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Abstract— Many sensor applications are being developed that
require the location of wireless devices, and localization schemes
have been developed to meet this need. However, as location-based
services become more prevalent, the localization infrastructure
will become the target of malicious attacks. These attacks will not
be conventional security threats, but rather threats that adversely
affect the ability of localization schemes to provide trustworthy lo-
cation information. This paper identifies a list of attacks that are
unique to localization algorithms. Since these attacks are diverse
in nature, and there may be many unforseen attacks that can by-
pass traditional security countermeasures, it is desirable to alter
the underlying localization algorithms to be robust to intentionally
corrupted measurements. In this paper, we develop robust statisti-
cal methods to make localization attack-tolerant. We examine two
broad classes of localization: triangulation and RF-based finger-
printing methods. For triangulation-based localization, we pro-
pose an adaptive least squares and least median squares position
estimator that has the computational advantages of least squares
in the absence of attacks and is capable of switching to a robust
mode when being attacked. We introduce robustness to finger-
printing localization through the use of a median-based distance
metric. Finally, we evaluate our robust localization schemes under
different threat conditions.

I. I NTRODUCTION

The infrastructure provided by wireless networks promises to
have a significant impact on the way computing is performed.
Not only will information be available while we are on the
go, but new location-aware computing paradigms along with
location-sensitive security policies will emerge. Already, many
techniques have emerged to provide the ability to localize a
communicating device [1–5].

Enforcement of location-aware security policies (e.g., this
laptop should not be taken out of this building, or this file should
not be opened outside of a secure room) requires trusted lo-
cation information. As more of these location-dependent ser-
vices get deployed, the very mechanisms that provide location
information will become the target of misuse and attacks. In
particular, the location infrastructure will be subjected to many
localization-specificthreats that cannot be addressed through
traditional security services. Therefore, as we move forward
with deploying wireless systems that support location services,
it is prudent to integrate appropriate mechanisms that protect
localization techniques from these new forms of attack.

The purpose of this paper is to examine the problem of se-
cure localization from a viewpoint different from traditional
network security services. In addition to identifying different
attacks and misuse faced by wireless localization mechanisms,
we take the viewpoint that these vulnerabilities can be mitigated
by exploiting the redundancy present in typical wireless de-
ployments. Rather than introducing countermeasures for every
possible attack, our approach is to providelocalization-specific,
attack-tolerantmechanisms that shield the localization infras-
tructure from threats that bypass traditional security defenses.
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The idea is to live with bad nodes rather than eliminate all pos-
sible bad nodes.

We begin in Section II by presenting an overview of several
techniques used in wireless localization, as well as discuss ef-
forts that have been made to provide security to localization.
Following the review, we explore localization-specific attacks
that can be mounted against wireless localization services in
Section III. To address these attacks, we propose the use of
robust statistical methods. In Section V and Section VI we fo-
cus our discussion on applying robust mechanisms to two broad
classes of localization: triangulation and fingerprinting meth-
ods. We introduce the notion of coordinated adversarial attacks
on the location infrastructure, and present a strategy for launch-
ing a coordinated attack on triangulation-based methods. For
triangulation-based localization, we propose the use of least
median squares (LMS) as an improvement over least squares
(LS) for achieving robustness to attacks. We formulate a lin-
earization of the least squares location estimator in order to
reduce the computational complexity of LMS. Since LS out-
performs LMS in the absence of aggressive attacks, we devise
an online algorithm that can adaptively switch between LS and
LMS to ensure that our localization algorithm operates in a de-
sirable regime in the presence of varying adversarial threats.
For fingerprinting-based location estimation, we show that the
use of traditional Euclidean distance metrics is not robust to
intentional attacks launched against the base stations involved
in localization. We propose a median-based nearest neighbor
scheme that employs a median-based distance metric that is ro-
bust to location attacks. The use of median does not require ad-
ditional computational resources, and in the absence of attacks
has performance comparable to existing techniques. Finally, we
present conclusions in Section VII.

II. RELATED WORK

Broadly speaking, there are two main categories of localiza-
tion techniques: those that involve range estimation, and those
that do not [1]. Range-based localization algorithms involve
measuring physical properties that can be used to calculate the
distance between a sensor node and an anchor point whose loca-
tion is known. Time of Arrival (TOA) is an important property
that can be used to measure range, and arises in GPS [6]. The
Time Difference of Arrival (TdOA) is also widely used, and
has been used in MIT’s Cricket [2], and appeared in [7, 8]. In
addition, APS [3] pointed out that the Angle of Arrival (AOA)
can be used to calculate the relative angle between two nodes,
which can be further used to calculate the distance. The RSSI
value of the received signal, together with the signal propaga-
tion model, is also a good indicator of the distance between
two nodes [9, 10]. Other properties of arriving signals can also
be exploited. One interesting example is to use visual cuing
[11], which tries to determine the position and orientation of
a mobile robot from visual cues obtained from color cylinders
strategically placed in the field of the view.



