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Abstract

Classical mesh partitioning algorithms were designed

for rather static situations, and their straightforward ap-

plication in a dynamical framework may lead to unsatis-

Jactorv results, e.g., excessive data migration among pro-
ce._sors. Fur,l, ecmore, special attention should be paid to

titeir amenability to parallelization. In this paper, a novel

parallel method for the dynamic partitioning of adaptive
unstructured meshes is described. It is based on a linear

representation of the mesh using self-avoiding walks.

i. introduction

The three biggest issues in the parallel implementation

of adaptive unstructured grid applications are runtime parti-

tioning, mapping, ,and data loc_ity. However, it is generally

believed that graph partitioning is no longer the bottleneck

but data remapping is (see Ill). This is because very pow-

erful general-purpose graph partitioning methods have been

developed over the last decade (see [2]). Why then do we

propose yet another new partitioner? This is because an in-
timate relationship exists between the three big issues, ,and

resolving one in an optimal fashion does not automatically

imply the same for the otl_ers. Determining a new "'opti-

mal" pm-titioning at runtime can be done very rapidly, but
what is the cost for moving around a lot of data accord-

ingly? Effective teclmiques for a better exploitation of data

loctdity l_ased on space-filling curves [7] have been success-

fully applied in the runtime partitiolung for N-body simu-
lations and fitlite element methods (FEM). The expectation

that the serialization inherent in such curves would elim-

inate the partitioning and mapping problem did not com-

pletely live up to, primarily because of the difficulties in
their construction for non-simply connected domains. On

the other hand, partitioners do not necessarily prcscrvc in

their repartitioning structures what have to be established
for the exploitation of locality. Thus, there is a clear need

for a unifying framework.

A key consideration for efficient runtime partitioning is

the reuse of existing partition information. We suggest a

novel concept which should allow a much faster deforma-

tion of partition boundaries than diffusive methods, and

which does not require any post-partitioning smoott_ing op-

eration. Furthermore, it takes into account the linearization

of partitions by self-avoiding walks (see [4]). Our approach
views the mesh as a graph, but also as determined by the

structure of the underlying physical domain, thereby link-

ing the three main issues to mesh generation.
In the following sections, we first sketch the theoretical

background and then discuss some algorithmic aspects of
the constructions involved. In view of its capabilities for

automatic task migration and the very fine-grained synchro-
nization structure of the algorithms, a parallel implementa-

tion using a system supporting multithreading [5] seems to

be the most promising approach.
In Section 2, we sketch a lineaxization technique based

on self-avoiding walks. In Section 3, we develop a new par-

titioning method that is suitable for runtime purposes and

which respects our linear representation of meshes.

2. Self-Avoiding Walks

Consider an arbitrary two-dimensional mesh J_. A selJ:

avoiding walk (SAW) over J_ is an enumeration of the tri-

angles of M such that two trim_gles following one another
in a walk, stutre tm edge or a vertex. Note that an SAW vis-

its each triangle exactly once. Since we allow consecutive

triangles to share either an edge or a vertex, this is not a
Htu'niltonim_ Cycle problem on the du_d graph. In fact, the

non-Hamiltonicity of the du_ds of simple meshes forces us

to relax certain assumptions. An SAW "'enters" a given tri-

angle over art edge or a vertex, trod "'leaves'" it over another



Figure 1. An example of an SAW.

Figure 2. Space-filling curves for uniformly-

refined and adaptively-refined triangulations.

edge or vertex. In the cases where tim SAW jumps over ver-

tices, we imply that the triangles following one another do

not share an edge.

Intuitively, walks going only over edges show better lo-

cality. Since we want to stay away from the problem of

Hamiltonicity, we make a weaker assumption about the be-
havior of the SAWs which however excludes cases of ex-

treme non-locality. In the following, we consider a special

class of SAWs which we call proper self-avoiding walks

(PSAW). A PSAW is an SAW where for any three triangles

tbUowing one another in the walk, we do not allow jumping

twice over the same vertex. (The SAW shown in Fig. 1 is

proper.) The precise statement of the problem, the overall

machinery, and proofs for the proposition formulated be-

low can be found in [4]. The reference also contains some

performance results for a simple implementation of the un-

derlying algorithm.

