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Abstract—Many sensor applications are being developed that The idea is to live with bad nodes rather than eliminate all pos-
require the location of wireless devices, and localization schemessijple bad nodes.

have been developed to meet this need. However, as location-based o ; ; ;

services becomepmore prevalent, the localization infrastructure We.begln In Se'ctlor.] II by prese.ntln_g an overview Of several
will become the target of malicious attacks. These attacks will not t€chniques used in wireless localization, as well as discuss ef-
be conventional security threats, but rather threats that adversely forts that have been made to provide security to localization.
affect the ability of localization schemes to provide trustworthy lo-  Following the review, we explore localization-specific attacks
cation infolrma}ion. ThisI papﬁr identifies 6;1 list of attakaS th%t are that can be mounted against wireless localization services in
unique to localization algorithms. Since these attacks are diverse ;

in nature, and there may be many unforseen attacks that can by- Section “l'. TO address these att"?mks' we propose the use of
pass traditional security countermeasures, it is desirable to alter 'Obust statistical methods. In Section V and Section VI we fo-
the underlying localization algorithms to be robust to intentionally ~ Cus our discussion on applying robust mechanisms to two broad
corrupted measurements. In this paper, we develop robust statisti- classes of localization: triangulation and fingerprinting meth-
cal methods to make localization attack-tolerant. We examine two ods, We introduce the notion of coordinated adversarial attacks

broad classes of localization: triangulation and RF-based finger- o -
printing methods. For triangulation-based localization, we pro- on the location infrastructure, and present a strategy for launch

pose an adaptive least squares and least median squares positiof'd @ coordinated attack on triangulation-based methods. For
estimator that has the computational advantages of least squares triangulation-based localization, we propose the use of least
in the absence of attacks and is capable of switching to a robust median squares (LMS) as an improvement over least squares
m_oci_e W:Wenl_beltng attrt]aCkeﬁ-thWe mtrofduce g)_bustt)nesztdq fthef' (LS) for achieving robustness to attacks. We formulate a lin-
printing localization through the use of a median-based distance e ; ; ;
metric. Finally, we evaluate our robust localization schemes under eadrlzatlorr: of the 'ea$t sqluares Iloc_atlor]l f'\s/ltlsmastpr In Losrder to
different threat conditions. reduce the computational complexity of LMS. Since out-
performs LMS in the absence of aggressive attacks, we devise
an online algorithm that can adaptively switch between LS and

|. INTRODUCTION LMS to ensure that our localization algorithm operates in a de-

The infrastructure provided by wireless networks promises §#able regime in the presence of varying adversarial threats.

have a significant impact on the way computing is performelior fingerprinting-based location estimation, we show that the
Not only will information be available while we are on theuse of traditional Euclidean distance metrics is not robust to

go, but new location-aware Computing paradigms a|ong Wimtentional attacks launched against the base stations involved

location-sensitive security policies will emerge. Already, marij localization. We propose a median-based nearest neighbor
techniques have emerged to provide the ability to localizeS&heme that employs a median-based distance metric that is ro-
communicating device [1-5]. bust to location attacks. The use of median does not require ad-
Enforcement of location-aware security policies (e.g., thifitional computational resources, and in the absence of attacks
laptop should not be taken out of this building, or this file shouldas performance comparable to existing techniques. Finally, we
not be opened outside of a secure room) requires trusted fgesent conclusions in Section VII.
cation information. As more of these location-dependent ser-
vices get deployed, the very mechanisms that provide location
information will become the target of misuse and attacks. In Il. RELATED WORK

particular, the location infrastructure will be SubjeCted to many Broad'y Speaking' there are two main Categories of localiza-
localization-specifidhreats that cannot be addressed througfbn techniques: those that involve range estimation, and those
traditional security services. Therefore, as we move forwagdat do not [1]. Range-based localization algorithms involve
with deploying wireless systems that support location servicggeasuring physical properties that can be used to calculate the
it is prudent to integrate appropriate mechanisms that protegétance between a sensor node and an anchor point whose loca-
localization techniques from these new forms of attack. tion is known. Time of Arrival (TOA) is an important property
The purpose of this paper is to examine the problem of gt can be used to measure range, and arises in GPS [6]. The
cure localization from a viewpoint different from traditionalrjme Difference of Arrival (TdOA) is also widely used, and
network security services. In e_lddmon to |Qent_|fy|ng d|ffer(_anﬁas been used in MIT’s Cricket [2], and appeared in [7, 8]. In
attacks and misuse faced by wireless localization mechanisiggition, APS [3] pointed out that the Angle of Arrival (AOA)
we take the viewpoint that these vulnerabilities can be mitigategn pe used to calculate the relative angle between two nodes,
by exploiting the redundancy present in typical wireless d@mich can be further used to calculate the distance. The RSSI
ployments. Rather than introducing countermeasures for evggfue of the received signal, together with the signal propaga-
possible attack, our approach is to providealization-specific - tion model, is also a good indicator of the distance between
attack-tolerantmechanisms that shield the localization infrasgyg nodes [9,10]. Other properties of arriving signals can also
tructure from threats that bypass traditional security defensgg. exploited. One interesting example is to use visual cuing
The authors may be reached at Wireless Information Network Laboratogl',l]’ WhICh tries to dejermme the pO_SItIOh and orlentat_lon of
Rutgers University, 73 Brett Rd., Piscataway, NJ 08854 or by emditatg, mobile robot from visual cues obtained from color cylinders
trappe, yyzhang@winlab.rutgers.edu, and badri@cs.rutgers.edu. strategically placed in the field of the view.