Range-free localization algorithms do not require the mea-
surement of physical distance-related properties. For example,
one can count the number of hops between a sensor node and
an anchor point, and further convert the hop counts to physi-
cal distances, such as in [12–14]. As another example, a sensor
node can estimate its location using the centroid of those anchor
nodes that are within its radio range, such as in Centroid [15].
Similarly, APIT [16] employs an area-based estimation scheme
to determine a node’s location. Compared to range-based local-
ization algorithms, these schemes do not require special hard-
ware, and their accuracies are thus lower as well.

Secure localization has received attention only recently. In
[4], the authors listed a few attacks that might affect the cor-
rectness of localization algorithms along with a few counter-
measures. One technique that may be used to defend against
wormhole attacks is to employ packet leashes [17]. SecRLoc
[5] employs a sectored antenna, and presented an algorithm that
makes use of the property that two sensor nodes that can hear
from each other must be within the distance2r assumingr is
fixed in order to defend against attacks. A different approach to
securing location information was presented in [18], where the
concept of location verification was introduced. Compared to
these studies, our paper takes a distinct approach thatwe should
learn how to live with bad guys rather than defeating each type
of attack. In addition, we also identify a more complete list of
attacks that areuniqueto localization algorithms.

III. A TTACKS UNIQUE TO LOCALIZATION

Different localization methods are built upon the measure-
ment of some basic properties. In Table I, we enumerate several
properties that are used by localization algorithms, along with
different threats that may be employed against these properties.
The threats we identify are specific to localization, and are pri-
marily non-cryptographicattacks that are directed against the
measurement process. Consequently, these attacks bypass con-
ventional security services.

We note, however, that there are many classical security
threats that may be launched against a wireless or sensor net-
work, which can have an adverse affect on the localization pro-
cess. For example, a Sybil attack can disrupt localization ser-
vices by allowing a device to claim multiple identities. In order
to address the Sybil attack, one may employ entity verification
techniques, such as radio resource testing or the verification of
key sets, which were presented in [19]. In general, for attacks
that are cryptographic in nature, there are extensive efforts to
migrate traditional security services, such as authentication, to
the sensor platform in order to handle these threats.

Even so, though, it should be realized that it is unlikely that
any single technique will remove all possible threat models
and, in spite of the security countermeasures that are employed,
many adversarial attacks will be able to bypass security lay-
ers. To address threats that arenon-cryptographic, or threats
that bypass conventional security countermeasures, we take the
viewpoint that statistical robustness needs to be introduced into
the wireless localization process.

We now explore several of these threats. We start by looking
at methods that employ time of flight. The basic concept behind
time of flight methods is that there is a direct relationship be-
tween the distance between two points, the propagation speed,
and the duration needed for a signal to propagate between these
two points. For time of flight methods, an attacker may try to
bias the estimation of distance to a larger value by forcing the
observed signal to come from a multipath. This may be accom-
plished by placing a barrier sufficiently close to the transmitter

Fig. 1. (Left) Operation of localization using hop count, (Mid-
dle) Wormhole attack on hop count methods, and (Right) Jam-
ming attack on hop count methods.

and effectively removing the line-of-sight signal. Another tech-
nique that may be used to falsely increase the distance estimate
occurs in techniques employing round-trip time of flight. Here,
an adversarial target that does not wish to be located by the
network receives a transmission and holds it for a short time
before retransmitting. An attack that skews the distances to
smaller values can be accomplished by exploiting the propa-
gation speed of different media. For example, in CRICKET
[2], the combination of an RF signal and an ultrasound signal
allows for the estimation of distance since the acoustic signal
travels at a slower propagation velocity. An adversary located
near the target may therefore hear the RF signal and then trans-
mit an ultrasound signal that would arrive before the original
ultrasound signal can reach the receiver [4].

As another example, consider a location system that uses sig-
nal strength as the basis for location. Such a system is very
closely tied to the underlying physical-layer path loss model
that is employed (such as a free space model where signal
strength decays in inverse proportion to the square of distance).
In order to attack such a system, an adversary could intro-
duce an absorbing barrier between the transmitter and the tar-
get, changing the underlying propagation physics. As the sig-
nal propagates through the barrier, it is attenuated, and hence
the target would observe a significantly lower received signal
strength. Consequently, the receiver would conclude that it is
further from the transmitter than it actually is.

