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ABSTRACT

Tracking the identities of moving objects is an important
aspect of most multi-object tracking applications. Uncer-
tainty in sensor data, coupled with the intrinsic difficulty of
the data association problem, suggests probabilistic formu-
lations over the set of possible identities. While an explicit
representation of a distribution over all associations may re-
quire exponential storage and computation, in practice the
information provided by this distribution is accessed only
in certain stylized ways, as when asking for the identity of
a given track, or the track with a given identity. Exploit-
ing this observation, we proposed in [1] a practical solu-
tion to this problem based on maintaining marginal proba-
bilities and demonstrated its effectiveness in the context of
tracking within a wireless sensor network. That method,
unfortunately, requires extensive communication in the net-
work whenever new identity observations are made, in order
for normalization operations to keep the marginals consis-
tent [2]. In this paper, we propose a very different solution
based on accumulated log-likelihoods, which can postpone
all normalization computations until actual identity queries
are made. In this manner the continuous communication
and computational expense of repeated normalizations is
avoided and that effort is expended only when actual queries
are made of the network. We compare the two methods in
terms of their computational complexities, inference accu-
racies, and distributed implementations. Simulation and ex-
perimental results from a RFID system are also presented.

1. INTRODUCTION

A wireless sensor network (WSN) is a large scale distributed
system consisting of small, untethered, low-power nodes ca-
pable of sensing, processing and communicating. WSNs are
unique in their ability to monitor phenomena widely dis-
tributed in space and time, such as microclimate variations
in a forest, earthquake vibration monitoring in buildings,
machine control and diagnosis in factories, traffic monitor-
ing in highways, etc.

In many of these scenarios it is infeasible to have the
WSN simply collect all potentially relevant data. Instead, it
is far more efficient to be able to query the network as the

need for particular kinds of information arises. Such queries
can often be formulated as distributed inference problems,
where the goal is to estimate a global quantity or state of
interest X , given local pieces of evidence provided by the
sensor nodes. Furthermore, this inference should be proba-
bilistic in nature, due to the inherent noise in sensor readings
and the uncertainty associated with physical phenomena. In
this setting, it is very important to capture the information
structure of the problem and the dependencies between both
the problem’s local and global variables. For example, say
we are tracking a large chemical plume in a region R using
a WSN, and are assuming that we know the total amount T
of the chemical involved. If a sensor locally determines the
quantity of the chemical, say, t in a subregion r, then we
also know that there is T − t of the chemical in the rest of
the region R − r, thus updating the global information.

In this paper, we study the problem of tracking identi-
ties of multiple moving objects within a WSN – what we
call the identity management problem. The significance of
identity management lies in that it can overcome incorrect
identity swapping due to sub-optimal data association al-
gorithms using only local object identity information, as
shown in Figure 1.1 This problem has an interesting infor-
mation structure – local evidence about the identity, say, i of
an object implies all the other objects cannot have identity
i. This exclusion among identities defines a mathematical
relation among identities of moving objects and allows us
to exploit local knowledge to update global information.

In our earlier work [1], we proposed a practical solution
to the above problem which, for N moving objects, main-
tains N2 marginal probabilities of each track having each
identity and normalizes/updates these probabilities when-
ever new local evidence becomes available. This normal-
ization requires communication among nodes in the WSN in
the vicinity of the objects and can potentially affect perfor-
mance of the WSN by draining node energy quickly. How-
ever, we would prefer a method that computes probabilities
only at a user’s request, since renormalizing probabilities all
the time is wasteful of energy. In the current work we seek
to maintain different quantities, which can be converted to
probabilities at a user’s request, but do not require normal-

1The data association problem is known to be NP-hard.
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Fig. 1. Identity swapping due to sub-optimal data associa-
tion and its correction using local identity information at a
sensor

ization otherwise. In other words, we seek to accumulate
information in a lazy fashion, from which the desired prob-
abilities can be derived on demand. This is the crux of the
identity management approach in this paper.

