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Abstract—We bound the number of sensors required to achieve a
desired level of sensing accuracy in a discrete sensor network application
(e.g. distributed detection). We model the state of nature being sensed as a
discrete vector, and the sensor network as an encoder. Our model assumes
that each sensor observes only a subset of the state of nature, that sensor
observations are localized and dependent, and that sensor network output
across different states of nature is neither identical nor independently
distributed. Using a random coding argument we prove a lower bound
on the ‘sensing capacity’ of a sensor network, which characterizes the
ability of a sensor network to distinguish among all states of nature. We
compute this lower bound for sensors of varying range, noise models,
and sensing functions. We compare this lower bound to the empirical
performance of a belief propagation based sensor network decoder for
a simple seismic sensor network scenario. The key contribution of this
paper is to introduce the idea of a sharp cut-off function in the number
of required sensors, to the sensor network community.

I. INTRODUCTION
How many sensors are required to sense an environment to within

a desired accuracy? In this paper, we explore this question in the
context of discrete sensor network applications such as distributed
detection and classification. The number of sensors required to
achieve a desired performance level depends on a large number
of characteristics such as the noise, range, and sensing function of
the constituent sensors, as well as resource constraints such as the
power, computation, and communications available at each sensing
node. Resource constraints such as communications and power are
important to consider in the design of sensor networks due to the
limitations they impose on, among other things, network lifetime
and sampling rate. However, even if these resource constraints
were eliminated, many basic questions about the theoretical design
limitations of sensor networks are not yet adequately addressed. The
sensing capabilities of the sensors and the required accuracy of the
sensing task imposes sharp limitations on the number of sensors
required to achieve a desired performance level. In this paper we seek
to elucidate this purely sensing based limitation by demonstrating a
lower bound on the minimum number of sensors required to achieve
a desired sensing performance, given the sensing capabilities of the
sensors.
In our discrete sensor network application, we model the state of

nature as a discrete vector and the sensor network as a “channel
encoder.” For ease of discussion, we assume that the discrete state
of nature represents a spatial configuration of targets. Our sensor
network model assumes that each sensor observes only a subset of
target positions, that sensor observations are localized (i.e. a sensor
observes adjacent target positions), and that sensor observations are
dependent. Viewing the sensor network as a channel encoder allows
us to use ideas from coding theory in order to explore a concept
analogous to Shannon’s channel capacity. However, as we will show,
the “codebook” obtained for our sensor network model has codewords
which are neither independent nor identical, thus requiring a novel
analysis and a novel concept of ‘sensing capacity.’ The sensing
capacity characterizes the ability of a sensor network to distinguish
among all spatial target configurations to within a tolerable error.

This error, referred to as the distortion, is the maximum tolerable
fraction of spatial positions which may be erroneously sensed. For a
given distortion, the sensing capacity represents the maximum ratio of
the total number of target positions under observation to the number
of sensors, such that below this ratio, there exist sensor networks
whose maximal probability of error goes to zero as the number of
possible target positions and sensors goes to infinity. In previous work
[1], we introduced the concept of a sensing capacity and provided a
lower bound on this quantity for a rather restricted family of sensor
networks. This previous model assumed that sensors can sense all
targets with uniform probability, and that the sensors output a noise
corrupted sum of the targets which they observe. Such a model is
not well suited to many applications of interest, such as seismic
sensor networks and networks of cameras. Therefore, in this paper
we relax both of these assumptions, and demonstrate a lower bound
for sensing capacity for a sensor network model with localized sensor
observations and arbitrary sensing functions.
Research on the theoretical performance limits of sensor networks

typically considers how system performance scales with the number
of sensors. The first set of results can be broadly categorized as
the constraints that resources such as communication, computation,
and power impose on the sensor network when the number of
sensors increases. [2] extends the results in [3] to account for the
different traffic models that arise in a sensor network. [4] studies
network transport capacity for the case of regular sensor networks. [5]
studies the impact of computational constraints on the communication
efficiency of sensor networks. Another set of results considers the
effect of the number of sensors on accomplishing a sensing task,
given resource constraints. [6] studies the effect of transport capacity
on approximating a set of continuous random processes. [7] considers
the estimation of parameters of a set of underlying random processes.
[8] considers a decentralized binary decision problem with noisy
communication links to obtain error exponents.
In contrast to the aforementioned results, we explore a notion

of a ‘sensing capacity’ inherent purely to the sensing task of
distinguishing among discrete states of nature to within a desired
distortion. Section II introduces and motivates our sensor network
model. Section III states a lower bound on sensing capacity for
the model. Section IV extends the result to heterogeneous sensors
and non-binary target vectors, and discusses how the results can be
extended to two-dimensional fields. Illustrative calculations of the
sensing capacity are presented in Section V. We apply our model to
a seismic sensor network scenario, and compare empirical detection
performance to our bound in Section VI. Section VII concludes the
paper.

