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Abstract — We consider the problem of energy efficient random 
deployment of sensor network. Our goal is to find the sensor node 
density, or alternatively, the energy resource density at every 
point inside a given deployment region, which results in allocating 
the minimum total number of deployed sensors, or alternatively, 
the minimum total energy source subject to constraints on the 
Quality of Monitoring (QoM) and network lifetime. The QoM is 
defined as the average of spatial distortion in reconstructed signal 
at the base station and can be bounded for a random deployment 
of sensor nodes when sensors are points of a Poisson process in 
the deployment region. To solve the optimization problem, we 
first determine a node density which satisfies the QoM constraint. 
Next we present a continuous space model for random 
deployment with the associated routing scheme that can be used 
to provide the minimum total required energy consumption. 
Finally, we present a spatial distribution of the sensor nodes (or 
the energy resources) that can achieve this minimum total energy. 
Simulation result shows that the minimum total energy obtained 
is close to the actual energy required in a randomly deployed 
dense network.     

Keywords — Energy-awareness, Sensor networks, Mathematical 
programming/optimization, Random deployment. 

1 INTRODUCTION 

Sensor nodes can be deployed to monitor a phenomenon of interest in 
an area. These sensor nodes collect a variety of data, such as sound, 
motion, temperature, or vibrations and pass this data up toward a base 
station whose goal is to perform a high level monitoring tasks such as 
detecting seismic activity or securing some region. Sensor nodes tend 
to be severely constrained by the amount of battery energy that is 
available to them. This limitation in turn greatly impacts the service 
lifetime and the QoM that can be achieved by each sensor node or by 
the sensor network as a whole. A sensor network derives its strength 
from the rather large number of sensors that is includes. This brings to 
mind a variety of design and scale issues. Chief among these 
problems are those of sensor node deployment and energy resource 
allocation. The first problem is that of assigning a sensor node density, 
λ, to the deployment region whereas the second question relates to 
that of allocating the amount of initial energy, ei, to each sensor. 
Assuming a fixed initial energy level, e0, the total energy allocated to 
the network in a region R with area ||R|| is thus etot=λ||R||e0. In other 
words, for a fixed total energy bound etot in a fixed area R, the 
parametric solutions (λ/α, α.e0) for any α>0 are completely 
equivalent. Furthermore, α may change in different sub-regions (it 
can spatially vary.) Therefore, in the remainder of this paper, we will 
treat the sensor deployment problem (i.e., determining λ) and the 
energy allocation problem (i.e., setting ei per node) as related and 

interacting problems.  

Deployment in practical sensor networks is usually random or, at 
best, controlled at a coarse granularity e.g., through aerial 
deployment. That is why when we refer to sensor node deployment, 
we avoid referring to the exact coordinates of individual sensors in 
the network. Instead we assume that the coarse-grain deployment 
mechanisms can only guarantee a random distribution with known 
density function.1 The problem that we address here is that of finding 

(λi, ei) that minimize i ieλ∫
R

 subject to constraints on QoM and 

network lifetime. Here index i identifies some subregion Ai in R. The 
minimum size of Ai is determined by the granularity of the 
deployment control. For example, if there is sensor deployment 
through ground vehicles Ai is in the range of tens of meters whereas 
for the aerial sensor deployment is in the range of hundreds of meters.  
In our solution technique, we will assume that we have full control 
over node densities within some thin circular regions. Note that the 
situation is different after the network is deployed and has become 
operational since at that point the approximate locations of all sensors 
in the network can be determined and exploited by the scheduler. 

The remainder of this paper is organized as follows. Section 2 
describes the relevant work to this paper. In section 3, we state the 
problem setup, definitions, objective and optimization problem. 
Section 4 presents optimum routing algorithms in a continuous space 
model of random deployment.     

2 RELATED WORK 

Many of the requisite features of a sensor network such as 
connectivity and coverage are significantly affected by the 
deployment strategy. Hence, sensor deployment strategies play a 
significant role in determining the performance of static sensor 
networks. To this end, there have been a number of studies that 
address this problem as explained in the following discussion. 

