
Dynamic Grain-Size Adaptation on Object Oriented Parallel Programming
The SCOOPP Approach

João Luís Sobral, Alberto José Proença
Departamento de Informática, Universidade do Minho, 4710 Braga, PORTUGAL

[jls, aproenca]@di.uminho.pt

Abstract

This paper presents the SCOOPP (SCalable Object
Oriented Parallel Programming) approach to support the
design and execution of scalable parallel applications.

The SCOOPP programming model aims the portability,
dynamic scalability and efficiency of parallel applications.
The SCOOPP is an hybrid compile and run-time system,
which can perform parallelism extraction, supports
explicit parallelism and performs dynamic granularity
control at run-time.

The mechanism that supports dynamic grain-size
adaptation is presented and performance evaluated on
two parallel systems. The measured results show the
feasibility of the proposed dynamic grain-size adaptation
and a scalability improvement of parallel applications
over static parallel OO environments, which suggests cost
benefits to develop scalable parallel applications to run
on multiple platforms

1. Introduction

The development of parallel applications often requires
a performance tuning to each platform as a natural
programming step, and/or using dedicated libraries to
access system key facilities.

As parallel programming tools are progressively being
widely adopted, parallel applications become less platform
dependent. PVM and MPI also helped to mix applications
developed under different programming environments,
and the portability of applications is further pushed by
Java.

Programmers are now required to develop applications
using the policy build once, run anywhere. The design of
parallel applications should address both types of
portability issues: at code level and at performance level,
i.e. the execution performance should be high on a wide
range of actual or future platforms.

A key factor affecting the performance of a parallel
application on a target platform is the parallelism
granularity, considered here as the task computation/
communication ratio, and often referred to as grain-size.
When designing a parallel application, the parallelism
granularity is a critical issue, both at the algorithm level
and at the target platform. An inadequate match of these
two granularities can degrade performance.

An efficient use of the available resources on a parallel
system requires enough grains (parallel tasks) to spread
over the processors, to allow the execution of parallel
tasks, i.e., the number of the computational grains should
be larger than the number of parallel resources. This is
usually accomplished at compile-time, extracting as much
parallelism as possible, to complement the programmer
defined parallel tasks. As a consequence of these finer
grained tasks, more control overhead is required and the
overall system performance may degrade due to excess of
traffic messages.

The granularity of the parallel tasks should be larger
than the granularity the target platform supports,
minimising the task overheads and inter-tasks
communication over computing time. To reduce the
unwanted overhead, a limit should be placed on the
number of the running grains per processor, which
depends on both the application and the target platform.
One way to limit the number of resident grains, and to
reduce the excess parallelism is to transform some parallel
tasks into sequential ones, i.e., to increase the grain-size of
each parallel task, by packing tasks into the same grain.

Some of the most obvious advantages of packed grains
over a large number of non-packed grains include: faster
calls (intra-grain procedure calls versus inter-grains IPC,
and no context switching) and faster process management
(smaller number of processes/processor, requiring less
overhead on task creation/destruction). The experimental
results on this communication validate these advantages.

Programmer based grain-size control puts a strong
burden on programmer activity either by the development
of alternative algorithms and strategies to match each
platform, or by adding programmer explicit mechanisms
for grain-size control which decrease the algorithm clarity.
These alternatives may require a deep knowledge of both
the algorithm and the target platform: they are strongly

This work was partially supported by the SETNA-ParComp project

(Scalable Environments, Tools and Numerical Algorithms in Parallel
Computing), under PRAXIS XXI funding (Ref. 2/2.1/TIT/1557/95).

platform dependent and in many cases there is not enough
available information to define the correct granularity.

Static grain-size determination falls short on shared
systems, where the available resources can only be
measured when the application starts running; also, in
most parallel applications the computational cost of each
parallel task can only be accurately measured at run-time.

Dynamic granularity control through grain packing is
one of the key features in the SCOOPP system, using the
available run-time data to take decisions on the size of the
grains, by packing parallel tasks into single grains,
whenever appropriate.

The SCOOPP system is a step forward in the
development of techniques for dynamic granularity
control, applied to parallel OO languages. It is an hybrid
compile and run-time system, which can perform
parallelism extraction, it supports explicit parallelism and
it performs dynamic granularity control at run-time. This
paper stresses the run-time dynamic granularity control
(more details of the SCOOPP system in [1]).