II. SENSOR NETWORK MODEL
We denote random variables by upper-case letters and instantiations

or constants by lower-case letters. Bold-font denotes vectors, and
bold-font upper-case letters denote random vectors. log(·) has base-
2.



We considered discrete sensor applications with spatially localized
sensing in formulating our model. Examples include a target counting
protocol using a seismic sensor network implemented by [9]. A multi-
camera network was designed to count the number of people in
a crowd [10] and to localize moving objects in a grid [11]. [12]
performs distributed vehicle classification using acoustic and seismic
sensor data. [13] formulated distributed robot exploration as a discrete
sensing task, using belief propagation to fuse robot observations. In
all these applications, each sensor views a contiguous region of space
(i.e. spatially localized observations).
[14] proposed an abstract sensor network model for detecting

discrete target locations. This work introduces the idea of viewing
sensor networks as encoders, and uses algebraic coding theory to
design highly structured sensor networks, but no notion of capacity
is discussed. There exists a large body of work in distributed detection
[15], but we are not aware of the existence of any ‘sensing capacity’
results. [16] studies algorithms for distributed classification, but does
not explore a notion of capacity.
Our sensor network model is motivated by the following specific

discrete sensing scenarios. Before we present the details of our
model, we review these scenarios and discuss how to model them
as a discrete sensing tasks. In a seismic sensor network, sensors
detect the intensity of target induced vibrations. We consider a linear
deployment of seismic sensors along a security fence. We model the
environment as a vector where each entry represents the presence or
absence of a target at a corresponding part of the fence. A sensor is
affected by targets in a localized region along the fence, whose extent
is defined by random variations in soil composition and the limits of
the sensor’s range. The intensity of vibration is dependent on the
target’s distance from the sensor, and therefore the sensor observes
the weighted sum of target vibrations. In addition to a security fence
application, other intrinsically one dimensional sensing scenarios of
interest include sensing traffic distribution along a highway, and
characterizing the environment along a coastline. In a camera-based
motion mapping scenario, the area under observation can be viewed
as a grid. Each grid block contains a one or a zero, corresponding
to motion or lack of motion in the grid block. If we assume that the
cameras are calibrated, each camera observes a known subset of grid
squares in its field of view. Due to the geometry of the scenario
the observations are localized, and the sensing function of each
camera produces an estimated motion map in the subsection of the
grid under observation. Such a system combines multiple localized
overlapping camera observations to obtain a single motion map of the
environment. One can model distributed robotic mine detection [17]
as a discrete classification task where the environment is modeled
as a non-binary grid such that each block contains either nothing,
a landmine, or clutter. Each robot samples a localized subset of the
grid at a time, and produces a noisy estimate of the grid contents
under observation. The robots can cooperatively map the contents of
the grid.
The model we present attempts to abstractly characterize various

discrete sensor network applications with localized sensing, as mo-
tivated by the above scenarios. Figure 1 shows an example of our
sensor network model. There are k discrete spatial positions that
need to be sensed. Each position may represent an actual region in
space. In our initial exposition, each discrete position may contain
no target or one target, though extensions to non-binary targets is
straightforward as shown in Section IV. A k-bit ‘target vector’ v
represents the target configuration in these k positions. We discuss
extensions to two dimensional target fields in Section IV. Our figure
contains v = (0, 0, 1, 0, 1, 1, 0), indicating 3 targets among the 7

Fig. 1. Sensor network model with k = 7, n = 3, c = 3, spatially dependent
connections, and a sensing function corresponding to the weighted sum of the
observed targets.

positions. The possible target vectors are denoted vi, i ∈ {1, . . . , 2k}.
We say that ‘a certain v has occurred’ if that vector represents
the true target configuration in the spatial positions. The sensor
network has n identical sensors. Sensor c is connected to (i.e., senses)
exactly c contiguous positions out of the k spatial positions. In
contrast, our original model [1] did not account for localized sensor
observations since each sensor could sense any c (not necessarily
contiguous) spatial positions. Each sensor senses a value x ∈ X that
is an arbitrary function of the targets bits to which it is connected,
x = Ψ(vt, . . . , vt+c−1). For example, a linear sensing function,
such as a seismic sensor, would sense the weighted sum of the
target bits which the sensor observes, x =

