [15]. Checkpointing occurs at the
beginning of the execution of each block of long
instructions, when all registers that make up the SPARC
ISA state are saved in shadow registers. Store instructions
executed in the block cause the data they overwrite in the
Data Cache to be saved in the checkpoint recovery store
list. This list contains the address, data overwritten, and
data type.

If the VLIW Engine detects an exception during the
execution of a block, the Scheduler Engine enters a
recovery mode of execution. In this mode, registers receive
the values stored in the shadow registers, each entry of the
checkpoint recovery store list is written back into the Data
Cache, and the load and store lists are emptied. If the
exception detected is an aliasing exception, the VLIW
Cache entry containing the block that caused the exception
is invalidated. Execution is then resumed.

For an aliasing exception, execution resumes in normal
trace mode and the block that has caused it is scheduled in
a way that prevents new aliasing exceptions: data
dependencies keep load/stores in a new order inside the
block, different from before. For other exceptions,
execution resumes in exception mode until the exception
repeats, from which point the operating system handles the
exception. In exception mode only the Primary Processor
operates.

The scheme described for dealing with store

instructions is not the only one that would work with the
DTSVLIW. An alternative scheme make the stores write
into a data store list as oppose to the Data Cache, and the
checkpoint recovery store list is not used. The data store
list contains the address, data, data type, and the order
field of store instructions. This list works as a queue for
incoming store data. Nevertheless, the order field can be
used to transfer this data to the Data Cache in order, which
can be useful when using the DTSVLIW for applications
requiring intensive in order memory or I/O writing – in the
previous scheme the Primary Processor has to handle in
order data store. Data is only transferred from the data
store list after the block containing the respective store
instructions have finished without exceptions. In case of
an exception, data generated in the block where the
exception is detected is annulled. Load instructions read
from the Data Cache and from the data store list at the
same time, and use the last data stored in the list on a list
hit. This scheme has not been used as it is much harder to
implement in a simulator, and its advantages need to be
identified through further research.

3.12 Differences Between DTSVLIW and DIF

The DTSVLIW architecture differs from the DIF
architecture in the organisation of the cache used by the
VLIW Engine, in its scheduling algorithm, in its register
renaming, and in the VLIW Engine register access
mechanism.

The unit of communication between the DIF cache and
its VLIW Engine is an entire block of long instructions,
whereas the DTSVLIW machine accesses one long
instruction per VLIW Cache access. It is believed that this
should simplify the VLIW Cache implementation.

A DIF machine schedules instructions using a hardware
table, which has as many entries as resources in the
machine and records the earlier long instruction in which
each resource is available. Its proposed scheduler
implements the greedy algorithm, by checking all resources
necessary for each new instruction against this table, and
scheduling the instruction in the earliest long instruction
possible. The DTSVLIW uses a simplified pipelined
version of the First Come First Served Algorithm, which
operates over a list of long instructions. An instruction has
only to be checked for dependencies against other
instructions in its current and next position in the list, as
opposed to all resources available in the machine.

A DIF machine has a number of instances of each ISA
register and extra bits are added to each register specifier
to specify the register being used during VLIW execution.
A register-mapping table is used to access the current ISA
register set. Register renaming is implemented by
specifying the extra bits during scheduling and by copying
the new register mapping (the exit map) to the table every
time the execution leaves a block. Each exit point of a block
(all branches and the final VLIW instruction) has to carry
its own exit map, consuming a significant amount of DIF
Cache space. The DTSVLIW splits instructions with the
purpose of renaming registers to overcome data and
control dependencies. The copy instructions generated are

simpler to handle than mapping tables and do not use extra
VLIW Cache space.

The DIF VLIW Engine accesses its register file
differently to the DTSVLIW. It has to translate each
register specifier to access the register file during VLIW
execution because of its renaming mechanism – this
translation is in the data path of the DIF VLIW Engine. A
DTSVLIW machine does not have to do this as it accesses
the register file directly.