Section 2 references related work on grain packing,
while section 3 and 4 present the SCOOPP programming
model and the approach to grain-size control. Section 5
introduces the current prototype and section 6 evaluates
some performance results; section 7 concludes with
suggestions for future work.

2. Related work on grain packing

Most work performed on grain-size adaptation is based
on static grain packing [2]. The key concept is to find and
pack the tasks belonging to the critical path of an
algorithm in a single grain, and perform the task partition
for the reminder tasks based on the critical path; other
approaches attempt to minimise the inter-tasks
communication delays [3]. Both are based on a DAG
(Direct Acyclic task Graph), built at compile-time, which
limits its application to fine grain tasks or tasks with
known behaviour. The parallel OO language Ellie [4]
includes static grain-size adaptation.

The computational regularity in time and space of
many data parallel algorithms makes them good
candidates for automatic grain-size adaptation. Packing
the processing required by various data items on a single
task and packing various data requests in single messages
increases the grain-size. Usually this packing is performed
at compile-time, guided by the number of processors of
the target platform. HPF, C** [5] and HPC++ [6] are
languages which include these features. CHAOS [7]
supports irregular data structures and performs
communication scheduling and message packing at
run-time, although it does not provide mechanisms to
automatically control the granularity of the parallel tasks.

Dynamic grain-size adaptation has been applied to
functional [8] and logic programming environments [9].
At run-time, each new parallel computation may originate

a new parallel task or it can be computed by the current
task, providing a way to increase the grain-size. Their
effectiveness on shared memory systems has been proved;
however, they highly rely on shared data structures and
are based on DAGs.

3. The SCOOPP programming model

Parallel objects in SCOOPP are computationally
autonomous and they model parallel tasks, behaving as
processes in the CSP model. Parallel objects continually
receive messages and execute the associated method,
leading to inter-object concurrency. To achieve
intra-object concurrency (internal concurrency), parallel
objects may concurrently execute constant methods, i.e.,
those that do not change the state of the object.

The SCOOPP programming model also supports
sequential objects; these objects are passive entities and
behave like objects in conventional OO environments.
Each sequential object belongs to the context of the
parallel object which created it; only a copy of that object
can move between contexts of parallel objects. Figure 1a
presents an example of the relationship among parallel
objects, sequential objects, parallel objects contexts and
parallel tasks. Multiple parallel tasks may be triggered in a
parallel object, if it has internal concurrency; otherwise a
parallel object corresponds to a single parallel task.

References to parallel objects may be copied or sent as
a method argument, which may lead to cycles in a
dependence graph (a graph showing the possible
references between objects, like the ones presented in
Figure 1). The application's dependence graph becomes a
DAG when this feature is not used.

Parallelism extraction may be performed by
transforming user specified sequential objects into parallel
objects, which increases the overall number of parallel
tasks (Figure 1b) and decreases de grain-size.

Sequential object

Parallel objectObject reference

Parallel object context

Parallel task

Transformed sequential object

a) b)

Figure 1. Parallel and sequential objects: a) without parallelism
extraction; b) with parallelism extraction

Parallel objects may be composed of other parallel
objects or inherit from other(s) parallel object(s). These
features provide support to share or re-use code through
component composition and refinement mechanisms.

Interactions with sequential objects are always
synchronously executed, i.e. the caller waits until the
method has been completed, however, interactions with
parallel objects (and transformed sequential objects) may
be synchronous or asynchronous. Method calls that do not
return a value are asynchronously executed, i.e. the caller
may proceed its own computation in parallel with the
requested method execution. Method calls that return a
value or that may raise exceptions are synchronously
executed. This behaviour may be overridden by using
explicit futures and specifying a repository for the
method's result. That repository may be later consulted to
check if the method has completed or to retrieve the result.

4. Dynamic grain-size in SCOOPP

To design a dynamic grain-size adaptation scheme
three main questions are raised:

• How to adapt the grain-size?
• When to adapt the grain-size?
• Which tasks to pack/unpack?

This communication focus on the first issue and
provides some leads to the second and third issues.