Sc−1
u=0wuvt+u. In our

previous model [1], the sensing function was restricted to be an un-
weighted sum of the observed spatial positions. Our figure illustrates
this sensing function for a specific sensor network, set of weights, and
target vector. Thus, the ‘ideal output vector’ of the sensor network
x depends on the sensor connections, sensing function, and on the
target vector v that occurs. However, we assume that each sensor
output y ∈ Y is corrupted by noise, so that the conditional p.m.f.
PY |X(y|x) determines the observed output. Since the sensors are
identical, PY |X is the same for all the sensors (we extend our result
to heterogeneous sensors in Section IV). Further, we assume that the
noise is independent in the sensors, so that the ‘sensor output vector’
y relates to the ideal output x as PY |X(y|x) =

Tn
c=1 PY |X(yc|xc).

Observing the output y, a decoder (described in detail below) must
determine which of the 2k target vectors vi have actually occurred.
We define the sensor network S(k, n, c) as a bipartite graph, as

shown in Figure 1. The figure shows the connections between the
sensors and the k spatial positions, for sensors whose sensing function
outputs a weighted sum of the observed targets. We assume a simple
model for randomly constructing such sensor networks, where each
sensor randomly chooses c contiguous spatial positions with equal
probability among the set of possible contiguous blocks of length c.
This would occur, for example, if sensors were randomly dropped
on a field, or robots moved randomly over a region. This model
represents an improvement over our previous model for the discrete
sensor network applications described above because it accounts for
the fact that sensor observations are localized, and allows for arbitrary
sensing functions.

III. SENSOR NETWORK CAPACITY THEOREM
For a sensor network, randomly generated as explained earlier,

the ideal output x is a function of the sensor network instantiation
s(k, n, c), the sensing function Ψ, and the occurring target vector v.
Denote Xi as the random vector which occurs when vi is the target



vector (whereXi is random because of the random generation of the
sensor network S(k, n, c)). Since each sensor independently forms
connections to a subset of targets, PXi(xi) =

Tn
c=1 PXi(xic). It is

important to note that sensor outputs are in general not independent,
and are only independent when we condition on the occurrence of a
particular target vector. Further, it is also important to note that the
random vectors Xi and Xj , associated with a pair of target vectors
vi and vj respectively, are not independent, since the sensor network
configuration produces a dependency between them. i.e. similar target
vectors are likely to produce a similar sensor network output. Thus,
the ‘codewords’ {Xi, i = 1, 2, . . . , 2k} of the sensor network (one
corresponding to each vi) are non-identical and dependent on each
other, unlike channel codes in classical information theory.
Given the noise corrupted output y of the sensor network, we

estimate the target vector v which generated this noisy output by
using a decoder g(y). We allow the decoder a distortion ofD ∈ [0, 1].
i.e., if dH(vi,vj) is the Hamming distance between two target vectors
and if we define the tolerable distortion region of vi as Di = {j :
1
k
dH(vi, vj) < D}, then given that vi occurred, the probability of
error is Pe,i,s = Pr[error|i, s,xi,y] = Pr[g(y) 6∈ Di|i, s,xi,y].
Averaging this probability over all sensor networks, we write the
average error probability, given that vi occurred, as Pe,i = E[Pe,i,s].
We use maximal average error probability Pe,max = maxi Pe,i as
our error metric.
We define the ‘rate’ of the sensor network as the ratio of target

positions to sensors, R = k
n . Given a tolerable distortion D, we

call R achievable if the sequence of sensors networks S(dnRe, n, c)
satisfies Pe,max → 0 as n→∞. The sensing capacity of the sensor
network is defined as C(D) = maxR over achievable R.
The main result of this paper is to show that the sensing capacity