Adlakha et al [ 1] study the factors of accuracy, latency and 
lifetime as design time optimization constraints with respect to node 
density. These factors are subject to change when some nodes fail or 
die out and as a result node density decreases. The lifetime of the 
network is defined as the network utility, which is computed as the 
product of the network’s connectedness with the accuracy. The aim is 

                                                 
1 We realize that having complete control over how the node density 
varies over space is in the limit equivalent to having precise control 
over the coordinates of individual sensors. However, we assume that 
there is a sufficient level of deployment control to allow for slowly 
varying node densities across space. 
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to derive design parameters for the network that can be tuned by a 
cluster management scheme, as suggested by the authors as suggested 
by the authors in a previous work. 

There have been a couple of research results on deriving an 
upper bound on the service lifetime of sensor networks. The service 
lifetime of a sensor network has been derived in [ 2][ 3] by multi 
commodity flow non-linear programming formulation. It can be 
shown that the problem we will state later in this paper which is 
finding minimum total energy (or total number of nodes) subject to 
the constraint on network lifetime is dual of finding the maximum 
network lifetime subject to constraint on the initial energy budget. 

The work presented in [ 4] has tackled the optimization problem 
of sensor placement with constraints on distortion of the reconstructed 
sensed signal at the base and with the objective of minimizing the 
total transmission power for a given number of sensor nodes. This 
reference provides solutions for sensor placement on a line and a 
special case of sensor placement in a plane assuming that number of 
sensors is given and the sensors can be precisely placed at their 
desirable locations. Our paper extends this work to the case of sensor 
deployment in a plane where, because of lack of precise control in the 
deployment phase, the sensor locations are random although the 
sensor density can be controlled.      

GAF [ 5], which uses intelligent node scheduling techniques to 
conserve the energy, is an example of energy conservation techniques 
that rely on node clustering and network routing. GAF divides the 
coverage area where the nodes are distributed to small virtual grid 
cells such that at any instant, only one node in each cell is active 
while all other nodes in that cell are in their power saving mode (sleep 
or discovery). After a node remains active for a period of time, it 
changes its state to power saving mode in order to give a chance to 
other nodes within the same cell to become active. We will show in 
our deployment scheme how to apply a proper duty cycle for turning 
on/off the nodes distributed in a ring such that all the nodes in the ring 
expire at the same time. 

The abovementioned works are the most relevant works to our 
proposed paper. There is a large body of other works that address the 
connectivity [ 6] and coverage problems [ 6][ 7][ 8] in distributed 
sensing for generic applications (e.g., target tracking). Most of these 
works use uniform deployment strategy or a deployment scheme that 
minimizes the probability of detection along the exposure paths in the 
case of target tracking. 

3 PROBLEM SETUP 

We assume that boundaries of a sensor deployment region (or 
monitoring region) R and location of a sink node is known. The sink 
node gathers information from the monitoring region and has direct 
connection to a base station. We wish to calculate the value of a 
particular parameter, π, related to some phenomenon of interest in 
region R by frequently monitoring the region with a number of sensor 
nodes appropriately deployed in that region. Each sensor node 
frequently senses the environment and measures a value Z at its 
present location or in its local environment (the size of this local 
environment is determined based on the sensing range of the sensor.) 
Next it reports its measurement by sending the quantized values of Z 
to the designated sink node by using a (possibly) multiple-hop routing 
scheme. The reporting can be periodic or aperiodic. In periodic 
reporting a sensor node periodically reports its measurement to the 
base. However, in aperiodic monitoring a sensor reports its 
measurement when the value of Z at its location or its sensing range 
exceeds a threshold, which indicates occurrence of an event at the 

local environment of the sensor. In either periodic or aperiodic 
reporting we work with the time average of the data rate for reporting 
µ. and we assume that µ. is constant for all sensor nodes inside the 
monitoring region. 