Proposition 2.1. There exists a proper self-avoiding walk

for an arbitrary triangular mesh ,A4 with prescribed initial

and final triangles. O

The proof of Proposition 2.1 consists of two parts. In

the first part, we prove the existence of PSAWs (without

boundary conditions). This is done by induction over the

number of triangles in the mesh, and extends an existing
PSAW over to a larger mesh. This step of the proof also pro-

vides a set of elementary rules which can be used to formu-

late an O(n log n) algorithm for constructing PSAWs with

a given initial triangle over arbitrary unstructured meshe'_.

The value of such rules becomes apparent if practical ques-

tiotks such as the proper extension of existing "incomplete"
walks are addressed (and most of the difficulty of tim proof

is in this part). In the second part of the proof, we show that

them is an incomplete PSAW from the initial to the final

triangle, and then use the techniques from the first part to

complete it [4].
For the hierarchical relinement of unsmtctured grids,

the construction of PSAWs can t'e consider, IDly simplitied.

In 141, wc gave a constnlction of PSAWs for such cams. It

ttlnls Otll that Ibis process is etluivalcnt to an intermediate

stage of a modified Sierpi_ki curve [7] (see Fig. 2), if we

interpret the (geometric) curve visiting a mangle twice as a

jump over a vertex. Therefore, the PSAW "inherits" almost

all of the nice locality properties of such a curve. As a con-

sequence, in the case of hierarchical adaptation, we have to

modify an existing walk only in the regions affected by the

adaptation.

3. Linearization, Adaptation, and Partitioning

Consider the following application scenario: start with a

pre-generated mesh which will be subject to dynamic and

hierarchical coarsening and refinement, i.e., all triangles
generated at nmtime are contained within the triangles of

the initial mesh. Within the partitions to be constructed, we

would like to achieve good data locality, represented by a

PSAW. On the other hand, a runtime deformation of par-

tition boundaries should not require a complete rebuilding

of the iinearization. Although PSAWs exist for arbitrary

meshes (Proposition 2.1), some "guidance" or at least a few

"warning signs" on the mesh would be helpful. Greedy par-

titioners tend to ignore these "warning signs", occasionally

resulting in disconnected partitions and a sensitive depen-

dence on the starting point. The level approach behind

greedy partitioning, taken from the Cuthill-McKee algo-

rithm [2, 3], tends to fail in regions where the mesh or the

physical domain undergoes structural changes (e.g., sudden

shrinking or expansion, or the presence or corners).

In the next section, we briefly describe our novel bound-
ary contour coloring strategy which provides some impor-
tant intbrmation about the mesh. We assume that the trader-

lying physical domain has a non-empty boundary.

3.1. Boundary Contour Coloring

Wc cadl a mapping A'I + N, which assigns to each tri-

angle of ,._,'1a natural number, a coloring. Given a mesh ,_,

we consider the coloring that czm tx obtained by itcmtivcly

applying, the folh_wi n,,_ndcs',.



• All triangleswhichshareanedgeor avertexwiththe
boundaryof.Mhavecolor0.

• All uncoloredtrimlgleswhich share an edge or a vertex

with a triangle of color i have color i + 1.

We call this coloring a boundary contour coloring. Inter-

preting color as height, the boundary contour coloring of a

mesh gives a mountainous terrain over the mesh with (local)
maxima and saddle points. Figure 3 shows an example of

a mesh containing 1286 triangles (thanks to J. Shewchuck

for his Triangle tool), that produces a sufficiently interesting

boundary contour coloring.

Figure 3. The letter A mesh.

Unfortunately, a black-and-white document does not ef-

fectively reproduce the coloring. We thus describe the col-

oring in words. The boundary contour coloring makes the

mesh appear as separated into leafs or layers which can be

"peeled off". The coloring of the mesh in Fig. 3 contains

five different layers. The left leg of the A mesh is thinner
and has colors 0 and 1, except for a cluster of ten triangles

of coh)r 2 in the lower left. The color 1 layer branches near

the middle bar into two parts, one going further up and the

other going to the right. The thicker right leg Ires tour layers
of colors 0, 1,2, and 3, as well as a cluster of three tri_mgle_

of color 4 in the lower right. All the layers up to and in-

cluding color 2 are connected whereas the layer of color 3,

as the ridge of a mountain, is discom_ected (three compo-
nents). The contour of color 1 branching from the left joins

up with the corresponding contour from the right, where it
shows the same branctm_g behavior as the one on the left.