C(D) of the sensor network model presented in this paper is non-
zero, and to characterize it as a function of noise PY |X , sensing
function Ψ, and sensor connections c. The proof broadly follows the
proof of channel capacity provided by Gallager [18], by analyzing
a union bound of pair-wise error probabilities, averaged over ran-
domly generated sensor networks. However, it differs from [18] in
several important ways. The primary difference arises due to our
‘encoder’ (i.e. sensor network). Rather than randomly generating
codewords independently as in the Shannon capacity proof, our
encoder corresponds to a randomly generated sensor network. Given
this encoder (sensor network), the codewords are dependent on each
other and non-identically distributed. To overcome this complication,
we observe that since each sensor in our network randomly chooses
a set of c contiguous targets, we can use the method of types [19] to
group the exponential number of pair-wise error probability terms into
a polynomial number of (joint) types in order to prove convergence
of error probability.
The statement of the main result requires an explanation of c-order

types and c-order joint types [19]. We define the c-order type of a
sequence of binary symbols as a 2c dimensional vector, γ, where
each entry in the vector corresponds to the frequency of occurrence
of one of the possible subsequences of length c. The total number
of subsequences of length c that can occur in a sequence of length
k is k − c + 1. For example, for a binary target vector and c = 2,
γ = (γ00, γ01, γ10, γ11).
We denote the set of all c-order types over the alphabet {0, 1}c

for target vectors of length k as Tk({0, 1}c). Since each sensor
independently chooses a block of c contiguous spatial positions, the
distribution of its ideal output Xi (which is sensed when the ith

target vector vi occurs) depends only on the c-order type γ of vi.

λ(ab)(cd) cd = 00 cd = 01 cd = 10 cd = 11
ab = 00 0 0 0 2/7
ab = 01 1/7 1/7 0 0
ab = 10 1/7 1/7 0 0
ab = 11 0 0 1/7 0

TABLE I
λ WITH c = 2 FOR vi = 01101000 AND vj = 01000111.

i.e., for a sensing function Ψ and a target vector vi of type γ,

PXi(Xi = x) =
[

{a1...ac}∈{0,1}c
Ψ(a1...ac)=x

γa1...ac
.
= P γ(x)

Thus, PXi(xi) = P γ,n(xi) =
Tn

c=1 P
γ(xic) for all vi of type

γ.
Next, we note that the conditional probability PXj |Xi

depends
on the c-order joint type λ of the ith and jth target vectors
vi,vj . λ is the vector of λ(a1...ac)(b1...bc), the fraction of
positions in vi,vj where vi has a bit subsequence a1 . . . ac
while vj has a bit subsequence b1 . . . bc. For example, when
c = 2, λ = (λ(00)(00), . . . , λ(11)(11)). We denote the set of all
c-order joint types over the alphabet {0, 1}2c for target vectors of
length k as Lk({0, 1}2c). Each λ ∈ Lk({0, 1}2c) must satisfy
the normalization constraint that the sum over all entries of
λ equals one. Since the joint type λ also defines the type γ
of vi, for all {a1 . . . ac} ∈ {0, 1}c we must have γa1...ac =S

{b1...bc}∈{0,1}c λ(a1...ac)(b1...bc). We denote λ(a1···)(b1···) =S
{a2...ac}∈{0,1}c−1

S
{b2...bc}∈{0,1}c−1 λ(a1...ac)(b1...bc). Since

each sensor depends only on the c contiguous targets bits which
it senses, PXj |Xi

depends only on the joint type λ. i.e. for target
vectors vi,vj of c-order joint type λ,

PXiXj (Xi = xi,Xj = xj) =
[

{a1...ac}∈{0,1}c
{b1...bc}∈{0,1}c
Ψ(a1...ac)=xi
Ψ(b1...bc)=xj

λ(a1...ac)(b1...bc)

.
= Pλ(xi, xj) = Pλ(xj |xi)Pγ(xi)

Thus, PXj |Xi
(xj |xi) = Pλ,n(xj |xi) =Tn

c=1 P
λ(xjc|xic) for all i, j of the same joint type λ.

For example, for binary target vectors and c = 2, vectors
00000000, 01000111, 11111111 have γ = (1, 0, 0, 0),
(2/7, 2/7, 1/7, 2/7), (0, 0, 0, 1) respectively. Table I contains the 2-
order joint type of two target vectors. Consider a sensor network
where each sensor is randomly connected to c = 2 contiguous
spatial positions. We assume that Ψ outputs the sum of the target
bits which the sensor observes. Thus, each sensor has an ideal output
alphabet X = {0, 1, 2}. For target vectors of type γ, P (Xi = 0) =
γ00, P (Xi = 1) = γ01 + γ10, P (Xi = 2) = γ11 respectively. Given
two target vectors vi,vj of joint type λ, a sensor will output ‘0’
for both target vectors only if both of its connections see a ‘0’ bit
in both target vectors. This happens with probability λ(00)(00). Table
II lists the joint p.m.f. PXiXj (xi, xj) = Pγ(xi)P