Table 1: Fixed Parameters

Primary Processor • four-stage (fetch, decode, execute, and
write back) pipeline

• no branch prediction hardware
• not-taken branches cause a 3 cycle bubble

in the pipeline
• instructions following a load, requiring

the data loaded cause a one-cycle bubble
in the pipeline

Decoded Instruction Size 6 bytes
Instruction Latency 1 cycle
VLIW Engine List Sizes load = store = checkpoint recovery store =

unlimited
N. of Renaming Registers integer = f.p. = memory = flags = unlimited
Scheduler Unit Pipe inserting/splitting and moving up/saving =

1/block size/1 stages

Table 2 Benchmark programs

Benchmark Input

compress 400000 e 2231
gcc -O3 jump.i
go 40 19 null.in
ijpeg vigo.ppm –GO
m88ksim dhry.big
perl primes.pl
vortex vortex.in
xlisp queens 7

4. DTSVLIW Experimental Evaluation

A simulator of the DTSVLIW has been implemented in
C (21K lines of code), and execution-driven simulation
performed to produce the results reported here. All results
were produced with the simulator running in test mode in
order to guarantee correct simulation. Test mode puts two
machines to run together: the DTSVLIW and a test
machine with the same characteristics of the Primary
Processor of the DTSVLIW. The DTSVLIW starts first, and
every time an instruction or a block of long instructions is
completed, the simulator switches to the test machine,
which runs until its PC becomes equal to the DTSVLIW
PC. The SPARC ISA state of both machines is compared
and, if not equal, an error is signalled and the simulation
interrupted. The test mode has been very useful for
experimental evaluation, because in this mode it is possible
to measure the precise number of instructions necessary
for the sequential execution of a program, which the test
machine can provide. A DTSVLIW simulator alone cannot

provide this number due to copy instructions and
instructions executed speculatively.

The simulator receives as input binary executable
programs generated by the gcc compiler and faithfully
models the execution performed by the DTSVLIW machine
described. Model parameters that are invariant for
simulations are shown in Table 1, while the benchmark
programs used in the experiments – the SPECint95
benchmark suite – and their input sets are shown in Table
2. Each program was run for 50 million or more instructions
each experiment, as counted by the test machine.

Figure 5: Variation of parallelism with the block size and
geometry

4.1 Effect of the Block Size and Geometry

Figure 5 shows the effect of the block size (in number of
instructions) and block geometry (instructions per long
instruction (width) versus long instructions per block
(height)) on performance. To ensure the absence of
extraneous effects, the experiments leading to the results in
this figure were performed with perfect instruction and data
caches (no miss penalty), large VLIW Cache (3072-Kbyte),
and no next long instruction miss penalty. The numbers in
the legend are instructions per long instruction and long
instructions per block, respectively. The instruction per
cycle performance measurement index used in Figure 5 and

throughout this section has been produced dividing the
number of instructions necessary to execute the program,
as counted by the test machine, by the number of cycles
consumed by DTSVLIW execution.

As the graph shows, the performance of machines with
the same block sizes and different geometry is significantly
different. For example, the performance of a machine with
4x8 configuration is lower than the machine with 8x4
configuration for all benchmark programs. The block width
and height affect the cost of implementing a DTSVLIW
machine in different ways. Large long instructions imply
many functional units, data cache ports, and register file
ports. Large numbers of long instructions in a block imply
many renaming registers, and long load/store and
checkpoint recovery store lists. To increase just the width
or just the height of the block does not appear to be the
best approach to achieve cost/effective performance – a
DTSVLIW with 8x8-block geometry performs better than
machines with 4x16 and 16x4 geometry in the majority of

0
0.5

1

1.5
2

2.5
3

3.5
4

compress gcc go ijpeg m88ksim perl vortex xlisp

In
st

ru
ct

io
n

s
p

er
 C

yc
le

48 96 192 384 768 1536 3072

0

0.5

1

1.5

2

2.5
3

3.5

4

compress gcc go ijpeg m88ksim perl vortex xlisp

Benchmark

In
st

ru
ct

io
n

s
p

er
 C

yc
le

96 1 96 2 96 4 96 8
384 1 384 2 384 4 384 8

0

1

2

3

4

5

6

7

8

compress gcc go ijpeg m88ksim perl vortex xlisp

In
st

ru
ct

io
n

s
p

er
 C

yc
le

4 4 4 8 8 4 4 16 8 8 16 4 8 16 16 8 16 16

the SPECint95 benchmarks. The DTSVLIW benefits from
large block sizes but not linearly. A 16-fold increase in the
number of instructions of a block (from 4x4 to 16x16) does
not quite double its performance.

The performance of the 16x16 configuration on the ijpeg
benchmark is extraordinary and has been investigated.
This benchmark spends most of its execution in one loop.
With a large enough block size, more than one iteration of
the loop can be scheduled into a single VLIW block,
allowing instructions from these iterations to be
overlapped, extracting much greater parallelism.