Denote by T,. the ._t of triangles of color c. In general,

the color contour of T_. does not have a proper interior in the

following scn,_: for a triangle t E 7'_., 0 < c < c,,,ax, at

least one ot" the three neighbors sharing _ut edge with t ustt-

ally has a ditfcreta color while the other two arc of the same

color. If all three neighbors have the same color as t, it in-

dicates a local maximum, a saddle point, or an "untying" or

"branching" of contours. Only the last possibility is critical,
as we shall see below. The color foliation has a nontrivial

structure, but apart from the branches, looks likea rectan-

gular region with colored fibers. If we wish to exploit this
structure, we will have to determine the boundaries of such

regions.
The boundary contour coloring induces an edge colom_g

as follows:

• An edge on the domain boundary or on the boundary be-

tween two color layers is assigned the color - 1.

• An edge whose two adjacent triangles are of the same

color i is assigned the color i.

Thus, edges of non-negative color cut througla the boundary

contour coloring in a "transverse" manner.

So far, we have only considered walks consisting of tri-

angles. In the following, we consider walks of edges. A

sequence of edges q_, 1 < i < k is called a walk, if every

two edges following one another in the walk share a vertex

and no edge appears more than once in the walk. A walk

(of edges) r/ = (r/i)__<i_<k is caUed a section if it has the

following properties:

• All edges in r/have non-negative color, except for those

corresponding to triangles of (locally) maxinml color hav-

ing three adjacent (over an edge) mangles of lower color.

• The first and last edges are of color 0.

• The color of the edges in the walk is strictly increasing

or decreasing, except for at most two adjacent edges of

maximal color.

The first property ensures that sections cut transversally

through the color layers and allows isolated maxima to be

bypassed. The second property states that sections are "an-
chored" to the domain boundary, while the last property

gives the walk the shape of an arc (color = height) and ex-
cludes certain pathological cases. Sections model the be-
havior of levels in the Cuthill-McKee algorithm. This is ob-

vious for structured grids. For unstructured grids, sections

have the advantage that, via the coloring, they are aware of

structt_ral chmlges in the mesh, and avoid the unpleasant di-

vergence and separation of the levels. We state this more

precisely in the next section.

3.2. Deformations and Critical Sections

Let _l,,_lb be two sections. We call r/h an elementary

deJbrmation of 0,, (and vice-versa) if the following holds:

• There exist two triangles on the domain tx_undary such
that the itlitial and final edges of both q,, _md _lh are adja-

cent to them.

• Two vertices where _1,,and rl_ cut through the same Ixmnd-

ary _twecn two color cemtours are either identical or rap_

aratcd by an edge of color - I.



The first requirement ensures that an elementary defor-
mation of a section is not too far away from the given sec-

tion. The second requirement controls the "smoothness"
of the transition. Two sections r/,, and r/6 are called defor.

mations of one another if they can be deformed into each
other by a sequence of elementary deformations. In other
words, deformation is an equivalence relation on the set of
sections. From an algorithmic point of view, this definition
appears rather unsatisfactory since it might be hard to deter-
mine in practice if two sections can be deformed into each
other. However, proposition 3.1 shows that ibis issue can

be resolved for practical purposes. The mathematical the-
ory was established about 60 years ago, and served as our
primary motivation.

We call a section critical if it has non-trivial deforma-

tions to one side only. (The meaning of "side" is obvious

for simply eo_ted domains. We save the reader from
the rather lengthy discussion for the non-simply connected
case.)

3.2.1. An Aside to Morse Theory

We refer the reader to [6, 8] for an introduction to Morse

theory. Consider the following real-valued function on the
Torus T 2. Let f : T 2 --b R be the height above the plane V

(see Fig. 4). A point Xo E T 2 .is called a critical point of

Figure 4. Critical Points.

f if the gradient of / vanishes at :co. /(zo) is then call_'d
a critical value. Points p, q, r, and s in Fig. 4 are critical.
One of the central results in Morse theory can be stated as
follows:

Theorem 3.1, Let f be a smooth real-valued function on a
manifoM M. Let a < b and suppose that the set f- t[a, hi,

consisting of all p E M with a < f (p) < b, is compact and
contains no critical points off. Then, f-t(a) and f-l(b)

are isomorphic. []

In otlrer words, given a Morse function, its critical points
serve as ".sentinels" for strttctural clumges. Apart from these

sentinels, tmdistttrt_d deformation is possible.