Range-free localization algorithms do not require the mea—,j& hop_count (L->A)=7 | | | i hop_count (L->A) =3 n hop_count (L->A) = 10
surement of physical distance-related properties. For example/™,
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an anchor point, and further convert the hop counts to physi- % 2% 3o, oGy oro {ohdono s
]

cal distances, such as in [12—-14]. As another example, a sensar ° wormhole o °
node can estimate its location using the centroid of those anchor

nodes that are within its radio range, such as in Centroid [18]ig. 1. (Left) Operation of localization using hop count, (Mid-
Similarly, APIT [16] employs an area-based estimation scherdé&e) Wormhole attack on hop count methods, and (Right) Jam-
to determine a node’s location. Compared to range-based localng attack on hop count methods.

ization algorithms, these schemes do not require special hard-

wasre, and Ithelrl_actc_uraﬁles are t_huz Io;/tvertas weIIl. 4, nd effectively removing the line-of-sight signal. Another tech-
ecure localizalion has received atiention only recently. rﬁ'que that may be used to falsely increase the distance estimate

[4], the authors listed a few attacks that might affect the cogec,rs in techniques employing round-trip time of flight. Here,

rectness of localization algorithms along with a few counte, adversarial target that does not wish to be located by the

measures. One technique that may be used to defend agaiagfork receives a transmission and holds it for a short time

wormhole attacks is to employ packet leashes [17]. SecRLOGto e retransmitting. An attack that skews the distances to
[5] employs a sectored antenna, and presented an algorithm

Lller values can be accomplished by exploiting the propa-

makes use of the property that two sensor nodes that can Neglon speed of different media. For example, in CRICKET
from each other must be within the distarbeassuming- is the combination of an RF signal and an ultrasound signal

fixed in order to defend against attacks. A different approachﬁ;(’)ws for the estimation of distance since the acoustic signal

securing location information was presented in [18], where the, o5 4t 4 slower propagation velocity. An adversary located
concept of location verification was introduced. Compared

these studies, our paper takes a distinct approacivihahould ar the target may therefore hear the RF signal and then trans-

’ ) . mit an ultrasound signal that would arrive before the original
learn how to live with bad guys rather than defeating each ty g 9

of attack In addition, we also identify a more complete list o rasound signal can reach the receiver [4]
attacks that areniqueto localization algorithms. As another example, consider a location system that uses sig-

nal strength as the basis for location. Such a system is very
closely tied to the underlying physical-layer path loss model
IIl. ATTACKS UNIQUE TO LOCALIZATION that is employed (such as a free space model where signal

Different localization methods are built upon the measurétrength decays in inverse proportion to the square of distance).
ment of some basic properties. In Table |, we enumerate sevdpabrder to attack such a system, an adversary could intro-
properties that are used by localization algorithms, along wighice an absorbing barrier between the transmitter and the tar-
different threats that may be employed against these propert@g!l, changing the underlying propagation physics. As the sig-
The threats we identify are specific to localization, and are pfal propagates through the barrier, it is attenuated, and hence
marily non-cryptographicattacks that are directed against théhe target would observe a significantly lower received signal
measurement process. Consequently, these attacks bypass$ie@rgth. Consequently, the receiver would conclude that it is
ventional security services. further from the transmitter than it actually is.

We note, however, that there are many classical securityHop count based localization schemes [13] usually consist of
threats that may be launched against a wireless or sensor hgt phases. In the first phase, per-hop distance is measured.
work, which can have an adverse affect on the localization pro-the second phase, anchor points flood beacons to individual
cess. For example, a Sybil attack can disrupt localization seensor nodes, which count the number of hops between them,
vices by allowing a device to claim multiple identities. In ordeand these hop counts are translated into physical distances. As
to address the Sybil attack, one may employ entity verificati@nresult, adversaries can initiate attacks as follows: (1) manipu-
techniques, such as radio resource testing or the verificatiorlate the hop count measurement, and (2) manipulate the trans-
key sets, which were presented in [19]. In general, for attackaion from hop count to physical distance. A number of tricks
that are cryptographic in nature, there are extensive effortsdan be played to tweak hop count measurements, ranging from
migrate traditional security services, such as authentication,RblY-layer attacks, such as increasing/decreasing transmission
the sensor platform in order to handle these threats. power, to network layer attacks that tamper with the routing

Even so, though, it should be realized that it is unlikely thgtath. Since PHY-layer attacks have been discussed earlier, we
any single technique will remove all possible threat model®w focus on some possible network layer attacks, namely jam-
and, in spite of the security countermeasures that are employ®ihg [20] and wormholes [17]. By jamming a certain area be-
many adversarial attacks will be able to bypass security layveen two nodes, beacons may take a longer route to reach the
ers. To address threats that ai@n-cryptographic or threats other end (as shown in Figure 1), which increases the measured
that bypass conventional security countermeasures, we takettbp count. While jamming may not always increase the hop
viewpoint that statistical robustness needs to be introduced ictmunt, for it may not block the shortest path between the two
the wireless localization process. nodes, the other type of attacks, which involve wormhole links,

We now explore several of these threats. We start by lookiage more harmful because they can often significantly shorten
at methods that employ time of flight. The basic concept behitite shortest path and result in a much smaller hop count. Fig-
time of flight methods is that there is a direct relationship bewe 1 illustrates such a scenario: the shortest path between an-
tween the distance between two points, the propagation spegthr L and node A has 7 hops, while the illustrated wormhole
and the duration needed for a signal to propagate between thesegs the hop count down to 3. Consequently, these attacks can
two points. For time of flight methods, an attacker may try talso affect the translation from hop count to physical distance.
bias the estimation of distance to a larger value by forcing tthe addition, if adversaries can manage to physically remove or
observed signal to come from a multipath. This may be accortisplace some sensor nodes, even correct hop counts are not
plished by placing a barrier sufficiently close to the transmitteiseful for obtaining accurate location calculations.