The gathered information is then sent to the base, which 
subsequently aggregates the received sensor data. The notion of 
sensing range has different definitions depending on the task for 
which the sensors are deployed. For network interdiction, or more 
generally event detection, applications, the sensing range of a sensor 
is the neighboring area of the sensor where an event of interest can be 
detected by that sensor. In the environmental monitoring application 
such as temperature reading, each sensor measures the exact value of 
π at the point where the sensor is located. The value of π at a point in 
R where no sensor is co-located is estimated from the measurements 
of sensors, which are spatially correlated to that point. 

A. Model of Random Deployment  
Sensor nodes can be deployed in several ways in a given deployment 
region. The level of control in deployment of sensor nodes sets the 
degree of randomness in the locations of nodes. In a fine-grained 
deployment, there is no randomness in placement of sensor nodes and 
sensor nodes can be exactly placed in any location within the 
deployment region. In practice, however, it is usually infeasible to 
devise a deployment strategy whereby each sensor is placed precisely 
at some location. Practical deployment in large sensor networks is 
usually random, or at best, can be controlled with coarse granularity. 
As a result, adopting a random deployment model with slowly 
varying node densities is more realistic.  

Consider 
k⊂ �R  as the deployment region where k�  denotes 

the k-dimensional Euclidian space. For a sufficiently large region R 
where a large number of sensor nodes have been distributed in the 
area, the distribution can be modeled as a Poisson distribution in k-
dimensional space [ 9]. Let λ denote the node density i.e.,  

n

R
λ = where n is the number of nodes and ||R|| denotes the area of 

R.. Furthermore, consider that region R is partitioned into m disjoint 

sub-regions, A1…Am. Now for each iA ⊆ R , let N(Ai) denotes the 

number of sensor nodes in Ai. We will make use of the following two 
key assumptions: 

• Node distribution over region Ai is a Poisson distribution with 
mean λ||Ai||. 

• N(A1)…N(Am) are independent random variables. 

B. QoM and Network Lifetime Definition 
The QoM is intended to represent the “similarity” between the actual 
values of some parameter of interest in R and the reconstructed values 
for the same parameter in the base. These values can be thought of as 
a random field in the space and time. Therefore, QoM should be 
analyzed in two respects: temporal and spatial accuracy. The temporal 
accuracy may be defined by the reporting period whereas the spatial 
accuracy may be defined by accuracy of spatial estimation of the 
value of interest at the locations where no true value is available at the 
reconstruction time.  

The temporal part of QoM is represented by frequency of 
sampling. For the remainder of this analysis, we assume that the 
sampling frequency is equal to or greater than the Nyquist frequency 
that can fully track and/or reconstruct changes of any phenomenon of 
interest inside region R. so that the base station can fully reconstruct 
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the changes in time. In other words, we will not worry about temporal 
distortion. The base should also be able to spatially reconstruct the 
value of interest or events in R within the required minimum QoM. In 
this paper, spatial distortion is the primary concern here. By reducing 
this distortion, “similarity” between the reconstructed value and 
actual value of the parameter of interest increases thereby, improving 
the QoM metric.  More precisely, we define an average spatial 
distortion metric, MSE(R) ,as follows: 

21
( ) [( ( ) ( ))]

∈

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
∫ %

x

MSE E E Z x Z x dx
R

R
R

 

where ( )Z x  and ( )%Z x represent the actual and reconstructed values 

of interests at point x in region R, respectively. The second 
expectation is taken with respect to distribution of sensor nodes in R 
which are points of Poisson process. 

It is assumed that the network designer or application developer 
imposes an upper bound constraint, Dmin, on the distortion metric as 
follows: 

min( ) ≤MSE DR                                                            (1) 

One can easily estimate the value of Z at any point in R by 
linearly combining readings from its k nearest sensor nodes through a 
method known as ordinary kriging [ 18]. First let’s define the 
covariance between any two points xi and xj, C(xi,xj), as follows: 

0( , ) [ ( ) ( )] = exp( | |)γ= − −i j i i i jC x x E Z x Z x C x x  

where C0=C(x,x), γ is a constant factor and |xi-xj| is the Euclidean 
distance between xi and xj. 

We assume that deployed sensors inside region R are points of a 
Poisson process with density parameter λ (as described in the section 
3.1), and that C(xi,xj) values are given. Furthermore R  is sufficiently 
large.  