Most OO languages associate threads and/or processes
to each object or method call, which usually leads to an
undetermined number of grains (parallel tasks) of fixed
grain-size: Charm++ [10] chare objects, UC++ [11] active
objects, mentat and functional objects in Mentat [13] and
parallel methods in COOL [12].

Dynamic grain adaptation in SCOOPP is accomplished
in two phases: a static (compile-time) parallelism
extraction [1], where a larger number of fine grains are
created and/or marked, and a dynamic (run-time) grain
control, through grain packing.

Grains are packed in the SCOOPP system by a
controlled dissociation of threads/processes from
methods/objects and by limiting the internal concurrency
on parallel objects (i.e., number of concurrently executing
methods). A single thread/process may be bind to a set of
parallel objects, forming one grain (a single parallel task);
intra-grain calls (interactions between parallel objects in
the same grain) are serialised and synchronous. Figure 2a
shows an example with three non-packed parallel objects.
In Figure 2b, parallel objects 1 and 2 are packed into a
single grain and calls from object 1 to object 2 are
synchronous, whereas calls from object 1 to object 3
(inter-grain calls) may still be asynchronous. Intra-grain
calls (as method calls from object 1 to object 2) may be
performed directly (through direct procedure call) instead
of a more costly call though the IPC. The creation and the
destruction of a parallel object inside a grain (such as
object 2) may also be a direct object creation/destruction
instead of a parallel object creation/destruction through
the run-time system.

Parallel task

Parallel object

Object reference

a) b)

1

23

Figure 2. Parallel objects without a) and with b) grain packing

Cost benefits from the grain packing approach are
traded with performance, since the decision to pack takes
time and packed objects may have a greater latency when
replying to external requests, due to thread/process
sharing among objects in the same grain.

Since parallel objects may perform intermediate
communication, i.e. they may exchange messages after
start executing a method, cyclic communication may be
introduced by the grain packing mechanism. On
intra-grain direct calls, swapping an asynchronous method
call to synchronous may originate deadlock, since all
objects in a grain are bind to a single thread/process. It is
avoided by tracing intra-grain calls and detecting cyclic
calls. A call closing a cycle is not performed
synchronously/directly, but by a message requesting the
method execution. A similar problem may occur on
synchronous inter-grains calls, which is prevented by
spanning a new thread to manage these calls.

Dynamic grain control is further enriched with the
capability to reverse packing decisions, by splitting a
packed grain into its original parallel tasks.

The decision “when to adapt” is taken according to
run-time evaluation of the system load. In the current
SCOOPP prototype the grain packing should occur when
the system is highly loaded and grain unpacking should
occur when the system is lightly loaded. To evaluate the
overall system load several techniques are under study.
These include run-time measurements of task queue
length, processor computational load, inter-process
communication load and a mix of the computing and
network load.

To implement the grain control policy, both for grain
packing and grain unpacking, tasks are selected according
to the interrelationship between parallel objects. One
approach is to pack objects randomly, which may reduce
the task management overhead; however, the inter-object
communication overhead can be reduced if related parallel
objects are packed. Objects with stronger inter-task
dependence, i.e., with many cross calls or large data
exchanged between them, are the best candidates for task
merging in a single grain.

Experimental results from related work [14] also
suggest the advantage of placing several grains per
processor, but further experiments are still required to
achieve optimal values.

5. The ParC++ prototype

The current SCOOPP prototype, ParC++ [1], supports
some extensions to C++ and consists of a ParC++ to C++
pre-processor, several support classes and a run-time
system. This prototype run on top of several programming
environments, namely the INMOS toolset and Parix.
Support classes for PVM are under tests.

Current ParC++ run-time system creates on each node
a pool of local processes. Whenever a method request
arrives to a node, a free process is scheduled to serve it,
executing the requested method on the destination object.
On each node a special parallel object performs load
balancing and manages the pool of processes. It
permanently tunes the number of processes per node,
according to the current policy to perform the grain
packing/unpacking. The current prototype defines a limit
on the maximum number of concurrent processes per
processor at compile-time; this limit represents the
maximum number of grains per node; other strategies are
under study, including dynamic ones.