λ(xj |xi) for all
output pairs xi, xj corresponding to joint type λ. The table shows
that Xi,Xj are not independent, in general.
We specify two probability distributions which we will uti-

lize in the main theorem. The first is the joint distribution of
the ideal output xi when vi occurs and the noise corrupted
version y of xi. i.e., PXiY (xi,y) =

Tn
c=1 PXiY (xic, yc) =Tn

c=1 PXi(xic)PY |X(yc|xic). The second distribution is the joint



PXiXj Xj = 0 Xj = 1 Xj = 2

Xi = 0 λ(00)(00) λ(00)(01) + λ(00)(10) λ(00)(11)
Xi = 1 λ(10)(00) + λ(01)(00) λ(01)(01) + λ(01)(10) + λ(10)(01) + λ(10)(10) λ(10)(11) + λ(01)(11)
Xi = 2 λ(11)(00) λ(11)(01) + λ(11)(10) λ(11)(11)

TABLE II
JOINT DISTRIBUTION OF Xj AND Xi IN TERMS OF THE JOINT TYPE λ OF vj AND vi, WITH c = 2.

distribution of the ideal output xi corresponding to vi and the noise
corrupted output y generated by the occurrence of a different target
vector vj . We can write this joint distribution as Q(j)

XiY
(xi,y) =Tn

c=1Q
(j)
XiY

(xic, yc) =
Tn

c=1

S
a∈X PXi(xic)PXj |Xi(xj =

a|xic)PY |X(yc|xj = a). Note that Xi,Y are dependent here,
although Y was produced by Xj because of the dependence of
Xi,Xj . This is unlike Shannon codes, where the codewords are
independent.
Since each sensor in the sensor network depends only on the c

contiguous targets which it observes, PXiY (xi,y) depends only
on the type γ of vi. Thus, we write PXiY (xi,y) =Tn

c=1 P
γ
XiY

(xic, yc) where P γ
XiY

(xi, y) = P γ(xi)PY |X(y|xi).
Similarly, Q

(j)
XiY

(xi,y) depends only on the joint type λ of
vi,vj and can be written as

Tn
c=1Q

λ
XiY

(xic, yc) where
Qλ
XiY (xi, y) =

S
a∈X Pγ(xi) · Pλ(xj = a|xi)PY |X(y|xj = a).

We are now ready to state the main theorem of this paper.
Theorem 1 (Sensing Capacity Theorem): Denoting D(P ||Q) as

Kullback-Leibler distance and H(P ) as entropy, the sensing capacity
at distortion D satisfies,

C(D) ≥ CLB(D) = min
γ

min
λ

λ(0···)(1···)+
λ(1···)(0···)>D

D
�
P γ
XiY

kQλ
XiY

�
H(λ)−H(γ)

(1)

where γ ∈ T ({0, 1}c) and λ ∈ L({0, 1}2c) are in the set of c-order
types and c-order joint types respectively.
From the definition of Qλ

XiY
, we notice that if the ‘codewords’

Xi were independent, the Kullback-Leibler distance in (1) would
reduce to the mutual information between Xi and its noisy version
Y . Further, the denominator in (1) accounts for the non-identical
distribution of the codewords. The minimization over the joint type
appears, because the closest pair of codewords dominates the error
probability. Thus, the ‘sensing capacity’ is similar to classical channel
capacity, with differences arising due to non-identical, dependent
codeword distribution. If we specialize this result to the case of
c = 1 and restrict the sensing function to be a simple sum, this
theorem provides a bound that coincides with our original result [1]
for the case of c = 1. Proof: We assume a maximum-likelihood
decoder gML(y) = argmaxj PY |X(y|xj). For this decoder, we
consider Pe,max = maxi Pe,i, where Pe,i is averaged over the
random sensor network. We seek to bound Pe,i, which we write
out below.