Theorem 1: When using the ordinary kringing method to estimates 
the value of parameter p at every point x in region R,  MSE(R) can be 
bounded as follows: 

0
0 0 0

1 1
( ) exp( )(1 ( ))

4 2
MSE C erf

π
α α α

≤ −R  
 

(2) 

where 0 2

2. .
 

π λα
γ

= . 

All proofs are provided in technical report [ 11]. They are skipped here 
due to space limitation. 

Notice that in deriving the above bound, we used k=1 for the 
ordinary kriging method. Obviously, the MSE error is reduced as we 
increase k. In other words equation (2) provides an upper bound on 
the actual error. Theorem 1 gives a simple equation form to bound 
MSE(R). Simulation results presented in [ 11] show that this bound is 
sufficiently close to the measured value of ( )MSE R for intermediate 

to large values of λ. Consequently, we replace constraint (1) with the 
following constraint: 

0 min
0 0 0

1 1
exp( )(1 ( ))

4 2
C erf D

π
α α α

− ≤              (3) 

It can easily be shown that the bound is a monotonic decreasing 
function of λ, therefore, there is λmin such that: 

  min min( )MSE D λ λ≤ ⇔ ≥R                                (4) 

The sensor network lifetime is defined as the duration of time 
between when all sensor energy sources are replenished and when the 
spatial distortion in the reported value of interest in region R exceeds 
Dmin. Notice that the spatial distortion increases with time as some 
sensor nodes exhaust their energy source, and consequently, exit the 
ad hoc sensor network. Also notice that this distortion can rise slowly 
or rapidly over time, depending on the distribution of sensors inside 
the region coupled with how traffic is routed inside the network.   

Quality and Lifetime-constrained Sensor Deployment Problem 
(QLSD):  Given are boundaries of region R and the location of the 
sink (base station), an upper bound, Dmin, on average spatial 
distortion as a metric that represents QoM, and a lower bound, Tmin, 
on the Network Lifetime. Assuming random deployment of sensors 
with the model presented in section 3.1, the objective is to find node 
density or energy density at each point in R so as to minimize the 
number of deployed nodes or the total energy allocated to the nodes 
in the network while satisfying the QoM and network lifetime 
constraints. 

Key Assumptions: Before formulizing the QLSD problem we state a 
number of assumptions.. 

1. For sake of simplicity in calculation, we assume that R is circular 

(
2⊂ �R  ) where the base is located at the center of the region. 

This case clearly encompasses the case where region R is a line.   

2. Sensor nodes generate traffic at a constant data rate. They send 
their traffic with multi hop routing toward the sink. If there are 
spatial correlations between the readings of different sensor 
nodes, data compression is done at each source by a joint entropy 
coding method like Slepian-Wolf source coding [ 10]. As a result, 
there is no need for any data aggregation at intermediate nodes. 

3. The MAC layer is ideal in the sense that there will be no energy 
loss due to the MAC layer collision. In addition, each node is 
scheduled to wake up only when required (i.e. when it wants to 
send or receive data.)At all other times, the sensor nodes are 
sleep, and hence, they do not dissipate any energy. 

4. The sensor nodes are time-synchronized (see [ 13][ 14] for 
mechanisms to achieve time synchronization in a sensor 
network), meaning that all of the nodes that wakeup and sense 
their environment in some reporting cycle do so exactly at the 
same time instance. However, not every node is awakened in 
each cycle. More precisely, we assume that each sensor node is 
given a probability of wakeup and wakes up in a given cycle 
with that specified probability (cf. Section 4.2.) 

5. Sensors can find their locations after they are deployed. They 
can use localization algorithms such as those in [ 15] to obtain 
their spatial coordinates with respect to the sink node. This 
information is then used by the sensors, who must also be 
knowledgeable about the deployment solution, to calculate and 
set their wakeup probabilities (cf. Section 4.2.)  
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6. Wireless communication links between sensors are assumed to 
be lossless. In other words, no energy is dissipated for data 
retransmission due to the packet loss.  