Hop count based localization schemes [13] usually consist of
two phases. In the first phase, per-hop distance is measured.
In the second phase, anchor points flood beacons to individual
sensor nodes, which count the number of hops between them,
and these hop counts are translated into physical distances. As
a result, adversaries can initiate attacks as follows: (1) manipu-
late the hop count measurement, and (2) manipulate the trans-
lation from hop count to physical distance. A number of tricks
can be played to tweak hop count measurements, ranging from
PHY-layer attacks, such as increasing/decreasing transmission
power, to network layer attacks that tamper with the routing
path. Since PHY-layer attacks have been discussed earlier, we
now focus on some possible network layer attacks, namely jam-
ming [20] and wormholes [17]. By jamming a certain area be-
tween two nodes, beacons may take a longer route to reach the
other end (as shown in Figure 1), which increases the measured
hop count. While jamming may not always increase the hop
count, for it may not block the shortest path between the two
nodes, the other type of attacks, which involve wormhole links,
are more harmful because they can often significantly shorten
the shortest path and result in a much smaller hop count. Fig-
ure 1 illustrates such a scenario: the shortest path between an-
chor L and node A has 7 hops, while the illustrated wormhole
brings the hop count down to 3. Consequently, these attacks can
also affect the translation from hop count to physical distance.
In addition, if adversaries can manage to physically remove or
displace some sensor nodes, even correct hop counts are not
useful for obtaining accurate location calculations.



Property Example Algorithms Attack Threats

Time of Flight Cricket
Remove direct path and force radio transmission to employ a multipath; Delay transmission of a re-
sponse message; Exploit difference in propagation speeds (speedup attack, transmission through a
different medium).

Signal Strength RADAR, SpotON, Nibble
Remove direct path and force radio transmission to employ a multipath; Introduce different microwave
or acoustic propagation loss model; Transmit at a different power than specified by protocol; Locally
elevate ambient channel noise.

Angle of Arrival APS
Remove direct path and force radio transmission to employ a multipath; Change the signal arrival angel
by using reflective objects, e.g., mirrors; Alter clockwise/counter-clockwise orientation of receiver
(up-down attack).

Region Inclusion APIT, SerLoc
Enlarge neighborhood by wormholes; Manipulate the one-hop distance measurements; Alter neigh-
borhood by jamming along certain directions.

Hop Count DV-Hop
Shorten the routing path between two nodes through wormholes; Lengthen the routing path between
two nodes by jamming; Alter the hop count by manipulating the radio range; Vary per-hop distance by
physically removing/displacing nodes.

Neighbor Location Centroid Method, SerLoc
Shrink radio region (jamming); Enlarge radio region (transmit at higher power, wormhole); Replay;
Modify the message; Physically move locators; Change antenna receive pattern.

TABLE I
PROPERTIES EMPLOYED BY DIFFERENT LOCALIZATION ALGORITHMS AND ATTACKS THAT MAY BE LAUNCHED AGAINST THESE PROPERTIES.

Localization methods that use neighbor locations are built
upon the implicit assumption that neighbors are uniformly dis-
tributed in space around the wireless device. These localiza-
tion methods, such as the Centroid method, can be attacked by
altering the shape of the received radio region. For example,
an attacker can shrink the effective radio region through block-
ing some neighbors by introducing a strong absorbing barrier
around several neighbors. Another approach to shrinking the
radio region is for an adversary to employ a set of strategically
located jammers. Since these neighbors are not heard by the
wireless device, the location estimate will be biased toward the
unblocked side.

IV. ROBUST LOCALIZATION : L IVING WITH BAD GUYS

As discussed in the previous section, wireless networks are
susceptible to numerous localization-specific attacks. These at-
tacks will be mounted by clever adversaries, and as a result will
behave dramatically different from measurement anomalies that
arise due to the underlying wireless medium. For example,
signal strength measurements may be significantly altered by
opening doorways in a hallway, or by the presence of passersby.
Although these errors are severe, and can degrade the perfor-
mance of a localization scheme, they are not intentional, and
therefore not likely to provide a persistent bias to any specific
localization scheme. However, the attacks mentioned in Sec-
tion III will be intelligent and coordinated, causing significant
bias to the localization results.

Solutions that can combat some of these localization at-
tacks have been proposed, often involving conventional secu-
rity techniques [4, 5]. However, as noted earlier, it is unlikely
that conventional security will be able to remove all threats to
wireless localization. We therefore take the viewpoint that in-
stead of coming up with solutions for each attack, it is essen-
tial to achieve robustness to unforeseen and non-filterable at-
tacks. Particularly, localization must function properly even in
the presence of these attacks.

Our strategy to accomplish this is to take advantage of the re-
dundancy in the deployment of the localization infrastructure to
provide stability to contaminated measurements. In particular,
we develop statistical tools that may be used to make localiza-
tion techniques robust to adversarial data. As a byproduct, our
techniques will be robust to non-adversarial corruption of mea-
surement data. For the purpose of the discussion, we shall focus
our attention on two classes of localization schemes: triangu-
lation, and the method of RF fingerprinting. We have chosen
these two methods since they represent a broad survey of the
methods used. Our discussion and evaluations will focus on

the case where we localize a single device. Localizing multi-
ple nodes involves applying the proposed techniques for each
device that is to be localized.

The methods we will propose here make use of the median.
Median-based approaches for data aggregation in sensor net-
works have recently been proposed [21, 22], and use the me-
dian as a resilient estimate of the average of aggregated data.
On the other hand, localizing a device involves estimating a de-
vice’s position from physical measurements not directly related
to position, such as signal strength. Applying robust techniques
to wireless sensor localization is challenging as it involves not
only integrating robust statistical methods that estimate posi-
tion from other types of measurements, but also must consider
important issues such as computational overhead.