Figure 6: Variation of the parallelism with the VLIW Cache
size

4.2 Effect of VLIW Cache Size

The results of Figure 5 represent the highest achievable
SPECint95 performance of this DTSVLIW implementation.
When the VLIW Cache is smaller the performance is
expected to be lower because of premature flushing of
useful scheduled blocks by replacement blocks, leading to
the need to rebuild flushed blocks, which requires the
Primary Processor to run, reducing parallelism. Figure 6
shows the impact of different VLIW Cache sizes (in
Kbytes) on the performance of a DTSVLIW machine with
8x8 geometry. The associativity is the same for all sizes and
equal to 4. As the graph shows, some benchmark programs
do not demand a large VLIW Cache size in order to exploit
the performance of the DTSVLIW. The benchmarks
compress, ijpeg, and xlisp have small instruction working
sets, and thus, they are very insensitive to the VLIW
Cache size, achieving the same performance for a wide
range of sizes. However, go, which has a large working set,
would appear to benefit from a VLIW Cache larger than
3072-Kbyte.

Figure 7: Variation of parallelism with VLIW Cache
associativity

4.3 Effect of VLIW Cache Associativity

Figure 7 shows the effect of the VLIW Cache
associativity on the performance of the DTSVLIW. Two
cache sizes are presented: 96-Kbyte and 384-Kbyte, and
the associativity is varied from 1 to 8. The figure shows
that ijpeg is insensitive to the VLIW Cache associativity in

this range; however, m88ksim, perl, xlisp, and compress (for
the 96-Kbyte cache) benefit from extra associativity. From
Figure 6 and Figure 7 it is possible to infer that a two- or
four-way set-associative 384-Kbyte cache appears to be a
cost/effective solution for a DTSVLIW with 8x8-block
geometry.

Figure 8: Performance of a feasible DTSVLIW machine

4.4 A Feasible DTSVLIW Implementation

As presented here, the DTSVLIW architecture permits
straightforward implementation using current VLSI
technology if reasonable design parameters are used. So
far, the results presented have been produced under ideal
assumptions to allow appreciation of individual
architecture parameters. The graph in Figure 8 presents the
performance of a DTSVLIW machine with a set of
parameters closer to an implementation using available
technology. These are a 32-Kbyte 4-way set-associative

Instruction Cache and a 32-Kbyte direct-mapped Data
Cache both with 1 cycle access and 8 cycle miss latency.
The second level cache is considered to be perfect. The
VLIW Cache is a 192-Kbyte 4-way set-associative cache
with 1 cycle access. The VLIW Engine has 1 cycle next
long instruction miss penalty and ten non-homogeneous
functional units: 4 integer, 2 load/store, 2 floating-point,
and 2 branch units. All functional units have 1 cycle
latency, which is a low latency for load/store and floating-
point functional units (the SPARC 7 ISA does not have
integer divide or multiply, but multiply-step only).
However, this latency was used for this experiment
because the benchmarks are integer and the Data Cache is
direct-mapped. The number of entries of the VLIW Engine
lists (load, store, and checkpoint recovery store) and the
number of renaming registers were left unlimited, since the
present version of the simulator does not put constraints

Table 3: Performance and resource consumption of a feasible DTSVLIW machine

compress gcc go ijpeg m88ksim perl vortex xlisp Average

Instructions per Cycle 2.05 1.69 1.53 2.94 2.61 2.58 2.20 2.28 2.24
Integer Renaming Registers 13 17 17 12 15 14 16 13 14.63
F. P. Renaming Registers 6 4 1 0 0 5 0 0 2.00
Flag Renaming Registers 8 13 11 7 9 9 9 9 9.38
Memory Renaming Registers 6 6 6 3 4 5 7 4 5.13
Load List Size 6 8 8 4 8 6 8 6 6.75
Store List Size 8 8 9 4 7 8 8 7 7.38
Checkpoint Rec. Store List
Size

16 24 21 10 13 24 24 18 18.75

Aliasing Exceptions 0 0 1 0 1 8 0 0 1.25
VLIW Engine Execution
Cycles

99.95% 65.40% 71.51% 99.97% 98.77% 92.99% 79.69% 99.24% 88.44%

0

0.5

1
1.5

2

2.5

3

3.5

compress gcc go ijpeg m88ksim perl vortex xlisp

Benchmark

In
st

ru
ct

io
n

s
p

er
 C

yc
le

DTSVLIW DIF

on their growth. Nevertheless, the maximum numbers
required during the simulation were measured and are
shown in Table 3 together with other information.