Pe,i =
[

xi∈Xn

[
y∈Yn

PXi(xi)PY |X(y|xi)Pr[error|i,xi,y] (2)

We bound Pr[error|i,xi,y] by defining events Aij = {xj :
PY |X(y|xj) ≥ PY |X(y|xi) | i,xi,y} and using the union bound.
Since decoding to a j 6∈ Di results in error,

Pr[error|i,xi,y] ≤ P (∪j 6∈DiAij) ≤
[
j 6∈Di

P (Aij) (3)

We proceed to bound P (Aij). For any sij ≥ 0:

P (Aij) =
[

xj∈Aij
PXj |Xi

(xj |xi)

≤
[

xj∈Xn

PXj |Xi
(xj |xi)

PY |X(y|xj)sij
PY |X(y|xi)sij

(4)

Using (3) and (4) in (2),

Pe,i ≤
[

xi∈Xn

[
y∈Yn

PXi(xi)PY |X(y|xi)·

[
j 6∈Di

[
xj∈Xn

PXj |Xi
(xj |xi)

PY |X(y|xj)sij
PY |X(y|xi)sij

(5)

The bound (5) has an exponential number of terms. However, it
was argued earlier that in our sensor network, PXi(xi) = Pγ,n(x)
depends only on the c-order type γ of the ith target vector, while
PXj |Xi

(xj |xi) = Pλ,n(xj |xi) depends on the c order joint type of
the ith and jth target vectors. Thus, we can rewrite (5) by grouping
terms according to their c-order joint type λ.[

j 6∈Di

[
xj∈Xn

PXj |Xi
(xj |xi)

PY |X(y|xj)sij
PY |X(y|xi)sij

≤ (6)

[
λ∈Si(D)

β(i,λ; k)
[

xj∈Xn

Pλ,n(xj |xi)
PY |X(y|xj)sλ
PY |X(y|xi)sλ

where Si(D) is the set of c-order joint types that result in an error.1

i.e.,

Si(D) = {λ : λ ∈ Lk({0, 1}2c),
λ(0···)(1···) + λ(1···)(0···) > D} (7)

and where we choose sij = sλ for all {i, j} of c-order joint type λ.
Here β(i,λ; k) is the number of vectors vj that have a joint type λ
with respect to vi. To obtain (6), we used the fact that λ(0···)(1···)+
λ(1···)(0···) ≤ dH(vi,vj) ≤ λ(0···)(1···)+λ(1···)(0···)+ c−1

k . For large
k, equality is achieved in (6). β(i,λ; k) is bounded as,

β(i,λ; k) ≤ 2k(H(λ)−H(γ)) (8)

Combining equations (5),(6), and (8),

Pe,i ≤
[

xi∈Xn

[
y∈Yn

P γ,n(xi)PY |X(y|xi)·

[
λ∈Si(D)

2k(H(λ)−H(γ))
[

xj∈Xn

Pλ,n(xj |xi)
PY |X(y|xj)sλ
PY |X(y|xi)sλ

We now use the independence of the sensor outputs. Further, since we
are bounding a probability, the following bound holds for ρλ ∈ [0, 1]

1Technically Si(D) is a bit larger than that set, but the bound still holds.



and sλ = 1
1+ρλ

.

Pe,i ≤
[

λ∈Si(D)
2ρλk(H(λ)−H(γ)) ·

# [
ai∈X

[
b∈Y

PY |X(b|ai)
1

1+ρλ

· Pγ(ai)

[
aj∈X

Pλ(aj|ai)PY |X(b|aj)
1

1+ρλ

ρλ $n

(9)

We define the following quantity.

E(ρλ,λ) = − log
# [

ai∈X

[
b∈Y

P γ(ai)PY |X(b|ai)
1

1+ρλ

·

[
aj∈X

Pλ(aj|ai)PY |X(b|aj)
1

1+ρλ

ρλ $
(10)

Since the number of types of λ is upper bounded by (k+ 1)4
c
, and

k = dnRe, (9) is bounded as,

Pe,i ≤ max
λ∈Si(D)

min
0≤ρλ≤1

2
−n −4c log(nR+2)

n

· 2−n(−(1+
1
nR )ρλR(H(λ)−H(γ))+E(ρλ,λ))

We seek to bound maxi Pe,i. However, Pe,i only depends on the
type γ of vi. Thus, we have the bound,

Pe,max ≤ 2−n(−o1(n)+Er(R,D))

Er(R,D)=min
γ

min
λ∈S(D)

max
0≤ρλ≤1

E(ρλ,λ)− ρλR(H(λ)−H(γ))

where γ ∈ Tk({0, 1}c) , and S(D) is as in (7), with γ. Note that
o1(n) → 0 as n → ∞, so we have not included it in the error
exponent Er(R,D). Observing that E(0,λ) = 0 ∀ λ, we let ρλ
go to zero, rather than optimizing it, thus resulting in a lower bound
on Er(R,D). In the above expression, this implies that in order for
R to be achievable E(ρλ,λ)