V. ROBUST METHODS FORTRIANGULATION

Triangulation methods constitute a large class of localization
algorithms that exploit some measurement to estimate distances
to anchors, and from these distances an optimization procedure
is used to determine the optimal position. The robust methods
that we describe can be easily extended to other localization
techniques, such as the Centroid method.

Triangulation methods involve gathering a collection of
{(x, y, d)} values, whered represents an estimated distance
from the wireless device to an anchor at(x, y). These distances
d may be stem from different types of measurements, such as
hop counts in multi-hop networks (as in the case of DV-hop
[13]), time of flight (as in the case of CRICKET), or signal
strength. For example, in a hop-based scheme like DV-hop, fol-
lowing the flooding of beacons by anchor nodes, hop counts are
measured between anchor points and the wireless device, which
are then transformed into distance estimates.

In the ideal case, where the distances are not subjected to
any measurement noise, these{(x, y, d)} values map out a
parabolic surface

d2(x, y) = (x− x0)2 + (y − y0)2, (1)

whose minimum value(x0, y0) is the wireless device location.
Gathering several{(xj , yj , dj)} values and solving for(x0, y0)
is a simple least squares problem that accounts for overdetermi-
nation of the system and the presence of measurement noise.

However, such an approach is not suitable in the presence
of malicious perturbations to the{(x, y, d)} values. For ex-
ample, if an adversary alters the hop count, perhaps through a
wormhole attack or jamming attack, the altered hop count may
result in significant deviation of the distance measurementd



from its true value. The use of a single, significantly incor-
rect {(x, y, d)} value will drive the location estimate signifi-
cantly away from the true location in spite of the presence of
other, correct{(x, y, d)} values. This exposes the vulnerability
of least squares localization method to attacks, and we would
like to find a robust alternative, as discussed below, to reduce
the impact of attacks on localization.

A. Robust Fitting: Least Median of Squares

The vulnerability of the least squares algorithm to attacks is
essentially due to its non-robustness to “outliers”. The general
formulation for the LS algorithm minimizes the cost function

J(θ) =
N∑

i=1

[ui − f(vi, θ)]2, (2)

whereθ is the parameter to be estimated,ui corresponds to the
i-th measured data sample,vi corresponds to the absissas for
the parameterized surfacef(vi, θ), |yi−f(xi, θ)| is the residue
for thei-th sample, andN is the total number of samples. Due
to the summation in the cost function, a single influential outlier
may ruin the estimation.

To increase robustness to outliers, a robust cost function is
needed. For example, the method of least median of squares,
introduced by Rousseeuw and described in detail in [23], is one
of the most commonly used robust fitting algorithms. Instead of
minimizing the summation of the residue squares, LMS fitting
minimizes the median of the residue squares

J(θ) = medi[yi − f(xi, θ)]2. (3)

Now a single outlier has little effect on the cost function, and
won’t bias the estimate significantly. It is known that in absence
of noise, LMS tolerates up to 50 percent outliers amongN total
measurements, and still give the correct estimate [23].

The exact solution for LMS is computationally prohibitive.
An efficient and statistically robust alternative [23] is to solve
random subsets of{(xi, yi)} values to get several candidateθ̂.
The median of the residue squares for each candidate is then
computed, and the one with the least median of residue squares
is chosen as a tentative estimate. However, this tentative esti-
mate is obtained from a small subset of samples. It is desirable
to include more samples that are not outliers for a better estima-
tion. So, the samples are reweighted based on their residues for
the tentative estimate, followed by a reweighted least squares
fitting to get the final estimate.

The samples can be reweighted in various ways. A simple
thresholding method given by [23] is

wi =
{

1, | ri

s0
| ≤ γ

0, otherwise (4)

whereγ is a predetermined threshold,ri is the residue of the
i-th sample for the least median subset estimateθ̂, ands0 is the
scale estimate given by [23]

s0 = 1.4826(1 +
5

N − p
)
√

medir2
i (θ̂), (5)

wherep is the dimension of the estimated variable. The term
(1+ 5

N−p ) is used to compensate the tendency for a small scale
estimate when there are few samples.

Assume we are given a set ofN samples, and that we aim
to estimate ap-dimensional variableθ from this ensemble. The
procedure for implementing the robust LMS algorithm is sum-
marized as follows:

1) Choose an appropriate subset sizen, the total number of
subsets randomly drawnM , and a thresholdγ.

2) Randomly drawM subsets of sizen from the data ensem-
ble. Find the estimatêθj for each subset. Calculate the
median of residuesr2

ij for everyθ̂j . Herei = 1, 2, · · · , N
is the index for samples, whilej = 1, 2, · · · ,M is the
index for the subsets.

3) Definem = arg minj medi{r2
ij}, thenθ̂m is the subset

estimate with the least median of residues, and{rim} is
the corresponding residues.