As the graph in Figure 8 shows, the shortage of slots in
long instructions, Data Cache misses, and next long
instruction misses are the principal contributors to the
reduction of this DTSVLIW machine performance.
Instruction Cache misses impose low impact on the
performance, thus, this cache could be made smaller than
described. Table 3 shows that the number of renaming
registers are within a range that does not cause significant
cycle time increase due to register file size. The lists
maintained by the VLIW Engine do not reach unacceptable
sizes either, and can be implemented without imposing
extra penalty on the cycle time. However, as the number of
aliasing exceptions is very low, a cheaper aliasing
exception detection and recovery mechanism is advisable.
The percentage of valid instructions inserted into the
blocks saved in the VLIW Cache was measured. As
depicted in Table 3, the Scheduler Unit takes up only 33%
of the slots available on average. This results in poor
utilisation of the VLIW Cache. The use of multicycle long
instructions is a possible way to overcome this problem.

An average performance of 2.24 instructions per cycle
for a machine with 10 functional units appear to be low;
however, experiments with the PowerPC 620, an aggressive
superscalar machine with 6 functional units, have shown
an average of 1.2 instructions per cycle only [16]. Taking in
consideration that a DTSVLIW can be implemented with
high-speed clock due to its VLIW-like simplicity, it appears
to be worth a DTSVLIW implementation. Simple machines
with fast clock have proved to be more powerful than their
more complex counterparts [17].

Figure 9: Comparison between DTSVLIW and DIF

4.5 Comparison between DTSVLIW and DIF

Figure 9 shows a comparison between a DTSVLIW and
a DIF machine. The performance data of the DIF machine
and the parameters used for both machines have been
collected from [9]. The parameters were: 2 branch units
plus four homogeneous functional units; 2-way set-
associative Instruction Cache with 128-byte lines and 16
lines per set (4-Kbyte), 2 cycle miss penalty; a direct-
mapped Data Cache with 128 lines each of length 32 bytes
(4-Kbyte), and a 2-cycle miss penalty; a two way set
associative VLIW Cache with 512x2 blocks; and a block
size of 6 long instructions of 6 instructions each.
Assuming an instruction size of 6 bytes for both machines,
the DTSVLIW VLIW Cache size becomes 216-Kbyte and
the DIF VLIW cache size 463-Kbyte. The DIF VLIW cache
is bigger due to the DIF register renaming system; for each
block exit point (there is one exit point for each branch in
the block and one in the end of the block) the DIF machine
requires 19-byte for the exit map [9]. The number of
renaming registers is different for the same reason. Four
instances of each integer and floating point registers were

required in the DIF simulation, or 96 integer and 96 floating
point extra registers for renaming, while the maximum
number of integer and floating point renaming registers
required for the DTSVLIW was 18 and 6.

As the graph in Figure 9 shows, the average
performance of the two machines is similar: 2.4 instructions
per cycle for the DTSVLIW and 2.2 for DIF; a difference of
approximately 9% in favour of DTSVLIW. DIF performs
better in compress and xlisp, while DTSVLIW performs
better in the remaining benchmarks. These results must be
seen with caution though, because the experiments carried
out with the DIF implementation have used a trace
simulator based in the PowerPC ISA, running the
benchmarks with possibly different inputs and compiled
with different compiler with possibly different compiler
flags. Nevertheless, a similar performance between the two
machines was expected, since both implement the same
concept, although in different ways.

5. Conclusion and Future Work

This paper presents an implementation of an
architecture named the dynamically trace scheduled VLIW
(DTSVLIW). This can be used to implement machines that
execute code of current RISC or CISC ISA in a VLIW
fashion, delivering instruction level parallelism with
backward code compatibility. The architecture takes
advantage of the repetitive and localised pattern of
instruction fetch addresses in current programs. Using the
proposed architecture, the first time that a code segment is
executed, it is scheduled into long instructions and saved
in a VLIW Cache. In subsequent executions, a VLIW
Engine executes it in a VLIW fashion.

A DTSVLIW simulator has been implemented,
parameterised, and instrumented. The effect of some
architectural parameters on its performance has been
evaluated using this execution-driven simulator running
the SPECint95 benchmark suit. The DTSVLIW performance
is basically similar to that of the DIF, but it is achieved with
fewer hardware resources: 18 integer and 6 FP renaming
registers in the DTSVLIW simulation, 96 integer and 96 FP
in the DIF; 216-Kbyte DTSVLIW VLIW Cache, 463-Kbyte
DIF VLIW cache. As detailed in Section 3.7, the core logic
of the Scheduler Engine is straightforwardly to implement,
being comparable to an adder, and as such seems to be
much more feasible than that of the DIF.