The main contributions of the paper are as follows. First,
we introduce a general mathematical framework for identity
management, including a formulation in which no informa-
tion is lost. Our previous work [1] turns out to be an ap-
proximation to this optimal strategy. Second, we propose
another feasible approximation to the optimal identity man-
agement problem that allows us to evaluate probabilities in a
lazy fashion and retains practical storage and computational
complexities. Finally, we demonstrate the effectiveness of
our method through simulations and real experiments with
a real-time people tracking system augmented with RFID
readers.

2. OPTIMAL IDENTITY MANAGEMENT

We are interested in maintaining identities of N moving ob-
jects, such as people or cars, using only local evidence from
sensor nodes in the WSN. We first define the notion of the
identity state X of the N objects in this setting.

Definition 1. The joint identity state of the N objects is
X = (x1, · · · , xN ), where xj is the marginal identity state
for the jth object. The quantity xj can have a value xj =
i ∈ {1, · · · , N}, indicating that the jth physical object has
an identity i. No two different objects can have the same
identity.

According to the above definition, X can take on N ! dif-
ferent permutations – X ∈ SN , where SN is the symmetric
group on N elements.2 SN can be represented by the set
of all N × N permutation matrices – 0-1 N × N matrices

2The symmetric group SN is the set of all permutations on N objects
under permutation composition.

with exactly one 1 in each row and column, each of which
represents an identity assignment between a physical object
and an identity. For example, two joint states X = (x1 =
1, x2 = 2, x3 = 3), X ′ = (x1 = 2, x2 = 1, x3 = 3) in the
N = 3 case can be represented as the following permutation
matrices.

X = (x1 = 1, x2 = 2, x3 = 3) →





1 0 0
0 1 0
0 0 1



 = I

X ′ = (x1 = 2, x2 = 1, x3 = 3) →





0 1 0
1 0 0
0 0 1



 = I(1,2)

where I is an identity matrix and I(1,2) is an matrix obtained
by swapping ith and jth columns of I . Throughout this
paper, we will use (x1, · · · , xN ) or permutation matrices to
denote instances of an identity state X .

We define a joint probability distribution over all N !
identity assignments, p(X), X ∈ SN . When objects are
moving in a sensor network, there are two kinds of events
that modify this distribution – mixing events and local ev-
idence events, as shown in Figure 2. Intuitively, a mixing
event happens when two object locations are so close that
their identities are no longer distinguishable. This will in-
crease the uncertainty of identity assignments in p(X). A
local evidence event happens when a sensor node makes
measurements on the identity of a specific object3 and up-
dates p(X) using Bayes rule. A local evidence event re-
duces the entropy of p(X) in general. Our goal is to main-
tain p(X) on-line while these two types of events are occur-
ring. The two events will be precisely defined in the follow-
ing sections.

?

?

Mixing Evidenceor

p(X) at time k+1

p(X) at time k

Identity confusion

This is a car!

Fig. 2. How p(X) evolves while objects are moving (mix-
ing events) and sensors are sensing (local evidence events)

For the sake of brevity, in the sequel we may drop the
word “event” and talk simply of a “mixing”, or of a “Local
evidence”.

3In a WSN setting, objects may pass near sensor nodes which can then
determine their identity, either through signal classification techniques or
directly, as in the case of RFID tag readers.



2.1. Mixing

Mathematically, a mixing corresponds to a convolution op-
eration between a joint probability distribution p(X) and a
mixing probability distribution m(X).

Definition 2. Suppose the identities of ith and jth objects
are mixed - due to their geographical proximity, nearby sen-
sors can’t distinguish them. The joint identity distribution
p(X) is updated using the convolution,

p ? m (X = x) =
∑

s∈Sn

p(s)m(xs−1)

where

m(X) =











1 − α X = I

α X = I(i,j)

0 otherwise;

here α denotes the mixing probability, I is the N ×N iden-
tity matrix and I(i,j) is its (i, j)-transposition.

Therefore, the above convolution can be simply written
as

p ? m (X = x) = (1 − α)p(x) + αp(xI(i,j)) . (1)

According to the above definition, the following is true.

Lemma 1. The statistical entropy of the joint identity dis-
tribution can only increase after a mixing.