ρλ
− R(H(λ) − H(γ)) must be positive

for all γ,λ, even as ρλ → 0. But this implies that the derivative
of E(ρλ,λ) with respect to ρλ at ρλ = 0 must be greater than
R(H(λ)−H(γ)). But it can be easily shown that,

∂E(ρλ,λ)

∂ρλ

�����
ρλ=0

= D(PγXiY kQ
λ
XiY ) (11)

Using this derivative in the analysis above, and relaxing the conditions
λ ∈ Lk({0, 1}2c) by dropping the restriction that target vectors are
restricted to length k in the definition (7) of S(D) (thus, weakening
the bound), we see that the sensor network can achieve any rate R
bounded as below.

R ≤ min
γ

min
λ

λ(0···)(1···)+
λ(1···)(0···)>D

D
�
P γ
XiY

kQλ
XiY

�
H(λ)−H(γ)

(12)

Therefore the Right Hand Side is a lower bound on C(D).

IV. SENSOR NETWORK MODEL EXTENSIONS

We consider two straight-forward extensions to our sensor network
model. The first extension considers non-binary target vectors. Binary
target vectors indicate the presence or absence of targets at the spatial
positions. A target vector over a general finite alphabet may indicate,
in addition to the presence of targets, the class of a target, or the

intensity or concentration of each target. Assuming a target vector
over alphabet A, we obtain the capacity bound below.

C(D) ≥ CLB(D) = min
γ

min
λ

a6=b λ(a···)(b···)>D

D
�
P γ
XiY

kQλ
XiY

�
H(λ)−H(γ)

where γ ∈ Tk(Ac) and λ ∈ Lk(A2c).
A further extension considers the case of heterogenous sensors,

where each class of sensor has a different sensing function Ψ and
noise model PY |X . Let the sensor of class l be used with a relative
frequency αl. Then,

C(D) ≥ CLB(D) = min
γ

min
λ

a6=b λ(a···)(b···)>D

S
l αlD

�
P γ,l
XiY

kQλ,l
XiY

�
H(λ)−H(γ)

where γ ∈ Tk(Ac) and λ ∈ Lk(A2c).
The sensing capacity bounds obtained in this paper can be extended

from discrete target vectors to higher dimensional target fields. For
example, for a two dimensional target field such an extension requires
the introduction of two dimensional types. These types correspond
to histograms over the set of possible two dimensional patterns. A
two-dimensional type over patterns that correspond to a sensor’s field
of view specifies that sensor’s output distribution. Using such types,
we can extend our bound to account for target fields. We present a
sensing capacity theorem for a two dimensional target field where
the targets are distributed as a Markov random field in [20].

V. CAPACITY BOUND EXAMPLES
We compute the capacity bound CLB(D) for various sensor net-

work models. In Figure 2, we compare CLB(D) for sensor networks
with localized and non-localized [1] sensing. We assume that the
sensing function Ψ is an un-weighted additive function. The sensor
noise model used throughout this section assumes that the probability
of error decays exponentially with the error magnitude. In the figures,
‘Noise = p’ indicates that for a sensor, P (Y 6= X) = p, with
Y = X assumed. Figure 2 demonstrates CLB(D) for localized and
non-localized sensing, at two sensor noise levels, and a fixed sensing
range c = 3. Sensor localization causes a significant reduction in
sensing capacity. We conjecture that this effect is similar to the
inferior performance of a channel code which has a finite memory,
such as convolutional codes, as opposed to LDPC codes which have
large memory.
Figure 3 shows CLB(D = 0.1) for a weighted sum sensing

function and compares this to an un-weighted sum sensing function.
We assume a range c = 2 with weights [0.5, 1]. The weighted
sum sensing function has a higher bound across all sensor noise
levels. Intuitively, this occurs because the weighted sum distinguishes
between its two connections, resulting in less ambiguity.
Figure 3 also demonstrates that sensor cooperation is more efficient

than the commonly used strategy of simple sensor replication. For
example, a rate of 0.053 targets/sensor is achievable for sensors
with a noise level of 0.2 and the weighted sum sensing function.
If instead, each sensor is replicated thrice (thus, requiring three
times as many sensors, while also reducing the noise level to
3 × (0.2)2 × 0.8 + (0.2)3 = 0.1 due to majority-decoding), then
the resulting rate reduces to 0.096/3 = 0.032 targets/sensor.