4) Calculates0 = 1.4826(1 + 5
N−p )

√
medir2

im.
5) Assign weightwi to each sample using Equation (4).
6) Do a weighted least squares fitting to all data with

weights{wi} to get the final estimatêθ.

B. Robust Localization with LMS

In the absence of attacks, the device location estimate
(x̂0, ŷ0) can be found by least squares, i.e.

(x̂0, ŷ0) = arg min
(x0,y0)

N∑

i=1

[
√

(xi − x0)2 + (yi − y0)2 − di]2.

(6)
In presence of attacks, however, the adversary produces “out-
liers” in the measurements. Instead of identifying this misin-
formation, we would like to live with them and still get a rea-
sonable location estimate (identification of misinformation will
come out as a byproduct naturally). To achieve this goal, we
use LMS instead of least squares to estimate the location. That
is, we can find(x̂0, ŷ0) such that

(x̂0, ŷ0) = arg min
(x0,y0)

medi[
√

(xi − x0)2 + (yi − y0)2 − di]2.

(7)
Then the above LMS procedure can be used.

However, before using the algorithm, we need to consider
two issues: First, how to choose the appropriaten and M
for LMS-based localization? Second, how to get an estimate
from the samples efficiently? The answers depend on the re-
quired performance and the affordable computational complex-
ity. Considering that power is limited for sensor networks, and
that the computational complexity of LMS depends on both the
parameters and algorithmic implementation, we would like to
gain the robustness of LMS with minimal additional computa-
tion compared to least squares, while exhibiting only negligible
performance degradation. These two issues are now addressed.
1) How to choose the appropriaten andM?

The basic idea of the LMS implementation is that, hopefully,
at least one subset among all subsets does not contain any con-
taminated samples, and the estimate from this good subset will
thus fit the inlier (non-corrupted) data well. Since the inlier data
are the majority (> 50%) of the data, the median of residues
corresponding to this estimate will be smaller than that from
the bad subsets.

We now calculate the probabilityP to get at least one good
subset without contamination. Assuming the contamination ra-
tio is ε, i.e,εN samples are outliers, it is easy to get that

P = 1− (1− (1− ε)n)M . (8)
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Fig. 2. The contour plot of the equation (8): probability to
get at least one good subset over contamination ratio and the
number of subsets whenn = 4.

For a fixedM and ε, the largern, the smaller isP . So the
size of a subsetn is often chosen such that it’s just enough to
get an estimate. In our case, although the minimum number of
samples needed to decide a location is 3, we have chosenn = 4
to reduce the chance that the samples are too close to each other
to produce a numerically stable position estimate.

Oncen is chosen, we can decide the value ofP for a given
pair ofM andε. A contour plot ofP over a grid ofM andε is
shown in Figure 2. For largerε, a largerM is needed to obtain a
satisfactory probability of at least one good subset. Depending
on how much contamination the network localization system is
required to tolerate and how much computation the system can
afford,M can be chosen correspondingly. Because the energy
budget of the sensors is limited, and the functionality of the
sensor network may be ruined when the contamination ratio is
high, we choseM = 20 in our simulations, so that the system
is resistant up to 30 percent contamination withP ≥ 0.99.
2) How to get a location estimate from the samples efficiently?

To estimate the device location(x0, y0) from the measure-
ments{xi, yi, di}, we can use the least squares solution speci-
fied by equation (6). This is a nonlinear least squares problem,
and usually involves some iterative searching technique, such as
gradient descent or Newton method, to get the solution. More-
over, to avoid local minimum, it is necessary to rerun the al-
gorithm using several initial starting points, and as a result the
computation is relatively expensive. Considering that sensors
have limited power, and LMS finds estimates forM subsets,
we may want to have a suboptimal but more computationally
efficient algorithm.

Recall that equation (6) is equivalent to solving the following
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Fig. 3. The comparison between linear LS, and nonlinear LS
starting from the linear estimate.

equations whenN ≥ 2:

(x1 − x0)2 + (y1 − y0)2 = d2
1

(x2 − x0)2 + (y2 − y0)2 = d2
2 (9)

...
(xN − x0)2 + (yN − y0)2 = d2

N

Averaging all the left parts and right parts respectively, we get

1
N

N∑

i=1

[(xi − x0)2 + (yi − y0)2] =
1
N

N∑

i=1

d2
i . (10)

Subtracting each side of the equation above from equation (9),
we linearize to get the new equations

(x1 −
1

N

N∑
i=1

xi)x0 + (y1 −
1

N

N∑
i=1

yi)y0 =

1

2
[(x

2
1 −

1

N

N∑
i=1

x
2
i ) + (y

2
1 −

1

N

N∑
i=1

y
2
i )− (d

2
1 −

1

N

N∑
i=1

d
2
i )]

.

.