H(q(X)) ≥ H(p(X))

Proof. The above convolution operation can be represented
as the following matrix multiplication:

−→q = M−→p ,

where −→p and −→q are N ! × 1 vectors representing the two
distributions and M is a N ! × N ! mixing matrix, in which
each row (and column) has only two non-zeros values, α
and 1 − α. Since M is a doubly stochastic matrix, we can
re-write the right side of the above equation as a convex
combination of the (N !)! permutation matrices. Using the
concavity of the statistical entropy function, it follows that:

H(−→q ) = H(
∑

i

αiΠi
−→p )

≥
∑

i

αiH(Πi
−→p )

=
∑

i

αiH(−→p )

= H(−→p )

This concludes the proof.

The claim of the above lemma, that the uncertainty never
decreases with mixing, certainly agrees with our intuition
that mixing only adds uncertainty. After repeated mixings,
the identity state distribution converges to the uniform dis-
tribution.

2.2. Local Evidence

A local evidence is a piece of information on the identity
of an object and can be though of as a likelihood function.
We will use the following sensor measurement model for
identity sensing.

Definition 3. The likelihood of an identity measurement Z
on the ith object at a sensor node is defined as follows.

p(Z = (i, j)|X) =

{

0.9 xj = i

0.1/(N − 1) xj 6= i

From the above definition, given a set of local evidence
events Z1, · · · , Zk, Bayes rule derives the posterior distri-
bution p(X|Z1, · · · , Zk) as follows:4

p(X|Z = Z1, · · · , Zk) ∝ p(X)p(Z1|X) · · · p(Zk|X) .

2.3. Identity Management as Discrete Bayesian Filter-
ing

The two operations on p(X) defines a discrete Bayesian
filter on p(X), completely analogous to usual continuous
Bayesian filtering – the mixing (convolution) corresponds to
the prediction step in the continuous filtering and the local
evidence corresponds to the observation or likelihood incor-
poration step. The only difference is that the prediction step
in discrete Bayesian filtering happens only at discrete-time
mixing events, while the prediction step in the continuous
case happens at every time step.

Now, we consider a case where we have both local evi-
dence and mixing together. For example, say we are given
events m1(X), Z1, Z2, m2(X) in that order (here m de-
notes mixing and Z local evidence events). The posterior
can be computed as5

p(X) ∝ [{p0(X) ? m1(X)}p(Z1|X)p(Z2|X)] ? m2(X) .

The above computation , unfortunately, is practically in-
feasible due to the exponential complexity of the two opera-
tions – convolution from a mixing is O((N !)2) and Bayesian
normalization from a local evidence is O(N !). Therefore,
we need to approximate the joint distribution p(X) to-
gether with the two operations so that we can implement
them in a WSN. In [1], we proposed a practical approxima-
tion based on the marginal probabilities. In the upcoming
sections, we will introduce another practical approximation
based on log-likelihoods, the so-called information matrix
based approach.

4We assume measurements are conditionally independent given X , i.e.,
p(Z1, Z2|X) = p(Z1|X)p(Z2|X).

5The real computation is done in an iterative fashion – whenever there
is a mixing or a local evidence event, we update p(X) accordingly.



3. INFORMATION MATRIX APPROACH

3.1. Information filtering

The second approximation is based on the idea of informa-
tion filtering introduced in [3]. As in the previous approach,
we maintain a N × N matrix, now called the information
matrix, whose elements are sum of log-likelihoods as fol-
lows.

L =















l11 · · · l1i · · · l1N

l21 · · · l2i · · · l2N

l31 · · · l3i · · · l3N

...
lN1 · · · lNi · · · lNN















,

where lij is the sum of log-likelihoods that object i has iden-
tity j. Specifically, if Zt is a sensor measurement at time t,
then

lij =
∑

t

log(p(Zt = (k, j)|xj = i)), k ∈ {1, · · · , N} .

In other words, the information matrix is obtained by adding
log(.9) to (i, j)th element and log( .1

N−1 ) to all the other
elements in jth column whenever there is a measurement
Z(i,j) – assuming that L is initialized as a zero matrix.