The Primary Processor and the VLIW Engine in the
DTSVLIW can have high clock rates. The simplicity of the
scheduling algorithm in the DTSVLIW means that a similar
high clock rate should be achieved in an implementation of
the Scheduler Unit, leading to an overall clocking rate
similar to, if not higher than, high clock rate superscalar
architectures, but achieving much higher ILP.

The DTSVLIW architecture opens several new avenues
of research. Next long instruction prediction, new VLIW
Cache organisations and new exception handling
mechanisms are just a few examples that will be
investigated in future work.

6. References

0

0.5

1

1.5

2

2.5

3
3.5

4

compress gcc go ijpeg m88ksim perl vortex xlisp

Benchmark

In
st

ru
ct

io
n

s
p

er
 C

yc
le FU Cost

Inst Cache Cost

Data Cache Cost

Next LI Miss Cost

ILP

[1] J. A. Fisher, “The VLIW Machine: A Multiprocessor for
Compiling Scientific Code,” IEEE Computer, pp. 45-53, July
1984.
[2] A. F. de Souza and P. Rounce, “Dynamically Trace Scheduled
VLIW Architectures,” Lecture Notes on Computer Science, Vol.
1401, pp. 993-995, April 1998.
[3] R. L. Sites, A. Chernoff, M. B. Kirk, M. P. Marks, and S. G.
Robinson, “Binary Translation,” Communications of ACM, Vol.
36, pp. 69-81, February 1993.
[4] J. Turley, “Alpha Runs x86 Code with fx!32,”
Microprocessor Report, Vol. 10, March 1996.
[5] T. M. Conte and S. W. Sathaye, “Dynamic Rescheduling: A
Technique for Object Code Compatibility in VLIW
Architectures,” Proc. of the 28th Ann. Int. Symp. on
Microarchitecture, pp. 208-218, 1995.
[6] K. Ebcioglu and E. R. Altman, “DAISY: Dynamic
Compilation for 100% Architectural Compatibility,” Proc. of the
24th Ann. Int. Symp. on Computer Architecture, pp. 26-37, 1997.
[7] B. R. Rau, “Dynamically Scheduled VLIW Processors,” Proc.
of the 26th Ann. Int. Symp. on Microarchitecture, pp. 80-92,
1993.
[8] M. Franklin and M. Smotherman, “A Fill-Unit Approach to
Multiple Instruction Issue,” Proc. of the 27th Ann. Int. Symp. on
Microarchitecture, pp. 162-171, December 1994.
[9] R. Nair and M. E. Hopkins, “Exploiting Instructions Level
Parallelism in Processors by Caching Scheduled Groups,” Proc.
of the 24th Ann. Int. Symp. on Computer Architecture, pp. 13-25,
1997.
[10] S. Melvin, M. Shebanow, and Y. Patt, “Hardware Support
for Large Atomic Units in Dynamic Scheduled Machines,” Proc.
of the 21st Ann. Int. Symp. on Microarchitecture, pp. 60-66,
1988.
[11] T. Nakatani and K. Ebcioglu, “Making Compaction-Based
Parallelization Affordable,” IEEE Transactions on Parallel and
Distributed Systems, Vol. 4, No. 9, pp. 1014-1029, 1993.
[12] Sun Microsystems, “The Sparc Architecture Manual –
Version 7,” Sun Microsystems Inc., 1987.
[13] S. Davidson, D. Landskov, B. D. Shriver, and P. W. Mallett,
“Some Experiments in Local Microcode Compaction for
Horizontal Machines,” IEEE Transactions on Computers, Vol.
C-30, No. 7, pp. 460-477, July 1981.
[14] A. F. de Souza and P. Rounce, “Effect of Multicycle
Instructions on the Integer Performance of the Dynamically
Trace Scheduled VLIW Architecture,” to be published in the
Proceedings of High-Performance Computing and Networking’
99 – HPCN’99, 1999.
[15] W. W. Hwu, and Y. N. Patt, “Checkpoint Repair for Out-
of-order Execution Machines,” Proc. of the 14th Ann. Int. Symp.
on Computer Architecture, pp. 18-26, 1987.
[16] D.A Patterson, and J. L Hennessy, “Computer Architecture:
A Quantitative Approach, Second Edition,” Morgan Kaufmann
Publishers Inc., 1996.
[17] J. E. Smith, and S. Weiss, “PowerPC 601 and Alpha 21064:
A Tale of Two RISCs,” IEEE Computer, June 1994.