. (11)

(xN − 1

N

N∑
i=1

xi)x0 + (yN − 1

N

N∑
i=1

yi)y0 =

1

2
[(x

2
N − 1

N

N∑
i=1

x
2
i ) + (y

2
N − 1

N

N∑
i=1

y
2
i )− (d

2
N − 1

N

N∑
i=1

d
2
i )],

which can be easily solved using linear least squares.
Due to the subtraction, the optimum solution of the linear

equations (11) is not exactly the same as the optimum solu-
tion of the nonlinear equations (9), or equivalently equation (6).
However, it can save computation and also serve as the start-
ing point for the nonlinear LS problem. We noticed that there
is a non-negligible probability of falling into a local minimum
of the error surface when a random initial value is used with
Matlab’s fminsearchfunction to find the solution to equation
(6). We observed that initiating the nonlinear LS from the lin-
ear estimate does not get trapped in a local minimum. In other
words, the linear estimate is close to the global minimum of the
error surface. A comparison of the performance of the linear
LS technique, and the nonlinear LS searching starting from the
linear estimate is presented in Figure 3. Nonlinear searching
from the linear estimate performs better than the linear method
at the price of a higher computational complexity. Here, we
only used 30 samples, and that the performance difference be-
tween the linear and nonlinear methods should decrease as the
number of samples increases.

C. Simulation

To test the performance of localization using LMS, we need
to build a threat model first. In this work, we assume that the
adversary successfully gains the ability to arbitrarily modify
the distance measurements for a fractionε of the total anchor
nodes. The contamination ratioε should be less than 50 percent,
the highest contamination ratio LMS can tolerate. The goal of
the adversary is to drive the location estimate as far away from
the true location as possible. Rather than randomly perturbing
the measurements of these contaminated devices, the adversary
shouldcoordinatehis corruption of the measurements so that



0 50 100 150 200 250
10

20

30

40

50

60

70

d
a

sq
rt

(M
S

E
)

LS 
LMS

0 50 100 150 200 250
0

10

20

30

40

50

60

70

80

90

100

d
a

sq
rt

(M
S

E
)

LS 
LMS

(a) ε = 0.2, σn = 20 (b) ε = 0.3, σn = 15

Fig. 4. The performance comparison between LS and LMS
for localization in presence of attack.

they will push the localization toward the same wrong direction.
The adversary will thus tamper measurements so they lie on the
parabolic surfaced2

a(x, y) with a minimum at(xa, ya). As a
result the localization estimate will be pushed toward(xa, ya)
from the true position(x0, y0) in the absence of robust counter-
measures. The larger distance between(xa, ya) and(x0, y0),
the larger the estimate deviates from(x0, y0). So we use the
distanceda =

√
(xa − x0)2 + (ya − y0)2 as a measurement

of the strength of the attack.
In our simulation, in addition to the underlying sensor net-

work, we had a localization infrastructure withN = 30 an-
chor nodes that were randomly deployed in a500 × 500m2

region. We assume that the sensor to be localized gets a set
of {xi, yi, di} observations by either DV-hop or another dis-
tance measurement scheme. In other words, thedj may come
from multihop measurements. The measurement noise obeys
a Gaussian distribution with mean0 and varianceσ2

n. The ad-
versary tampersNε measurements such that they all “vote” for
(xa, ya). LS and LMS localization algorithms are applied to
the data to obtain the estimates(x̂0, ŷ0). For computational
simplicity, we use linear least squares to get location estimates,
realizing that a nonlinear least squares approach will improve
the performance a little, but won’t change the other features of
the algorithms. The distance between the estimate and the true
location is the corresponding estimation error.

For each contamination ratioε and measurement noise
level σn, we observed the change of the square root
of mean square error (MSE) with the distanceda =√

(xa − x0)2 + (ya − y0)2. As an example, the performances
at two different pairs ofσn and ε are presented in Figure 4,
where the value at each point is the average over 2000 trials.
As expected, the estimation error of ordinary LS increases as
da increases due to the non-robustness of the least squares to
outliers. The estimation error of LMS increases first until it
reaches the maximum at some critical value ofda. After this
critical value, the error decreases slightly and then stabilizes. In
other words,if LMS is used in localization, it’s useless or even
harmful for the adversary to attempt to conduct too powerful of
an attack.

The performance of the LS and LMS algorithms are affected
by both the contamination ratio and the noise level. Figure 5
(a) illustrates the degradation of the performance asε increases
at a fixedσn = 15, while Figure 5(b) illustrates the impact of
measurement noiseσn on the performance at a fixedε = 0.2.
Not surprisingly, the higher the contamination ratio, the larger
the measurement noise, the larger is the estimation error. Also,
since we chosen andM so the system would be robust up to
30 percent contamination, 35 percent contamination results in
severe performance degradation as shown in Figure 5(a). More
computations might improve the performance at high contam-
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Fig. 5. (a) The impact ofε on the performance of LS and
LMS algorithms atσn = 15. (b) The impact ofσn on the
performance of LS and LMS algorithms atε = 0.2.
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Fig. 6. LMS performs worse than LS when the inlier and
outlier data are too close.

ination ratio, but as noted earlier, due to the limitation of the
power in sensor network, we trade the performance for reduced
complexity.