A striking property of information matrix is that the N !
joint likelihoods l(X = Πk) can be recovered from an in-
formation matrix L, which is just a collection of N 2 log-
likelihoods. For example, suppose L and X = Πk are given
as follows,

L =





l11 l12 l13
l21 l22 l23
l31 l32 l33



 Πk =





0 1 0
1 0 0
0 0 1



 .

Then the following is true.

log(l(X = Πk)) = log(p(Z = (2, 1)|Πk)

+ log(p(Z = (1, 2)|Πk)

+ log(p(Z = (3, 3)|Πk)

= l22 + l12 + l33 .

Using matrix algebra, we can simplify the above equation
for joint likelihoods as follows:

l(X = Πk) ∝ exp(Tr(ΠT
k L)) ,

where Πk is kth permutation matrix and Tr(·) is a matrix
trace operation – the sum of the diagonal elements. If the
prior distribution is uniform, then the joint distribution p(X)
is simply the normalized joint likelihoods.

p(X = Πk) =
lk

∑

i li
=

exp(Tr(ΠT
k L))

∑

l exp(Tr(ΠT
l L))

.

Another interesting property of the information matrix
is that there are infinitely many information matrices that
encode the same joint distribution.

Property 1. Adding a constant to each element of any of the
rows or columns of an information matrix does not affect its
underlying joint likelihoods.

Proof. Suppose C is a matrix, whose ith column (or row) is
c and all the other elements are zero. Then,

lk ∝ exp(Tr(ΠT
k (C + L)))

= exp(Tr(ΠT
k C)) exp(Tr(ΠT

k L))

= exp(c) exp(Tr(ΠT
k L)) .

The likelihoods lk do not change when all lk are scaled by
the same factor exp(c) – they will be normalized anyway.
This concludes the proof.

Due to the above property, we can simplify lij as fol-
lows.

lij = nij(log(.9) − log(
.1

N − 1
)) ,

where nij is the number of Z(i,j) measurements observed
thus far – counts of Z(i,j). This gives another interpreta-
tion of the information matrix – as a collection of counts of
evidence.

3.2. Local Evidence and Information Matrices

As we have seen before, incorporating local evidence Z(i,j)

into an information matrix is trivial – we just add log(.9) −
log( .1

N−1 ) to the (i, j)th element of L and there is no need
to re-normalize.

3.3. Mixing and Information Matrices

Let Lp and Lq be information matrices corresponding to
distributions p(X = Πk) and q(X = Πk) = p ? m (X =
Πk), respectively. We will use the mixing ratio α = 1

2 in the
sequel for simplicity, so after mixing p(Πk) = p(ΠkI(i,j)).
From the definition of mixing in joint space, we can write
down the following equation, whose solution is the new in-
formation matrix Lq after mixing:

exp(Tr(ΠT
k Lq))

∑

l exp(Tr(ΠT
l Lq))

=
1

2

[

p(Πk) + p(Πk I(i,j))
]

. (2)

To compute Lq , we need to solve a set of
(

N !
2

)

equa-
tions given below to take into account the normalization
constraint.

q(Πm)

q(Πn)
=

exp(Tr(ΠT
mLq))

exp(Tr(ΠT
nLq))

=
p(Πm) + p(Πm I(i,j))

p(Πn) + p(Πn I(i,j))
,



where m 6= n and m,n ∈ {1, · · · , N !}. If we further sim-
plify the above equation by taking logs on both sides, we
get

Tr((Πm − Πn)Lq) = log

(

p(Πm) + p(Πm I(i,j))

p(Πn) + p(Πn I(i,j))

)

.

The left side of the above equation is just a linear combi-
nation of elements of Lq and the right side is a constant.
Therefore, we can write a matrix equation with proper vec-
torization

Φ
−→
l = −→η ,

where Φ is a
(

N !
2

)

× N2 matrix,
−→
l is a N2 × 1 vector,

and −→η is a
(

N !
2

)

× 1 vector. However, there is no exact
solution in general for this overdetermined set of equations.
The least square solution can be used as an approximate
solution, although it is not practical due to the prohibitive
amount of computation – the pseudo inverse of a

(

N !
2

)

×N2

matrix must be computed.
The above discussion suggests that we need more con-

straints in order to facilitate the derivation of the informa-
tion matrix after mixing. Specifically, we assume that after
a mixing event between the ith and jth objects, in the infor-
mation matrix:

• Only the ith and jth columns are modified.