 

Modeling the Objective Function: Let dx denote an infinitesimal 
subregion of R around point x and e(x) denotes the energy 
consumption rate of a node located at point x. Recall that µ is the 
average reporting rate. The total energy consumption in the network 
during time T,  etot, is: 

= ( ) ( ) tote T e x N dx∫
R

 

where N(dx) denotes the number of nodes in infinitesimal area dx. 
Now because of the properties of a Poisson point process: 

22 w ith prob. ( ) 0

 ( ) 1    w ith prob. 

0    with prob. 1-

dx

N dx dx

dx

λ
λ

λ

⎧≥ ≈
⎪= ⎨
⎪
⎩

 , [ ( )]E N dx dxλ= . 

The expected value of  etot  is:  

[ ]= [ ( )] dtotE e T E e x xλ∫
R

                                    
(5) 

Now we can write QLSD problem as a mathematical program: 

( ), ,

0 min
0 0 0

0 2

 [ ( )] d    s.t.

1 1
exp( )(1 ( ))

4 2

2
where 

min  

λ
λ

π
α α α

πλα
γ

− ≤

=

≥

∫e x T
Min T E e x x

C erf D

T T

R

        (6) 

The objective function must be minimized with respect to three 
variables: λ, T and e(x). The objective function with respect to λ and T 
is linear. Moreover, it can be easily shown that there are λmin and Tmin 
that can satisfy constraints and minimize the objective with respect to 
λ and T. Hence, we will focus on minimizing the objective with 
respect to e(x) which is a function of the data routing algorithm in the 
sensor network. 

4 OPTIMAL ROUTING ALGORITHMS IN THE 
CONTINUOUS SPACE MODEL OF RANDOM 

DEPLOYMENT  

In this section we introduce a continuous-space model of random 
deployment of sensor networks and propose algorithms for data 
routing in that model such that objective function in (6) is minimized. 
We define an energy density, ed   metric which captures the spatial 
distribution of energy resources inside area R . As stated in Section 3, 

we assume that 
2⊂ �R  is circular and the sink is located at the 

center of region (see Figure 1.) 

A. Continuous Space Model and Routing Algorithm 
 Assume that each sensing event results in generation of B packets of 
data to be transmitted to the sink node. We can thus define an energy 
dissipation per packet of data for the sensing operation itself (denoted 
by αs) and an energy per packet of data for delivering the data to the 
sink node (denoted by w(x)). The latter includes all of the energy 

consumptions related to receiving and/or sending the packet of data 
on its path from a point x (i.e., x=(r,θ) in polar coordinates) to the 
sink. It can easily be shown that the total energy consumption, etot, in 
the network during time Tmin,  and its mean value are: 

tot mine = ( ( )) ( ) sT w x N dxα µ+∫
R

 

min[ ]= ( [ ( )]) dxtot s cE e T E w xα µλ+∫
R

 

Recall that µ is the average reporting rate. The above equation is 
in fact another equivalent form of the objective function in (6). 
Therefore, our model is a continuous space model wherein an 
infinitesimal area, dx, can be treated as source of traffic with local 
flow µλdx. Furthermore, each source node must find a path to the 
sink, which minimizes total energy for sending its data to the sink. 
The conclusion is that Least-cost Path (LP) routing provides the 
optimal routes from each node to the sink in the QLSD problem. 

  For a first order radio model of a wireless sensor node [ 11], the 
transmission energy per bit ε  is related to the transmission distance d 
as 

0 , 1βε α α β= + >T Td ,  where αT0 and αT are constants.  

Let S denote a source which is located at distance r from the sink and 
assume that its traffic is relayed by m-1 intermediate sensors before 
reaching the sink. The work in [ 12] has proved that in this case when 
each hop has the same length (set to r/m), the total transmission 
energy is minimized. Therefore, the minimum energy for sending and 
relaying this packet to the sink is calculated as 

0( ) ( ( ) ) ( 1)T T R

r
w r m m

m
βα α α= + + − . (7) 

where αR denotes the energy cost for receiving a bit. 

 

D(3)

b(
1)

D(M)

D(1)

D(2)

R  
Figure 1.  Deployment region is divided to discs wherein nodes within a disc 

have same hop-count to the sink. 