At system start-up, a pool of processes is created at
each node. As parallel objects are created and spread
across the system (following a load distribution policy),
the processes in the pool serve requests for the created
objects, until the number of parallel objects reaches the
predefined limit of processes per processor. Once there,
newly created parallel objects are grain packed by sharing
processes, holding the number of processes. Later, when
the overall number of parallel objects decreases, objects
may be grain unpacked and migrate to remote processing
nodes, according to the load policy.

Grain packed objects may perform both direct method
call and direct object creation/destruction on local objects
(intra-grain operations). Direct method calls are performed
if an inter-object cyclic call is not detected; otherwise the
call is asynchronously performed through the IPC. The
run-time system is notified of all direct creation/
destruction of objects, to support later grain unpacking by
the run-time system.

6. Performance results

The SCOOPP approach on the ParC++ prototype is
evaluated measuring the execution times of a ParC++
program on two distributed memory parallel systems: a
PowerExplorer (16 nodes, each with a PowerPC as a
computing processor and a Transputer as a
communication processor) and a MC-3 (with 112
Transputer based nodes), running Parix versions 1.3 and
1.2, both providing a high clock precision of 1µs. The
measurements were taken on the ParC++ system with
support classes version 1.13 and the pre-processor version
1.61.

The ParC++ application has an hierarchical farming
structure; its algorithm is often used in parallel
applications. It includes two main types of parallel
activities (i.e., parallel objects): the farmer process to split
the work into several frames and to distribute them, and
the worker process, to execute the frames and to return the
results. When the farmer receives a processed frame, it
merges it with the processed work and sends a new frame
if there are more frames to process. If there are no more
frames to process the farmer sends a termination order to
the worker.

The ParC++ farming application works in a 4-level
hierarchical scheme: each farmer has 7 workers. Each
worker acts like a farmer and has also 7 workers. The
lowest level has 343 workers (from a total of 400 objects)
which do the work, while all the other levels just split the
work and merge the processed work. Since farming works
on a demand driven scheme - faster workers will process
more frames - the application is well balanced, reducing
the impact of the load balancing overhead.

Without grain-size adaptation (i.e., with fixed grains)
all parallel objects are implemented as parallel tasks,
which is the finest grain-size. By merging at run-time
several parallel objects into a single parallel task, forming
a larger grain, SCOOPP is dynamically adapting the
grain-size.

Execution times were measured for a local 11x11
threshold on an 256x256 image recursively divided into
16 frames, using fixed grain-size and enlarged grain-size.
The results are presented in Table 1 and 2. Parallel objects
where created using a random load distribution policy and
establishing a limit of 3 grains per node for grain-size
adaptation.

MC-3

Processors Fixed grains Enlarged grains Gain
4 41.90 34.72 17%
7 23.80 18.70 21%
14 9.98 8.78 12%
28 4.83 4.60 5%
56 2.72 2.73 0%
112 1.80 1.83 -2%

Table 1 - Execution times (in seconds) on a MC-3.

On the MC-3 and when the number of object per
processor is high (i.e., under a low number of processors)
the grain-size adaptation performed considerable better
than a fixed grain-size strategy, obtaining a maximum
reduction in the execution time of 21% in 7 processors.

When the average number of objects per processor gets
closer to the unit (in this test occurs when the number of
processors is more than 56) the overhead penalty to pack
grains overpasses the benefits of grain packing.

Execution times on the PowerExplorer (Table 2)
reinforce the effectiveness of the grain-size adaptation
strategy of the SCOOPP system. Running the previous

program without changes on this platform provides a
reduction on execution times up to 44%, due to the excess
of parallelism and to the higher ratio computation/
communication of this machine, providing more room for
performance increase through grain packing.

PowerXplorer
Processors Fixed grains Enlarged grains Gain

4 5.50 3.07 44%
8 2.55 1.73 32%

 12 1.73 1.27 27%
16 1.36 1.06 22%

Table 2 - Execution times (in seconds) on a PowerXplorer.

These results show that under excess of parallelism the
grain-size adaptation performs well, but under a small
number of parallel activities per node (near the limit of the
algorithm scalability) a small performance penalty occurs
due to the system attempt to perform grain packing. To be
effective on these conditions the system should further
unpack the programmer specified parallel grains, using
additional parallelism extraction features.