• The ith and jth columns will remain the same.

The first assumption reduces the number of unknowns and
also seems reasonable – why change the other columns when
mixing involves only two objects? We introduce the second
assumption that the probabilities of a permutation Πk and its
transposition ΠkI(i,j) will be the same after mixing, since
the information matrix with the two same columns has the
following property.

Property 2. For an information matrix L, whose ith and
jth columns are the same, its joint likelihood l(Πk) and
l(Πk I(i,j)) are the same.

Proof. The log-likelihood of Πk is the sum of lmn entries at
positions where there are 1’s in Πk. Since Πk and ΠkI(i,j)

are the same except that their ith and jth columns have been
swapped, the difference of the two log-likelihoods is given
as follows,

log(l(Πk)) − log(l(ΠkI(i,j))) = lmi + lnj − lmj − lni

= 0 ,

since the ith and jth columns of L are the same.

Under these two assumptions, the number of the un-
knowns in the updated information matrix is only N . Let us
consider the simple case of N = 3 to see how these assump-
tions can simplify the computation of L after a mixing. L∗

p

and L∗
q are exponential versions of Lp and Lq respectively.

(l∗ij = exp(lij)) and their elements are given as follows.
Again, note that only the di’s are unknowns:

L∗
p =





a1 b1 c1

a2 b2 c2

a3 b3 c3



 , L∗
q =





d1 d1 c1

d2 d2 c2

d3 d3 c3



 .

From equation (2), the following holds, assuming that
the mixing is between the ith and jth columns.6

d1 d2 c3 = (a1 b2 c3 + a2 b1 c3)/2 ,

d1 d3 c2 = (a1 b3 c2 + a3 b1 c2)/2 ,

d2 d3 c1 = (a2 b3 c1 + a3 b2 c1)/2 .

Taking logs on the both sides, we get

log(d1) + log(d2) = log((a1 b2 + a2 b1)/2) ,

log(d1) + log(d3) = log((a1 b3 + a3 b1)/2) ,

log(d2) + log(d3) = log((a2 b3 + a3 b2)/2) .

The above set of equations always has a unique solution
[d1 d2 d3]

T , so we now have a perfect local mixing rule for
N ≤ 3 that involves only the ith and jth columns of the
information matrix.

To extend the above solution to the general case N > 3,
suppose that the ith, jth columns of L∗

p are [a1 · · · aN ]T ,
[b1 · · · bN ]T respectively, and that d = [d1 · · · dN ]T is the
new merged column of L∗

q for both i and j. Now consider

the following equation for merging a and b for all
(

N
2

)

pairs
of (m,n) combinations.

log(dm) + log(dn) = log((am bn + bm an)/2) .

The above equation can be rewritten as a matrix equation as
follows.

P · β = γ , (3)

where

• β = [log(d1) · · · log(dN )]T , is a N × 1 vector

• γ = [· · · log((am ·bn+bm ·an)/2) · · · ]T , is a
(

N
2

)

×1
vector

• P is a
(

N
2

)

× N matrix where each row has two ones
at the mth and nth positions respectively, and zeros
elsewhere.

In general, the system (3) is an overdetermined set of
equations and does not have a solution. Therefore, we pro-
pose to use a least-square approach to obtain an approxi-
mate solution, which will be our mixing rule for the infor-
mation matrix:

β = P
†γ ,

6These set of equations satisfy the normalization constraint on equation
(2).



where P † = (PT P )−1PT is the pseudo inverse of P . Thus,
the computational complexity of the mixing for information
matrix is O(N4).

Theorem. The information matrix approach is optimal for
N ≤ 3. For N ≥ 4, the information matrix approach is
sub-optimal due to the approximate mixing (4).