We also noticed from Figure 4 and Figure 5 (b) that at low
attacking strength, the performance of LS is actually better than
LMS. In order to elucidate the reason for this behavior, let us
look the simpler problem of fitting a line through data. In Fig-
ure 6, we present the line-fitting scenario using an artificial data
set with 40 percent contamination. We generated 50 samples,
among which 20 samples withx = 31, · · · , 50 are the contam-
inated outliers. When the outlier data are well separated from
the inlier data, LMS can detect this and fit the inlier data only,
which gives a better fitting than LS. However, when the outlier
data are close to the inlier data, it’s hard for LMS to tell the
difference, so it may fit part of the inlier data and part of the
outlier data, thus giving a worse estimate than LS.

Therefore, when the attack strength is low, LS performs bet-
ter than LMS. Further, in this case, LS also has a lower com-
putational cost. Since power consumption is an important con-
cern for sensor networks, we do not want to use LMS when
not necessary. We have developed an algorithm, discussed be-
low, where we may switch between LS and LMS estimation
and achieve the performance advantages of each.

D. An Efficient Switched LS-LMS Localization Scheme

We use the observation that when outliers exist, the variance
of the data will be larger than that when no outlier exists. More-
over, the farther outliers are from the inliers, the larger the vari-
ance. This suggests that the variance of the data can be used
to indicate the distance between inliers and outliers. There-
fore, we can do a LS estimate over the data first, and use the
residues to estimate the data varianceσ̂n from the residualsri,

i.e. σ̂n =

√∑N

i=1
r2

i

N−2 . Then the ratioσ̂n

σn
represents the vari-

ance expansion due to possible outliers. If the normal measure-
ment noise levelσn is known, which is a reasonable assump-
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Fig. 7. The performance of the switching algorithm comparing
to LS and LMS algorithms.

tion in practice, we can compare theσ̂n

σn
to some thresholdT .

If σ̂n

σn
> T , we choose to apply the LMS algorithm; otherwise,

we just use the LS estimate we have calculated. We refer to
this as the switched algorithm. In our simulation, we found
thatT = 1.5 gives quite good results over all testedε andσn

pairs. Two examples with differentε andσn are shown in Fig-
ure 7. After the switching strategy is deployed, the performance
curves (the triangles in Figure 7) are very close to the lower en-
velop of the performance of LS and LMS algorithms.

VI. ROBUST METHODS FORRF-BASED FINGERPRINTING

A different approach to localization is based upon radio-
frequency fingerprinting. One of the first implementations was
the RADAR system [9, 24]. The system was shown to have
good performance in an office building. In this section, we will
show how robustness can be applied to such a RF-based system
to obtain attack-tolerant localization.

In RADAR, multiple base stations are deployed to provide
overlapping coverage of an area, such as a floor in an office
building. During set up, a mobile host with known position
broadcasts beacons periodically. The signal strengths at each
base station are measured and stored. Each record has the for-
mat of {x, y, ss1, · · · , ssN}, where(x, y) is the mobile posi-
tion, andssi is the received signal strength in dBm at thei-th
base station.N , the total number of base stations, should be at
least 3 to provide good localization performance. To reduce the
noise effect, eachssi is usually the average of multiple mea-
surements collected over a time period. The collection of all
measurements forms a radio map that consists of the featured
signal strengths, or fingerprints, at each sampled position.

Following setup, a mobile may be localized by broadcast-
ing beacons and using the signal strengths measured at each
base station. To localize the mobile user, we search the ra-
dio map collected in the setup phase, and find the finger-
print that best matches the signal strengths observed. That
is, the central base station compares the observed signal en-
ergy {ss′1, · · · , ss′N} with the recorded{x, y, ss1, · · · , ssN},
and pick the location(x, y) that minimizes the Euclidean dis-

tance
√∑N

i=1(ssi − ss′i)2 as the location estimate of the mo-
bile user. This technique is callednearest neighbor in signal
space (NNSS). A slight variant of the technique involves find-
ing thek nearest neighbors in signal space, and averaging their
coordinates to get the location estimate. It was shown in [9]
that averaging 2 to 4 nearest neighbors improves the location
accuracy significantly.

The location estimation method described above is not ro-
bust to possible attacks. If the reading of signal strength at
one base station is corrupted, the estimate can be dramatically
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Fig. 8. (a) The CDF of the error distance for the NNSS method
in Euclidean distance and in median distance, with and without
an attack (one reading is modified toα · ssi, whereα = 0.6).
(b) Median of the error distance vs. the attacking strengthα
(one reading is modified toα · ssi).

different from the true location. Such an attack can be eas-
ily launched by inserting an absorbing barrier between the mo-
bile host and the base station. Sudden change of local environ-
ment, such as turning on a microwave near one base station,
can also cause incorrect signal strength readings. To obtain rea-
sonable location estimates, in spite of attacks or sudden envi-
ronmental changes, we propose to deploy more base stations
and use a robust estimation method to utilize the redundancy
introduced. In particular, instead of minimizing the Euclidean

distance
√∑N

i=1(ssi − ss′i)2 to find nearest neighbors in sig-
nal space, we can minimize the median of the distances in all
dimensions, i.e. minimizemedN

i=1(ssi−ss′i)
2 to get the “near-

est” neighbor. In this way, a corrupted estimate won’t bias the
neighbor searching significantly.