7. Conclusions and future work

The SCOOPP system frees the programmer to express
the full potential parallelism of an algorithm, in a platform
independent way. It performs the grain-size adaptation at
run-time to obtain the best granularity for the target
platform, improving the algorithm scalability over
multiple platforms without programmer intervention.

Conventional grain control approaches usually limit the
grain packing within independent tasks with fork/join
synchronisation. The proposed methodology in SCOOPP
to dynamically adapt the grain-size also supports any kind
of tasks, including non related ones and those which
exchange messages during its execution.

The results obtained on the current prototype showed
the effectiveness of the automatic grain-size adaptation
policy on applications with excess of parallelism. On such
cases, grain packed objects have a considerable lower
overhead when compared with non-packed objects,
improving the algorithm performance without user
intervention. However, when an algorithm lies near the
limit of its scalability (having few parallel task per node)
the performance penalty due to the attempt to perform
grain packing can be reduced through parallelism
extraction.

The results obtained so far are very encouraging, but
further work is still needed to improve the system
performance through granularity control; this includes:

• techniques to evaluate the overall system load at
run-time, including both the computational and the
communication loads, and their ratio;

• methodologies to evaluate, at run-time, the number of
grains per processor which defines the crossover value
on performance;

• performance improvements through the use of
qualitative grain-size adaptation, i.e., how to select the
most adequate objects to be grain packed/unpacked;

• further refinements on the run-time decision process to
unpack, namely support for object migration.
Current work also includes further improvements to the

run-time system based on practical applications and the
porting of the prototype system to other programming
environments such as PVM and MPI.

These SCOOPP improvements will be evaluated
through deeper and more comprehensive parallel
applications, taken from non-academic case studies.

References

[1] J.Sobral, A.Proença. ParC++: A Simple Extension of C++
to Parallel Systems, Proc. 6th Euromicro Workshop
Parallel and Distributed Processing, Madrid, Spain,
January 1998.

[2] B.Kruatrachue, T.Lewis. Grain Size Determination for
Parallel Processing, IEEE Software, v5(1), January, 1988.

[3] A.Gresoulis, T.Yang. On the Granularity and Clustering
of Direct Acyclic Graphs, IEEE Trans. on Parallel and
Distributed Systems, v4(6), June 1993.

[4] B.Andersen. A General, Fine-Grained, Machine
Independent, Object-Oriented Language, ACM SIGPLAN
Notices, v29(5), May 1994.

[5] J.Larus, B.Richards, G.Viswanathan, C**: A Large-Grain,
Object-Oriented, Data-Parallel Programming Language,
in Parallel Programming Using C++, The MIT Press, 1996.

[6] P.Beckman, D.Gannon, E.Johnson. HPC++ and the
HPC++ Lib. Toolkit, White Paper,
www.extreme.indiana.edu/hpc++, 1997.

[7] C.Chang, A.Sussman, J.Saltz CHAOS++, in Parallel
Programming Using C++, The MIT Press, 1996.

[8] E.Mohr, A.Kranz, R.Halstead. Lazy Task Creation: A
Technique for Increasing the Granularity of Parallel
Programs, IEEE Trans. on Parallel and Distributed
Processing, v2(3), July 1991.

[9] P.Lopez, M.Hermenegildo, S.Debray. A Methodology for
Granularity Based Control of Parallelism in Logic
Programs, Journal of Symbolic Computation, v22, 1998.

[10] L.Kale, S.Krishnan. CHARM++: A Portable Concurrent
Object Oriented System Based on C++, OOPSLA '93,
ACM SIGPLAN Notices, v28(10), October 1993.

[11] J.Poole. UC++ 2: User Manual, (draft), The London
Parallel Applications Center (LPAC), June 1998.

[12] R.Chandra, A.Gupta, J.Hennessy. COOL: An Object-
Based Language for Parallel Programming. IEEE
Computer, v27(9), August 1994

[13] A.Grimshaw. Portable Run-Time Support for Dynamic
Object-Oriented Parallel Processing, ACM Transactions
on Computer Systems, v14(2), May 1996.

[14] A.Chalmers, A.Proença, A messages density monitoring
strategy for distributed memory parallel system, Proc. 2nd
Int. Conf. on Software for Multiprocessors and
Supercomputers, Moscow, September 1994.