3.4. Inference Using the Information Matrix

For tracking applications, we are mostly interested in the
marginal probabilities pij of the jth object having the ith
identity. To compute marginal probabilities, N ! joint prob-
abilities need to be computed first. Computing joint prob-
abilities, however, requires O(N 3N !) operations, which is
not feasible. Therefore, we used the Metropolis sampling
algorithm [4] as a heuristic to estimate these marginal prob-
abilities. Simulation results in section 5.1 confirm that the
Metropolis algorithm with reasonable number of samples
approximates the marginal probabilities well.

4. COMPARISON OF THE BELIEF MATRIX AND
INFORMATION MATRIX APPROACHES

In this section, we compare the information matrix with the
previous approach based on marginal probabilities in [1] in
terms of both computational complexity and distributed im-
plementation.

4.1. Storage and Computation

In terms of representation, both approaches require O(N 2)
storage since they use N × N matrices as their data struc-
tures. For mixing operations, the belief matrix approach re-
quires O(N) computation, while the information matrix ap-
proach requires O(N4). For incorporating local evidence,
the information matrix approach requires O(1) computa-
tion, while the belief matrix approach requires O(N 2) com-
putations in practice. One can see there is a tradeoff be-
tween the two approaches in terms of computational com-
plexity – the belief matrix has a simpler mixing operation,
while the information matrix has a simpler evidence incor-
poration operation.

4.2. Distributed Implementation

The aforementioned computational complexities, however,
do not represent the realistic costs of these operation in ac-
tual implementation due to the additional communication
cost incurred by the belief matrix approach. Let us first
briefly describe how these two approaches can be imple-
mented in a purely distributed fashion in a WSN and what
the assumptions are.

A sensor network we consider has the following char-
acteristics. Sensor nodes are stationary and know their own
geographic locations. Each node can exchange messages
only with its neighbors, which is a set of nodes one wireless
hop away from itself. Objects appear only at the boundary
of the network. When nodes at the boundary of the sensor
network detect an object, a node in the vicinity is selected
and spawns a software agent whose job is to track and accu-
mulate information about that object. As the object moves
within the WSN, the agent hops from node to node so as to
stay close to the object.

Under this setting, each column of these matrices can
be maintained by a single agent as shown. Since mixing
under both approaches updates only two columns of the be-
lief and information matrices, only the two agents involved
in the mixing need to talk to each other to update their
columns. This is just local communication, since mixing
happens only when two objects are very close. To update
information given local evidence, however, the agent with
local evidence needs to send the normalization message to
other relevant agents using a group management protocol
[2] for the belief matrix approach. For the information ma-
trix approach, the agent only needs to add the log-likelihood
(log(.9) − log( .1

N−1 )) to the proper element of the column.

5. EXPERIMENTAL RESULTS

In this section, we present experimental results from simu-
lation and a real tracking system with an RFID system.

5.1. Simulation

Figures 3 and 4 summarize simulation results where we
compare three different approaches – using the marginal be-
lief matrix, the information matrix with exact inference and
the information matrix with approximate inference. Each
representation is used for the tracking and identity manage-
ment of objects as mixing and local evidence incorporation
events take place. In each of our simulations, we process
fifty events where the ratio of the number of mixing to evi-
dence incorporation events is fixed. We then record the dif-
ference between the inferred marginal distribution of iden-
tities to objects from our approximation method to the true
marginal probability distribution summed out over the true
joint (N !)-size distribution. Figure 3 shows simulations for
a system that managed the identities of three objects and
identities. The x-axis represents the ratio of mixing to lo-
cal incorporation events, and each data point corresponds
to the average difference of the true marginal probabilities
to the inferred marginal probabilities over one hundred ran-
dom simulations. Figure 4 shows the results when our sys-
tem managed six identities and objects.
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Fig. 3. Comparison of the three approaches: Marginal belief
matrix, Information matrix with exact inference and Infor-
mation matrix with approximate inference

Observing the results of our simulations, the informa-
tion matrix with exact inference and the belief matrix per-
form comparably, meaning their relative errors are approx-
imately equal when compared to the true marginal proba-
bilities. The information matrix using the Metropolis sam-
pling algorithm performs worse, but only marginally. Both
of these observations are consistent when we increase the
number of identities and objects tracked. However, it is im-
portant to note that the information matrix approach with
approximate inference performs much better when the ra-
tio of the number of mixing to local incorporation events
is small. This is true and consistent with the well known
result in the Markov Chain Monte Carlo community [4]
that a sharply peaked distribution can be accurately repre-
sented using N log N samples for a probability distribution
over SN . Thus, when the number of evidence incorporation
events to mixing events is high, our joint distribution over
SN is likely to be sharply peaked, which explains why our
sampling method performs better with a low ratio of mixing
to evidence incorporation events.