[ Property [ Example Algorithms [ Attack Threats |
) ) . Remove direct path and force radio transmission to employ a multipath; Delay transmission of a re-
Time of Flight Cricket sponse message; Exploit difference in propagation speeds (speedup attack, transmission through a

different medium).

Remove direct path and force radio transmission to employ a multipath; Introduce different micr¢wave
Signal Strength RADAR, SpotON, Nibble or acoustic propagation loss model; Transmit at a different power than specified by protocol; Lpcally
elevate ambient channel noise.

Remove direct path and force radio transmission to employ a multipath; Change the signalarrival angel
Angle of Arrival APS by using reflective objects, e.g., mirrors; Alter clockwise/counter-clockwise orientation of recgiver
(up-down attack).

Enlarge neighborhood by wormholes; Manipulate the one-hop distance measurements; Alter
borhood by jamming along certain directions.

Shorten the routing path between two nodes through wormholes; Lengthen the routing path between
Hop Count DV-Hop two nodes by jamming; Alter the hop count by manipulating the radio range; Vary per-hop distarjce by
physically removing/displacing nodes.

Shrink radio region (jamming); Enlarge radio region (transmit at higher power, wormhole); Replay;
Modify the message; Physically move locators; Change antenna receive pattern.

neigh-

Region Inclusion ‘ APIT, SerLoc

’ Neighbor Location ‘ Centroid Method, SerLoc

TABLE |
PROPERTIES EMPLOYED BY DIFFERENT LOCALIZATION ALGORITHMS AND ATTACKS THAT MAY BE LAUNCHED AGAINST THESE PROPERTIES

Localization methods that use neighbor locations are buitte case where we localize a single device. Localizing multi-
upon the implicit assumption that neighbors are uniformly diple nodes involves applying the proposed techniques for each
tributed in space around the wireless device. These localizkevice that is to be localized.
tion methods, such as the Centroid method, can be attacked byhe methods we will propose here make use of the median.
altering the shape of the received radio region. For exampbldedian-based approaches for data aggregation in sensor net-
an attacker can shrink the effective radio region through blockorks have recently been proposed [21, 22], and use the me-
ing some neighbors by introducing a strong absorbing barrigian as a resilient estimate of the average of aggregated data.
around several neighbors. Another approach to shrinking tBa the other hand, localizing a device involves estimating a de-
radio region is for an adversary to employ a set of strategicalljce’s position from physical measurements not directly related
located jammers. Since these neighbors are not heard by tihposition, such as signal strength. Applying robust techniques
wireless device, the location estimate will be biased toward theewireless sensor localization is challenging as it involves not

unblocked side. only integrating robust statistical methods that estimate posi-
tion from other types of measurements, but also must consider
IV. ROBUSTLOCALIZATION: LIVING WITH BAD GUYS important issues such as computational overhead.

As discussed in the previous section, wireless networks are
susceptible to numerous localization-specific attacks. These at- V. ROBUSTMETHODS FORTRIANGULATION
tacks will be mounted by clever adversaries, and as a result willTriangulation methods constitute a large class of localization
behave dramatically different from measurement anomalies th#jorithms that exploit some measurement to estimate distances
arise due to the underlying wireless medium. For exampl®, anchors, and from these distances an optimization procedure
signal strength measurements may be significantly alteredibyused to determine the optimal position. The robust methods
opening doorways in a hallway, or by the presence of passersiyt we describe can be easily extended to other localization
Although these errors are severe, and can degrade the perf@thniques, such as the Centroid method.
mance of a localization scheme, they are not intentional, andTriangulation methods involve gathering a collection of
therefore not likely to provide a persistent bias to any specifi¢z, y, d)} values, wherel represents an estimated distance
localization scheme. However, the attacks mentioned in Sémm the wireless device to an anchor(aty). These distances
tion 1l will be intelligent and coordinated, causing significanyy may be stem from different types of measurements, such as
bias to the localization results. hop counts in multi-hop networks (as in the case of DV-hop

Solutions that can combat some of these localization §1-3]), time of flight (as in the case of CRICKET), or signal
tacks have been proposed, often involving conventional segitrength. For example, in a hop-based scheme like DV-hop, fol-
rity techniques [4, 5]. However, as noted earlier, it is unlikeljowing the flooding of beacons by anchor nodes, hop counts are
that conventional security will be able to remove all threats ideasured between anchor points and the wireless device, which
wireless localization. We therefore take the viewpoint that imre then transformed into distance estimates.
stead of coming up with solutions for each attack, it is essen-In the ideal case, where the distances are not subjected to
tial to achieve robustness to unforeseen and non-filterable @&ty measurement noise, thesgr,y,d)} values map out a
tacks. Particularly, localization must function properly even iparabolic surface
the presence of these attacks.