VI. SEISMIC SENSOR NETWORK
We compare our bound to the performance of a practical sensor

network decoding algorithm. We consider an idealized seismic sensor
network (Figure 1), where each block in a grid contains a target or
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nothing. Seismic sensors are randomly dropped on this grid. Each
sensor senses c contiguous blocks, and outputs the weighted sum of
vibration amplitudes caused by each target in the sensed blocks.
Inspired by its success in decoding LDPC codes, we used the

belief propagation algorithm [21] to fuse the observation of seismic
sensors to obtain an estimate of the spatial target configuration in
the grid. Borrowing from [21], we introduce the following notation
in order to describe the belief propagation algorithm for our sensor
network model. We denote the set of targets sensed by sensor c
by M(c). Analogously, we define L(m) as the set of sensors that
sense the target m. We denote the setM(c) with target m excluded
by M(c)\m, and similarly we denote the set L(m) with sensor c
excluded by L(m)\c. Let pvm = P (vm = v) be the prior probability
of the target bits. The algorithm consists of two parts, where two sets
of quantities, qmc and rmc, are iteratively updated. We now proceed
to describe the belief propagation algorithm for our sensor network
model.
We initialize the algorithm by letting qvmc = pvm. In the sensor step

of the algorithm we compute the rmc quantities using the following
expressions.
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Fig. 4. Maximum (over target vectors) empirical error rate of belief
propagation based decoding of seismic sensor networks.

rvmc =
[
b∈X

PY |X(yc|b)
[

v0∈{vm0 :m0∈M(c)\m}
Ψ(v0,v)=b

\
m0∈M(c)\m

q
vm0
m0c

The target step computes qmc values from the computed rmc values
as below (where αmc = q0mc + q1mc).

qvmc = α−1mcp
v
m

\
c0∈L(m)\c

rvmc0

After a fixed number of iterations one can halt the algorithm and
compute the probabilities of each target bit as shown below (where
αm = q0m+q

1
m). These probabilities can be used to decode the target

vector.

qvm = α−1m pvm
\

c∈L(m)
rvmc

Using this decoding algorithm we empirically examined seismic
sensor network performance as a function of rate. We generated
sensor networks of various rates by setting the number of targets, and
varying the number of sensors. We chose the number of connections
to be c = 2 (with weights 0.5 and 1.0), the distortion level to be 0.1,
and the noise level to be 0.1 (i.e. P (Y 6= X) = 0.1, with Y = X ).
As in the previous section, we assume that the probability of error
decays exponentially with error magnitude. We empirically evaluated
(using belief propagation) the maximum error rate averaged over a
set of randomly generated sensor networks. We plotted the maximum
error rate over all sampled target vectors for each rate value, and for
various numbers of targets as shown in Figure 4. The capacity value
CLB for the model used in this experiment is 0.097. Since belief
propagation is suboptimal for graphs with cycles, and given that the
error curves converge to zero at rates above 0.097, it appears that our
capacity lower bound is not tight. As the number of targets increases,
the decay in error becomes sharper, which indicates an information
theoretic capacity effect. Unfortunately, belief propagation worked
poorly as a practical decoder for more than two connections. We
conjecture that this occurs because sensing is localized in our model,
and thus the number of short cycles is quite large and the graph
does not appear tree-like. Therefore, the loopy belief propagation
approximation performs poorly. In future work, we hope to overcome
this difficulty by using generalized belief propagation.



VII. CONCLUSIONS

We explored a notion of sensing capacity for sensor networks
with localized sensing and arbitrary sensing functions. We proved
a lower bound CLB(D) to the sensing capacity and computed it for
illustrative examples. Our bound can be extended to account for non-
binary target vectors and heterogeneous sensors, as well as higher
dimensional target fields. We conclude that CLB(D) for sensors
with non-localized observations is significantly higher than CLB(D)
for sensors with localized observations. We also show that one can
significantly vary the sensing capacity by choosing different sensing
functions. By examining CLB(D), we concluded that simple sensor
replication is inefficient compared to sensor cooperation. We derived
a belief propagation algorithm for decoding our sensor network
model. Using this algorithm, we empirically evaluated capacity for
an idealized seismic sensor network and compared the result to
CLB(D).
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