5.2. Experimental Setup: People Tracking System

Two SICK laser range finders are mounted in the Stanford
AI Lab. The laser range finders return range measurements
over a 180 degree field of view, which provides measure-
ments for estimating positions of moving objects. Further-
more, we have augmented our people tracking system with
a radio frequency identification (RFID) system. The RFID
system has eight readers that detect the presence of unique
tags for identity information. The readers, when activated,
send out radio messages to detect the presence of tags within
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Fig. 4. Comparison of the three approaches: 6 objects

its radio range. Four readers are mounted in the hallways to
detect all identities entering and exiting the lab. The re-
maining four readers are mounted in the lab each activated
by motion sensors. Figure 5 is a map of the lab area anno-
tated with where the laser range finders and RFID readers
are.

RFID readerLaser sensor Laser sensing range

Fig. 5. Experimental setup in the Stanford AI lab

5.3. Experiments Performed

In our experiments we had three individuals starting from
different hallways connecting to the lab, walking into the
lab, interacting with one another, and leaving the lab. Each
person was carrying a RFID tag, which was used to trigger
a nearby RFID reader. Figure 6 shows three ground-truth
tracks.

Figure 7 shows results after applying the identity man-
agement to the data from the scenario in Figure 6. The two
graphs on the left show how the uncertainties of track iden-
tities measured as a statistical entropy evolve through the
mixing and local evidence incorporation events. The x axis,



Fig. 6. Experiment scenario: Three people walking in the
lab over 87.79 second period. Their individual tracks are
shown in different colors.

y axis and z axis represent tracks, events and uncertainty in
track identities, respectively. The events axis has a sequence
of events [Initial M E E E M M E], where M stands for mix-
ing and E stands for evidence. The two matrices on the right
are the marginal probabilities of the two approaches after
all the events, where the ith, jth entry of each matrix repre-
sents the probability that object j has identity i. As the re-
sults show, we observe that the information matrix estimates
more accurately the true probabilities than the belief matrix.
This is expected since as we proved earlier, the information
matrix exactly represents the marginals for N ≤ 3.
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Fig. 7. Uncertainties of object identities after many mixing
and evidence incorporation events from the data in Figure 6

6. DISCUSSION AND CONCLUSION

From the analysis and experiments, we come to the con-
clusion that there is a trade-off when choosing between the
two proposed methods for approximating an exponentially-
sized distribution through mixing and local evidence incor-
poration events. In the WSN setting, the weakness of the
belief matrix representation is apparent in its need to con-
tinuously re-normalize its marginal distribution after each
local evidence incorporation event. Furthermore, since this
operation requires extensive communication throughout the

WSN, this representation is energy-consuming. In this pa-
per, we propose an alternate method for approximating the
joint identity distribution using the information matrix. The
main advantage of the information matrix representation over
the belief matrix is how it handles local evidence incorpora-
tion – whenever sensor nodes record evidence they process
the evidence locally without communicating throughout the
network. Thus, nodes are lazy and perform communication
only when users of the system request information rather
than whenever sensor nodes process local evidence events,
as is the case with the belief matrix representation.

Compared to the belief matrix, the information matrix
performs equally well in terms of approximating the true
marginal distributions summed over the joint distribution
over possible permutation of objects and identities, but at an
increased cost of performing the inference necessary to re-
trieve the approximate marginal probabilities. However, we
overcome this added computational cost by performing ap-
proximate inference using the Metropolis sampling method.
Thus, inference costs using the information matrix repre-
sentation are significantly reduced. As experiments show,
the difference in accuracy between approximate and exact
inference for the information matrix is small. Thus, the in-
formation matrix representation is the preferable candidate
for object tracking and identity management in the WSN
setting.
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