Our strategy to accomplish this is to take advantage of the re- d*(z,y) = (x — 20)® + (y — y0)?, Q)
dundancy in the deployment of the localization infrastructure to
provide stability to contaminated measurements. In particularhose minimum valuéz, yo) is the wireless device location.
we develop statistical tools that may be used to make localiZaathering severdl(x;,y;, d;)} values and solving fofzo, o)
tion techniques robust to adversarial data. As a byproduct, asia simple least squares problem that accounts for overdetermi-
techniques will be robust to non-adversarial corruption of menation of the system and the presence of measurement noise.
surement data. For the purpose of the discussion, we shall focuslowever, such an approach is not suitable in the presence
our attention on two classes of localization schemes: triangef- malicious perturbations to th§(x, y,d)} values. For ex-
lation, and the method of RF fingerprinting. We have chosemple, if an adversary alters the hop count, perhaps through a
these two methods since they represent a broad survey of Ww@mhole attack or jamming attack, the altered hop count may
methods used. Our discussion and evaluations will focus oesult in significant deviation of the distance measurenaent



from its true value. The use of a single, significantly incor- Assume we are given a set 8f samples, and that we aim
rect {(z,y,d)} value will drive the location estimate signifi-to estimate a-dimensional variablé from this ensemble. The
cantly away from the true location in spite of the presence pfocedure for implementing the robust LMS algorithm is sum-
other, correc{(z, y, d)} values. This exposes the vulnerabilitymarized as follows:

of least squares localization method to attacks, and we wouldl) Choose an appropriate subset sizéhe total number of
like to find a robust alternative, as discussed below, to reduce subsets randomly drawi¥, and a thresholg.

the impact of attacks on localization. 2) Randomly drawlM subsets of size from the data ensem-
ble. Find the estimaté; for each subset. Calculate the
A. Robust Fitting: Least Median of Squares median of residuesfj for everyf;. Herei =1,2,--- | N

is the index for samples, whilg = 1,2,---, M is the
index for the subsets. .

3) Definem = arg min; Inedi{r?j}, thend,, is the subset
estimate with the least median of residues, &ng,} is

The vulnerability of the least squares algorithm to attacks is
essentially due to its non-robustness to “outliers”. The general
formulation for the LS algorithm minimizes the cost function

N the corresponding residues.
J(O) = [ui — f(vi, )], (2)  4) Calculatesy = 1.4826(1 + °=)+/med;rZ,,.
i=1 5) Assign weightw; to each sample using Equation (4).

6) Do a weighted least squares fitting to all data with

wheref is the parameter to be estimatedg corresponds to the weights{w;} to get the final estimaté.

i-th measured data sample, corresponds to the absissas for
the parameterized surfa¢¢v;,9), |y; — f(x;, 0)| is the residue
for thei-th sample, andV is the total number of samples. DueB. Robust Localization with LMS

to the summation in the cost function, a single influential outlier |n the absence of attacks, the device location estimate

may ruin the estimation. (&0, 1o) can be found by least squares, i.e.
To increase robustness to outliers, a robust cost function is

needed. For example, the method of least median of squares, N

introduced by Rousseeuw and described in detail in [23], is ongg, 7y) = arg min Z[\/(xq; —10)2 + (yi — y0)% — di]*.

of the most commonly used robust fitting algorithms. Instead of (@o,90) T

minimizing the summation of the residue squares, LMS fitting (6)

minimizes the median of the residue squares In presence of attacks, however, the adversary produces “out-

liers” in the measurements. Instead of identifying this misin-

J(0) = med,[y; — f(w4,0)]% (3) formation, we would like to live with them and still get a rea-

sonable location estimate (identification of misinformation will

Now a single outlier has little effect on the cost function, andome out as a byproduct naturally). To achieve this goal, we
won't bias the estimate significantly. Itis known that in abseneese LMS instead of least squares to estimate the location. That
of noise, LMS tolerates up to 50 percent outliers amdhtptal is, we can find &, go) such that
measurements, and still give the correct estimate [23].

The exact solution for LMS is computationally prohibitive.(z, jo) = arg min med;[\/(z; — 20)2 + (yi — y0)? — di]?.
An efficient and statistically robust alternative [23] is to solve (z0,0) @)
random subsets df(z;, 7;)} values to get several candidate
The median of the residue squares for each candidate is tﬂ—gﬁn the above LMS procedure can be used.

computed, and the one with the least median of residue squaresOWEVe", before using the algorithm, we need to consider
0 issues: First, how to choose the appropriatand M

is chosen as a tentative estimate. However, this tentative e | MS-based localization? Second. how to get an estimate
mate is obtained from a small subset of samples. It is desira I ) ’ 9
rom the samples efficiently? The answers depend on the re-

to include more samples that are not outliers for a better esti red performance and the affordable computational complex-
tion. So, the samples are reweighted based on their residues fed pertort A p P
Considering that power is limited for sensor networks, and

the tentative estimate, followed by a reweighted least squatgs : :
fitting to get the final estimate. t at the computational complexity of LMS depends on both the

: : : : rameters and algorithmic implementation, we would like to
thrTagﬁ oslgmg I;ansefhaond%?Vgenwt()a;g[gga]t?sln various ways. A S'mFggin the robustness of LMS with minimal additional computa-
tion compared to least squares, while exhibiting only negligible
1 il <y performance degradation. These two issues are now addressed.
w; = { ’ so! — (4) 1) How to choose the appropriateand M/ ?
0, otherwise The basic idea of the LMS implementation is that, hopefully,
. . . . at least one subset among all subsets does not contain any con-
wherey is a predetermined threshold, is the residue of the (3 minated samples, and the estimate from this good subset will
i-th sample for the least median subset estimiatnds, is the thus fit the inlier (non-corrupted) data well. Since the inlier data

scale estimate given by [23] are the majority £ 50%) of the data, the median of residues
5 corresponding to this estimate will be smaller than that from
— 1.4826(1 dz 2 é , 5 the bad subsets. -
%0 (1+ N — p) medr? (6) ©) We now calculate the probabilit)? to get at least one good