Returning to our discussion in Sec. 3.2, we would like
to have a result similar to Theorem 3.1 which would allow

us to determine if a region bounded by sections is free of
critical sections that are deformations of one of the bound-

ing sections. Consider a simply connected region R of the
mesh whose boundary consists of two disconnected compo-
nents of the boundary and two (disjoint) sections. If there
is no critical section between the two sections, which is a

deformation of one of them, they can be deformed into each
other. We can prove the following sufficient condition for a

region to have this property.

Proposition 3.1. Let R be a region as described above. As.
sume that there are no triangles in a connected contour of
R of non-maximal color which have three neighbors (adja-
cent over an edge) of the same color. Furthermore, assume
that if a triangle t in R is of (locally) maximal color and
two neighbors of smaller color are adjacent with t over an
edge, then they belong to different contours of R. Under
these assumptions, there are no critical sections in R which
are deformations of one of the sections on the boundary of
R. []

The assumptions in Proposition 3.1 ensure that contours
of nonmaximal color do not have an interior (which they
might have in the neighborhood of branches or nodes of
very high degree), and that clusters of maximal color have
a smooth boundary, rather than be fragmented. Note that
the assumptions of Proposition 3.1 are sufficient, not nec-
essary. Thus, there might be regions which do not satisfy
these assumptions, but the assertion is still true. These con-
ditions can be easily verified, which makes them applicable
for practical purposes. They are satisfied, except for two
triangles (which can be fixed easily), by the mesh in Fig. 3
for the relevant nine regions (see Figure 5). As a conclusion
of Proposition 3.1, we find that a region reaches it maximal
extension if both of the bounding sections turn into a critical
section.

Unfortunately, we are not experts in mesh generation.
However, we strongly believe that there is an intimate con-
nection between Morse functions and what is considered to

be an adequate mesh for a given physical domain.

3.3. The Partitioning Problem

Based on our previous discussions, a mesh can be de-
composed into foliated regions, leaving its core and rather
small critical regions where the foliations undergo structural
changes. To a large extent, the success of modem graph
partitioners relies on a multilevel approach, their ability to
contract or coarsen a given graph into smaller graph(s) and
propagate partitioning information from coarser levels back
to the initial problem. With our decomposition approach we
"virttmlly" accomplish something similar. Figure 5 shows a



Figure 5. Critical regions of the A mesh.

schematic representation of the decomposition of the letter

A mesh, and a problem graph for the partitioning problem.

The white regions are bounded by critical sections which

can be freely deformed inside the region. The shaded re-

gions mark areas where the boundary contour coloring un-
dergoes essential changes and the structure is not as simple
as that of the white regions. With each critical region, we

associate a vertex weighted by the number of triangles in it.

This region should be considered to be rather complex and

stiff, and we want to avoid those regions in the process of

determining partition boundaries. With each white region

we associate an edge, weighted in the same manner by the

number of triangles in it.

A partitioning problem can now be formulated as fol-
lows: find n sections, with n depending on the connected-

ness of the domain (holes?) and the number of partitions

desired, such that each partition contains about the same

number of triangles and the total length of the sections is

minimal.

The reduced A mesh graph is two-connected. For two

partitions, we would need two sections in the mesh. Ob-

viously, the sections would be made in the regions corre-

sponding to the edges (4,6) and (5,6). For sections, we gen-
erally have good control over their length. The length of the
two sections for the A mesh would be 3 or 4 and 9 or I0.,,

respectively, with about 640 triangles in each partition.

The proposed partitioning method can be applied in a re-
cttrsive manner. In this process, a critical section usually

remains critical. On the one hand, this simplifies the task

of finding critical sections, but on the other hand, imposes

certain requirements for mesh generation: if the mesh prac-

tically consists of critical regions only. this method is going

to fail.

The practical (parallel) search for sections is based on
the heuristic that stffliciently deformable sections are likely

to be found in the neighborhood of local maxima or saddle

points of the t_mndary contour coloring. Notice, that we
do not have to search for critical sections: we lind them

naturally in the process of determining the "elasticity" of a

region.

4. Summary

In this paper, we proposed a new approach to runtime

partitioning of adaptive unstructured grids. Its inherent par-
ailelism stems from a natural decomposition of the under-

lying mesh. A comprehensive comparison with multilevel
diffusion techniques needs to be performed in order to bet-

ter understand the strengths and weaknesses of the method.

Furthermore, we must achieve a better comprehension of

the implications for mesh generation.
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