By setting the derivative of w(r) with respect to m to 0, we 
obtain m* that minimizes w(r) as follows: 

0* / ( 1) /( )β β α α α= − +T R Tm r            (8) 

Note that w has only one extremum with respect to m when m>0. 
Now, the optimal number of relaying hops should be an integer, i.e., 
either Int[m*]= *m⎢ ⎥⎣ ⎦  or * 1m +⎢ ⎥⎣ ⎦  and the distance of each 

relaying hop dS is constant and satisfies ds=r/Int(m*).   
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D(4)D(3)D(2)D(1)

 
Figure 2. Optimal radial path for a node located in D(4). 

The optimal hop length of each sensor can be calculated iteratively 
starting from the center of the circular region along the radial line 
segment on which the sensor is placed. In other words, because of the 
perfect symmetry of the problem setup in the polar coordinates, the 2-
D sensor deployment problem in a circular region is transformed to a 
series of 1-D sensor deployments on different radial line segments 
(starting from the sink node which is at the center of the region and 
extending to the boundary of the circular region). Details are included 
in the Continuous Space Radial Transmission (CSRT) algorithm 
provided below. In this algorithm, R denotes the length of the 1-D 
deployment region. Now consider a point x which is at distance r ≤ R 
from the sink. We define b(m) as the r value which results in 
equalization of the minimum energy dissipation for forwarding a 
packet from x to the sink by using exactly m hops and that for 
forwarding the packet by using exactly m+1 hops. Notice that for all 
points x that lie in the range (b(m-1),b(m)], the minimum-energy hop 
length is r/m. From this definition and equation (7), we have: 

0 0

( ) ( )
( ( ) ) ( 1) ( 1)( ( ) )

1T T R T T R

b m b m
m m m m

m m
β βα α α α α α+ + − = + + +

+
   (9) 

 The CSRT algorithm shows how the various b(m) values are 
calculated for m=1, …, M. Notice that line 4 is the solution of 
equation (9) . Let the predecessor of a node located at x=r be the node 
that is closer to the sink and who relays the data sent out from this 
node toward the sink.  The CSRT algorithm assigns to each point x=r, 
a predecessor xp=r-r/m along the radius toward the sink. 

CSRT Algorithm 

1

0
1 1

1    b(0) 0;    0; // sink is at location 0

2   do {

3   1;

( ) /
4   b( ) ;

( 1)

5          ( -1) ( )  

                ( ) ( - );

6   } while (b( ) ); 

7   

β

β β
α α α

− −

= =

= +

⎛ ⎞+= ⎜ ⎟− +⎝ ⎠
< ≤

=

≤
=

R T T

m

m m

m
m m

for all b m r b m

r
predecessor r r

m
m R

M -1; // M is the number of discsm

 

The CSRT algorithm (when applied to all radial lines with angle 
θ) divides the 2-D deployment region, R, to concentric disks D(m) as 
shown in figure 1 where each disk, D(m), specifies a subregion 
comprising of points (r,θ) as follows: 

( ) {( , ) : ( 1) ( )  and 0 <2 }

for 1 . 

D m r b m r b m

m M

θ θ π= − < ≤ ≤
≤ ≤

 (10) 

Therefore, for each node ( , ) ( )θ= ∈x r D m  ,its predecessor is 

xp=(r-r/m, θ). Figure 2 is an example that shows how a node which is 
located inside D(3) sends its packets toward the sink through the 
optimal path. All hops have equal length except for the last hop which 
connects to the sink. Optimality of the CSRT algorithm follows from 
the following lemmas and theorem.  

Lemma 1: b(m) (where mєZ+) is an increasing function of m. 

Lemma 2: For m ≥1,  if b(m)< r ≤ b(m+1), then  b(m-1)< r-r/(m+1) ≤ 
b(m). 

Theorem 2: For a sensor located at (r,θ)єD(m) ,the predecessor in the 
Least-cost Path (LP) is a senor located at (r-r/m,θ)єD(m-1). 

The proofs of the above lemmas and theorem can be found in [ 16].  