_ ) ) ) _ subset without contamination. Assuming the contamination ra-
wherep is the dimension of the estimated variable. The terfip is¢, i.e,e N samples are outliers, it is easy to get that
(1+ ﬁ) is used to compensate the tendency for a small scale

estimate when there are few samples. P=1-(1-(1-¢MM, (8)



% : ‘ : : ‘ equations wheiv > 2:
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Fig. 2. The contour plot of the equation .(8):. probe}bility to
get at least one good subset over contamination ratio and ébtracting each side of the equation above from equation (9),

number of subsets when= 4. we linearize to get the new equations

For a fixedM ande, the largern, the smaller isP. So the 1 — 1 -

size of a subset is often chosen such that it's just enough to (@ =3 Z’”)“ tu-g Zy")yo -

get an estimate. In our case, although the minimum number of =t =t

samples needed to decide a location is 3, we have chose# T T e IR =

to reduce the chance that the samples are too close to each othe [(*1 ~ PR SRR
=1 i=1 =1

to produce a numerically stable position estimate.

Oncen is chosen, we can decide the valuefofor a given
pair of M ande. A contour plot of P over a grid ofM ande is N .
shown in Figure 2. For larger a largerM is needed to obtain a 1 1 B
satisfactory probability of at least one good subset. Depending (v =% Z w0+ v = 5 Z vl =
on how much contamination the network localization system is N N =t N
required to tolerate and how much computation the system can  , % Z’J?) W % ny) @ - % de

(1)

i=1

afford, M can be chosen correspondingly. Because the energi[(”
budget of the sensors is limited, and the functionality of the
sensor network may be_ ruined.when_the contamination ratio {$hich can be easily solved using linear least squares.
high, we chosel/ = 20 in our simulations, so that the system ' p,e g the subtraction, the optimum solution of the linear
is resistant up to 30 percent contamination Wit 0.99.  gquations (11) is not exactly the same as the optimum solu-
2) How to get a location estimate from the samples efficientlyiyn, of the nonlinear equations (9), or equivalently equation (6).
To estimate the device locatiqm, yo) from the measure- However, it can save computation and also serve as the start-
ments{z;,y;, d;}, we can use the least squares solution spegig point for the nonlinear LS problem. We noticed that there
fied by equation (6). This is a nonlinear least squares probleia non-negligible probability of falling into a local minimum
and usually involves some iterative searching technique, suctofishe error surface when a random initial value is used with
gradient descent or Newton method, to get the solution. Mongtatlab’s fminsearchfunction to find the solution to equation
over, to avoid local minimum, it is necessary to rerun the aj6). We observed that initiating the nonlinear LS from the lin-
gorithm using several initial starting points, and as a result te@r estimate does not get trapped in a local minimum. In other
computation is relatively expensive. Considering that sens@ysrds, the linear estimate is close to the global minimum of the
have limited power, and LMS finds estimates faf subsets, error surface. A comparison of the performance of the linear
we may want to have a suboptimal but more computationall\s technique, and the nonlinear LS searching starting from the
efficient algorithm. linear estimate is presented in Figure 3. Nonlinear searching
Recall that equation (6) is equivalent to solving the followinfrom the linear estimate performs better than the linear method
at the price of a higher computational complexity. Here, we
only used 30 samples, and that the performance difference be-
5 ‘ ‘ ‘ tween the linear and nonlinear methods should decrease as the
= Nonfearts number of samples increases.

C. Simulation

To test the performance of localization using LMS, we need
to build a threat model first. In this work, we assume that the
adversary successfully gains the ability to arbitrarily modify
the distance measurements for a fractioof the total anchor
nodes. The contamination ratighould be less than 50 percent,
the highest contamination ratio LMS can tolerate. The goal of
20 2 the adversary is to drive the location estimate as far away from
the true location as possible. Rather than randomly perturbing

the measurements of these contaminated devices, the adversary

Fig. 3. The comparison between linear LS, and nonlinear ls%ouldcoordinatehis corruption of the measurements so that
starting from the linear estimate.
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Fig. 4. The performance comparison between LS and LM3g. 5. (a) The impact ot on the performance of LS and
for localization in presence of attack. LMS algorithms ats,, = 15. (b) The impact ofz,, on the
performance of LS and LMS algorithmseat 0.2.

they will push the localization toward the same wrong direction.
The adversary will thus tamper measurements so they lie on the .
parabolic surfacel? (z,y) with a minimum at(z,,y,). As a » e »
result the localization estimate will be pushed towérd, y,,) 2 ==== "
from the true positiorizo, yo) in the absence of robust counter- .

measures. The larger distance betwéen y,) and (xq, yo), N
the larger the estimate deviates frdmy,yo). So we use the .| . L ol

distanced, = \/(a:a —x0)% + (Yo — y0)? as a measurement «—————5—5— e
of the strength of the attack. (ax) (k;)
In our simulation, in addition to the underlying sensor net-

work, we had a localization infrastructure wifi = 30 an-
chor nodes that were randomly deployed Bt x 500m? o
region. We assume that the sensor to be localized gets a S
of {z;,y;,d;} observations by either DV-hop or another dis
tance measurement scheme. In other wordsgdihmay come
from multihop measurements. The measurement noise ob
a Gaussian distribution with me@nand variancer2. The ad-
versary tampers/e measurements such that they all “vote” fo .
(za,ya)- LS and LMS localization algorithms are applied t
the data to obtain the estimatésy, o). For computational
simplicity, we use linear least squares to get location estimat
realizing that a nonlinear least squares approach will improg
the performance a little, but won't change the other features
the algorithms. The distance between the estimate and the