We tested the proposed method through simulations. As
pointed out in [9], the radio map can be generated either by
empirical measurements, or by signal propagation modeling.
Although the modeling method is less accurate than the empir-
ical method, it still captures the data fairly well and provides
good localization. In [9] awall attenuation factormodel was
used to fit the collected empirical data and, after compensating
for attenuation due to intervening walls, it was found that the
signal strength varies with the distance in a trend similar to the
generic exponential path loss [25]. In our simulation, we use
the model, which we adopted from [9],

P (d)[dBm] = P (d0)[dBm]− 10γlog(
d

d0
), (12)

to generate signal strength data. We used the parameterd0 =
1m, P (d0) = 58.48 andγ = 1.523, which were obtained in
[9] when fitting the model with the empirical data. We empha-
size that the trends shown in our results are not affected by the
selection of the parameters. We also added random zero-mean
Gaussian noise with variance 1dBm so that the received signal
strengths at a distance have a similar amount of variation as was
observed in [9].

The rectangular area we simulated was similar to the region
used in [9], and had a size45m × 25m, which is a reasonable
size for a large indoor environment. Instead of three base sta-
tions, we employed six to provide redundancy for robust local-
ization. We collected samples on a grid of50 regularly spaced
positions in order to form the radio map. During localization,
a mobile sends beacons, and the signal strengths at the base
stations are recorded. The nearest neighbors in signal space
in terms of Euclidean distance and median distance are each
found. The coordinates of the four nearest neighbors are aver-
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Fig. 9. (a) The CDF of the error distance for the NNSS method
in Euclidean distance and in median distance, with and without
an attack (two readings are modified toα · ssi, whereα = 0.6).
(b) Median of the error distance vs. the attacking strengthα
(two readings are modified toα · ssi).

aged to get the final location estimate of the mobile user.
To simulate the attack, we randomly choose one readingssi

and modify it toα·ssi, whereα indicates the attacking strength.
α = 1 means no attack. Figure 8 (a) shows the cumulative
distribution function (CDF) of the error distance for the NNSS
method in Euclidean distance and in median distance, with and
without an attack. In presence of an attack withα = 0.6,
which is very easy to launch from a practical point of view,
the Euclidean-based NNSS method shows significantly larger
error than when there is no attack, while for the median-based
NSSS approach there is little change (the curves with and with-
out attack almost completely overlap in Figure 8 (a)). Although
its performance is slightly worse than Euclidean-NNSS in the
absence of attacks, median-NNSS is much more robust to pos-
sible attacks. In Figure 8 (b), we plot the 50th percentile value
of the error distance for a series ofα from 0.2 to 1.8. NNSS in
median distance shows good performance across allα’s.

With six base stations, the system can tolerate attacks on up
to two readings. For simplicity, we assume the adversary ran-
domly selects two readings and modifies them toα · ssi. We
note that such an approach is not a coordinated attack, and there
may be better attack strategies able to produce larger localiza-
tion error. Figure 9 (a) shows the CDF of the error distance at
α = 0.6, and Figure 9 (b) shows the change of median error
distance withα. Again, the median-NNSS exhibits better resis-
tance to attacks. We observed the same phenomenon as that in
the triangulation method: it is better for the adversary to not be
too greedy when attacking the localization scheme. Finally, we
note that the computational requirements for Euclidean-NNSS
and median-NNSS are comparable. The fact that there is only
marginal performance improvement for Euclidean-NNSS when
there are no attacks suggests that a switched algorithm is not
critical for fingerprinting-based localization.

VII. C ONCLUSIONS

As wireless networks are increasingly deployed for location-
based services, these networks are becoming more vulnerable
to misuses and attacks that can lead to false location calcu-
lation. Towards the goal of securing localization, this paper
has made two main contributions. It first enumerates a list
of novel attacks that are unique to wireless localization algo-
rithms. Further, this paper proposes the idea of tolerating at-
tacks, instead of eliminating them, by exploiting redundancies
at various levels within wireless networks. We explored robust
statistical methods to make localization attack-tolerant. We ex-
amined two broad classes of localization: triangulation and RF-
based fingerprinting methods. For triangulation-based localiza-

tion, we examined the use of a least median squares estima-
tor for estimating position. We provided analysis for select-
ing system parameters. We then proposed an adaptive least
squares and least median squares position estimator that has
the computational advantages of least squares in the absence
of attacks and switches to a robust mode when being attacked.
For fingerprinting-based localization, we introduced robustness
through the use of a median-based distance metric.
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