Fig. 6. LMS performs worse than LS when the inlier and
ier data are too close.

ination ratio, but as noted earlier, due to the limitation of the
Eower in sensor network, we trade the performance for reduced
bmplexity.
We also noticed from Figure 4 and Figure 5 (b) that at low
tacking strength, the performance of LS is actually better than
Q.MS. In order to elucidate the reason for this behavior, let us
look the simpler problem of fitting a line through data. In Fig-
Pe 6, we present the line-fitting scenario using an artificial data
t with 40 percent contamination. We generated 50 samples,
ong which 20 samples with= 31, - - -, 50 are the contam-
g X e Hted outliers. When the outlier data are well separated from
location is the corresponding estimation error. __the inlier data, LMS can detect this and fit the inlier data only,
For each contamination ratie and measurement NoiS€ich gives a better fitting than LS. However, when the outlier
level o,, we observed the change of the square roghs are close to the inlier data, it's hard for LMS to tell the
of mean square error (MSE) with the distande = ifterence, so it may fit part of the inlier data and part of the
V(@ — 20)% + (ya — y0)?. As an example, the performancesyytlier data, thus giving a worse estimate than LS.
at two different pairs ofr,, ande are presented in Figure 4, Therefore, when the attack strength is low, LS performs bet-
where the value at each point is the average over 2000 trigls: than LMS. Further, in this case, LS also has a lower com-
As expected, the estimation error of Ordlnary LS increases Wationa] cost. Since power Consumption is an important con-
d, increases due to the non-robustness of the least squareggi®, for sensor networks, we do not want to use LMS when
outliers. The estimation error of LMS increases first until ||t|0t necessary. We have deve|oped an a|gorithm, discussed be-
reaches the maximum at some critical ValU&iQ.f After this low, where we may switch between LS and LMS estimation
critical value, the error decreases slightly and then stabilizes.gAd achieve the performance advantages of each.
other wordsjf LMS is used in localization, it's useless or even
gﬁrggglcfkc.)r the adversary to attempt to conduct too powerful ?{ An Efficient Switchgd LS-LMS Localiz.ation $cheme '
The performance of the LS and LMS algorithms are affected \We use the observation that when outliers exist, t_he variance
by both the contamination ratio and the noise level. Figure(gthe data will be Iarger than that when no outlier exists. More-

(a) illustrates the degradation of the performance jasreases OVer, the farther outliers are from the inliers, the Iarger the vari-
at a fixeds,, = 15, while Figure 5(b) illustrates the impact ofance. This suggests that the variance of the data can be used

measurement noig@n on the performance at a fixed= 0.2. to indicate the distance between inliers and outliers. There-

Not surprisingly, the higher the contamination ratio, the largére, we can do a LS estimate over the data first, and use the
the measurement noise, the larger is the estimation error. AlE@sidues to estimate the data variaagefrom the residuals;,
since we chose and M so the system would be robustup to | S e 5 .

30 percent contamination, 35 percent contamination results'# o» = \/ ==z Then the ratio?= represents the vari-
severe performance degradation as shown in Figure 5(a). Maree expansion due to possible outliers. If the normal measure-
computations might improve the performance at high contamiment noise levetb,, is known, which is a reasonable assump-
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Fig. 7. The performance of the switching algorithm comparingig. 8. (a) The CDF of the error distance for the NNSS method

to LS and LMS algorithms. in Euclidean distance and in median distance, with and without
an attack (one reading is modifieddo ss;, wherea = 0.6).

tion in practice, we can compare the to some threshold”. () Median of the error distance vs. the attacking strength

If g—" > T, we choose to apply the LMS algorithm; otherwise(,One reading is modified ta - ss;).

we just use the LS estimate we have calculated. We refer%@erem from the true location. Such an attack can be eas-

launched by inserting an absorbing barrier between the mo-

bile host and the base station. Sudden change of local environ-
ment, such as turning on a microwave near one base station,
&&n also cause incorrect signal strength readings. To obtain rea-
€bnable location estimates, in spite of attacks or sudden envi-
ronmental changes, we propose to deploy more base stations
and use a robust estimation method to utilize the redundancy

VI. ROBUSTMETHODS FORRF-BASED FINGERPRINTING  Introduced. In particular, instead of minimizing the Euclidean

A different approach to localization is based upon radi&iStance\/Zfil(SSi — ss;)? to find nearest neighbors in sig-
frequency fingerprinting. One of the first implementations wasal space, we can minimize the median of the distances in all
the RADAR system [9, 24]. The system was shown to haw#mensions, i.e. minimizewed’ , (ss; — ss)? to get the “near-
good performance in an office building. In this section, we wiltst” neighbor. In this way, a corrupted estimate won't bias the
show how robustness can be applied to such a RF-based systeighbor searching significantly.
to obtain attack-tolerant localization. We tested the proposed method through simulations. As

In RADAR, multiple base stations are deployed to providpointed out in [9], the radio map can be generated either by
overlapping coverage of an area, such as a floor in an offiempirical measurements, or by signal propagation modeling.
building. During set up, a mobile host with known positiorAlthough the modeling method is less accurate than the empir-
broadcasts beacons periodically. The signal strengths at emeth method, it still captures the data fairly well and provides
base station are measured and stored. Each record has thegmod localization. In [9] avall attenuation factomodel was
mat of {x,y, ss1,---,ssn}, where(z,y) is the mobile posi- used to fit the collected empirical data and, after compensating
tion, andss; is the received signal strength in dBm at théh  for attenuation due to intervening walls, it was found that the
base stationV, the total number of base stations, should be aignal strength varies with the distance in a trend similar to the
least 3 to provide good localization performance. To reduce theneric exponential path loss [25]. In our simulation, we use
noise effect, eachs; is usually the average of multiple meathe model, which we adopted from [9],
surements collected over a time period. The collection of all
measurements forms a radio map that consists of the featured _
signal strengths, or fingerprints, at each sampled position. P(d)[dBm] = P(do)[dBm] = 107log(

Following setup, a mobile may be localized by broadcast- ]
ing beacons and using the signal strengths measured at d@cenerate signal strength data. We used the parameter
base station. To localize the mobile user, we search the #ar, P(do) = 58.48 and~y = 1.523, which were obtained in
dio map collected in the setup phase, and find the fingd®] when fitting the model with the empirical data. We empha-
print that best matches the signal strengths observed. THEE that the trends shown in our results are not affected by the

is, the central base station compares the observed signal gglection of the parameters. We also added random zero-mean
ergy {ss/,---,ssy} with the recorded{z,y, ss,---,ssy}, aussiannoise with variance 1dBm so that the received signal

and pick the locatiorfz, y) that minimizes the Euclidean dis_stt;engthg at z[aé?istance have a similar amount of variation as was
observed in [9].
tance\/Zf\il(ssi — ss;)? as the location estimate of the mo-  The rectangular area we simulated was similar to the region
bile user. This technique is calletkarest neighbor in signal used in [9], and had a siz&m x 25m, which is a reasonable
space (NNSSA slight variant of the technique involves find-size for a large indoor environment. Instead of three base sta-
ing thek nearest neighbors in signal space, and averaging thiéons, we employed six to provide redundancy for robust local-
coordinates to get the location estimate. It was shown in [Blation. We collected samples on a gridiof regularly spaced
that averaging 2 to 4 nearest neighbors improves the locatjpositions in order to form the radio map. During localization,
accuracy significantly. a mobile sends beacons, and the signal strengths at the base
The location estimation method described above is not retations are recorded. The nearest neighbors in signal space
bust to possible attacks. If the reading of signal strength iatterms of Euclidean distance and median distance are each
one base station is corrupted, the estimate can be dramaticdiynd. The coordinates of the four nearest neighbors are aver-

this as the switched algorithm. In our simulation, we foun
thatT = 1.5 gives quite good results over all testedndo,,
pairs. Two examples with differemtando,, are shown in Fig-
ure 7. After the switching strategy is deployed, the performan
curves (the triangles in Figure 7) are very close to the lower
velop of the performance of LS and LMS algorithms.

d
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D s tion, we examined the use of a least median squares estima-
os tor for estimating position. We provided analysis for select-

' ing system parameters. We then proposed an adaptive least
squares and least median squares position estimator that has
} the computational advantages of least squares in the absence
i / of attacks and switches to a robust mode when being attacked.
Sy For fingerprinting-based localization, we introduced robustness

through the use of a median-based distance metric.

@) (b) REFERENCES

: ; ] K. Langendoen and N. Reijers, “Distributed localization in wireless sen-
Fig. 9. (a) The CDF of the error distance for the NNSS metho& sor networks: a quantitative compariso@dmput. Networksvol. 43, no.

in Euclidean distance and in median distance, with and without 4, pp. 499-518, 2003. _
an attack (two readings are modifiedtess;, wherea = 0.6). [2] N. Priyantha, A. Chakraborty, and H. Balakrishnan, “The CRICKET

- : : location-support system,” iRroceedings of the 6th annual international
E::)) Medlc?n of the err((j)_rf .dljsttgnce ;/s. the attacking strength conference on Mobile computing and networking (Mobicom 2G8m)0,
WO readings are moaire + 88;).

pp. 32-43.
[3] D. Nicelescu and B. Nath, “Ad hoc positioning (APS) using AOA,” in
. . . . Proceedings of IEEE Infocom 2003003, pp. 1734 — 1743.
aged to get the final location estimate of the mobile user. [4] S. Capkun and J.P. Hubaux, “Secure positioning in sensor networks,”
To simulate the attack, we randomly choose one reaskng Technical report EPFL/IC/200444, May 2004.

iy i Lca. indi ; [5] L.Lazos and R. Poovendran, “SeRLoc: Secure range-independent local-
and mOdIfy Ittoar-ss;, wherex indicates the attaCkmg strength. ization for wireless sensor networks,” Rroceedings of the 2004 ACM

«a = 1 means no attack. Figure 8 (a) shows the cumulative workshop on Wireless Securi004, pp. 21-30.

distribution function (CDF) of the error distance for the NNSSIS] B. H. Wellenhoff, H. Lichtenegger, and J. Collinlobal Positions Sys-
. . . . H : : em: eory an ractice, Four 1o pringer verlag, .
method in Euclidean distance and in median distance, with angl A Harter, A. Hopper, P. Steggles, A. Ward, and P.Webster, “The anatomy

without an attack. In presence of an attack with= 0.6, of a context-aware application,” iRroceedings of the MOBICOM 99
which is very easy to launch from a practical point of view, . 1999.

. L 8] A. Sawvides, C. C. Han, and M. B. Srivastava, “Dynamic fine-grained
the Euclidean-based NNSS method shows significantly Iargér] localization in ad-hoc networks of sensors,"Rroceedings of the MOBI-

error than when there is no attack, while for the median-based COM 01, 2001. ) N
NSSS approach there is little change (the curves with and witfl P.Bahland V.N. Padmanabhan, “RADAR: An in-building RF-based user

. ; location and tracking system,” iRroceedings of IEEE Infocom 2000
out attack almost completely overlap in Figure 8 (a)). Although 2000, pp. 775-784. g ’

its performance is slightly worse than Euclidean-NNSS in tH&0] J. Hightower, G. Boriello, and R. Want, “SpotON: An indoor 3D Location

AL : _ Sensing Technology Based on RF Signal Strength,” Tech. Rep. Technical
absence of attacks, median-NNSS is much more robust to pos Report 2000-02-02. University of Washington, February 2000,

sible attacks. In Figure 8 (b), we plot the 50th percentile valygel] R. Volpe, T. Litwin, and L. Matthies, “Mobile robot localization by re-
of the error distance for a series@ffrom 0.2 to 1.8. NNSS in nm{ﬁltcem\glevcvg% ;Lﬁccggego%itgdaegé Si@;?gﬁ]esd(ilngs of IEEE/RSJ Inter-
med_'an ‘?“Stance Sh‘?WS gOOd performance acrogssall 12] C. Savarese, K. Langendoen, and J. Rabaey, "“Robust positioning algo-

With six base stations, the system can tolerate attacks on up rithms for distributed ad-hoc wireless sensor networks,Piaceedings

i i ici _ of USENIX Technical Annual Conferen@902.

to two readlngs. For Slmp|IC|ty, we asfs.ume the adversary rﬂ?S] D. Nicelescu and B. Nath, “DV based positioning in ad hoc networks,”
domly selects two readlngs. and mod|f|e§ themtoss;. We Telecommunication Systemsl. 22, no. 1-4, pp. 267280, 2003.
note that such an approach is not a coordinated attack, and thigfe A. Sawvides, H. Park, and M. Srivastava, “The bits and flops of the n-hop

i i-o_ Mmultilateration primitive for node localization problems,” Bmoceedings
may be better attack strategies able to prOduce Iarger localiza of First ACM International Workshop on Wireless Sensor Networks and

tion error. Figure 9 (a) shows the CDF of the error distance at application (WSNA)2002, pp. 112-121.
a = 0.6, and Figure 9 (b) shows the change of median errf#5] N. Bulusu, J. Heidemann, and D. Estrin, “Gps-less low cost outdoor lo-

; ; ; AL i i«.  calization for very small devices/EEE Personal Communications Mag-
distance withv. Again, the median-NNSS exhibits better resis _ azine vol. 7, no. 5, pp. 28-34, 2000.
tance to attacks. We observed the same phenomenon as thaiinT. He, C. Huang, B. Blum, J. Stankovic, and T. Abdelzaher, “Range-free
the triangulation method: it is better for the adversary to not be :%ﬂglzggw gghzeonags for gilrgegzwle sensor networksPraceedings of

. L . , pp. 81 —95.

too greedy when attack_lng the Iogallzatlon scheme. Finally, ] Y.C. Hu, A. Perrig, and D. Johnson, “Packet leashes: a defense against
note that the computational requirements for Euclidean-NNSS' wormhole attacks in wireless networks,”Rioceedings of IEEE Infocom

and median-NNSS are comparable. The fact that there is OEX]
n

t 2003, pp. 1-10.
9] J. Newsome, E. Shi, D. Song, and A. Perrig, “The sybil attack in sensor

marginal performance improvement for Euclidean-NNSS wh

there are no attacks suggests that a switched algorithm is !

critical for fingerprinting-based localization.

VII. CONCLUSIONS
As wireless networks are increasingly deployed for locatio

based services, these networks are becoming more vulnerzi%]lla

2003 2003, pp. 1976-1986.
N. Sastry, U. Shankar, and D. Wagner, “Secure verification of location
claims,” inProceedings of the 2003 ACM workshop on Wireless security

networks: analysis and defenses,” Tihird International Symposium on
Information Processing in Sensor NetwqgrR804, pp. 259-268.

[20] W. Xu, T. Wood, W. Trappe, and Y. Zhang, “Channel surfing and spatial

retreats: defenses against wireless denial of servicePrageedings of
the 2004 ACM workshop on Wireless secyr04, pp. 80—89.

B. Przydatek, D. Song, and A. Perrig, “SIA: secure information aggre-
gation in sensor networks,” i8enSys '03: Proceedings of the 1st Inter-

to misuses and attacks that can lead to false location calcu- national Conference on Embedded Networked Sensor Sys26a8 pp.

lation. Towards the goal of securing localization, this pap
has made two main contributions. It first enumerates a |

of novel attacks that are unique to wireless localization algo- ) ) )
3] P. Rousseeuw and A. Leroy, “Robust regression and outlier detection,”

rithms. Further, this paper proposes the idea of tolerating

255-265.

D. Wagner, “Resilient aggregation in sensor networks,”SHSN '04:
Proceedings of the 2nd ACM workshop on Security of ad hoc and sensor
networks 2004, pp. 78-87.

Wiley-Interscience, September 2003.

tacks, instead of eliminating them, by exploiting redundancigs p. Bahl, V.N. Padmanabhan, and A. Balachandran, “Enhancements to

at various levels within wireless networks. We explored robust
statistical methods to make localization attack-tolerant. We 6%5]
amined two broad classes of localization: triangulation and RF-
based fingerprinting methods. For triangulation-based localiza-

the RADAR User Location and Tracking System,” Tech. Rep. Technical
Report MSR-TR-2000-12, Microsoft Research, February 2000.

A. Goldsmith, Wireless CommunicationgCambridge University Press,
to appear 2005.