B. Energy Density and Total Energy 
Now we set out to determine the optimum energy density in R and the 
total energy allocated to the sensor nodes in the network under the 
condition that the CSRT algorithm is used for data routing.   

Theorem 3: By employing the CSRT algorithm for data routing in the 
sensor network, energy density, ed(r), at point (r,θ) can be calculated 
as: 

min min

( )

0

( 1 )( 2 )
( ) ( )

2

1     if   
 ( , ) ( ) and 1 where =1

0     else  

and

d R S

Mr
R

m

T T R

M m M m
e r T

m
M r

R
r D m m M m

r

m

β

χ χ η α α µλ

θ χ

η α α α

≥

+ − + − − += − +

⎧ ≥⎪∀ ∈ ≤ ≤ = ⎨
⎪⎩

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

    (11) 

Proof: To find flow distribution and as a result energy density at 
distance r from the sink, the deployment region is divided into 
infinitesimally narrow rings around the sink with width ∆r (see figure 
3.) We denote such a ring as ρ(r) and define it as follows: 

( )={( ', ): '  and 0 2 }ρ θ θ π≤ < + ∆ ≤ <r r r r r r  

 As stated earlier for the continuous space model, each 
infinitesimal area may be treated as a source of traffic with the local 
flow being proportional to the probability that one node is found in 
that infinitesimal area. Notice that from the Poisson process property, 
if a node is in ρ(r), then it will have equal probability of residing in 
any location inside that ρ(r). Therefore, the local flow of each ρ(r) is 
uniformly distributed in the area of that ring. Therefore, the energy 
density inside the ring is uniform.  

Let’s define M as the network diameter and let ∆I(r) and ∆F(r) 
denote total input/output flow to/from ρ(r)) and ∆L(r) denote locally 
generated flow in ρ(r).  

min( )= 2L r r rπ µλ∆ ∆  (12) 

By writing flow conservation for any ρ(r) where 0≤ r<R, we get 

( ) ( ) ( )F r L r I r∆ = ∆ +∆  and ( ) 0 if ( , ) ( )I r r D Mθ∆ = ∈  

Notice that if ( , ) ( )r D mθ ∈  and 1≤m≤M-2 then 
1

( , ) ( 1)
m

r D m
m
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- 1
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=
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∑
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ir Mr
F r L r L r L

m m

r D m m M

 
(13) 

The lifetime of a node that resides in ρ(r), denoted by τ(r), can 
be calculated as follows: 
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π τ
α α α α

∆
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+ ∆ + ∆ − ∆ + ∆
To fully utilize total energy allocated to all nodes in the deployment 
region and avoid energy waste, we want to ensure that all sensor 
nodes have the same lifetime, which is equal to the network lifetime, 
Tmin. Consequently, from the above equation, energy density, ed(r), is 
calculated as follows: 

( )0 min( ( ) ) ( ) ( ( ) ( )) ( )
( )

2
T T R S

d

r m F r F r L r L r T
e r

r r

βα α α α
π

+ ∆ + ∆ − ∆ + ∆
=

∆
By substituting ∆F(r) and ∆L(r) given by equations (12) and (13) in 
the above equation, we derive equation (11) and this complete the 
proof.  

r dr
dI(r) dF(r)

r
r/m

 
Figure 3.  dI(r) and dF(r) are total input and output flows of an infinitesimally 

narrow ring with width dr (ρ(r)) and r/m is optimal hop-length for a sensor 
within the disc D(m). 

As explained earlier sensor deployment problem and the energy 
allocation problem are related and interacting problems. Indeed there 
are two ways to provide energy density for a ρ(r). One way is to 
allocate 2 ( )dr re rπ ∆  to a node inside ρ(r). However, if the battery 

capacity of each node is fixed to E0 another way to allocate the 
required energy is to adjust node density inside ρ(r) according to the 
following equation: 

min min

0 0

0
( )

( ) ( 1 )( 2 )
( ) ( )

2

for ( , ) ( ) and 1

where ( )   and 1β

µλχ χ ηλ α α

θ
η α α α χ
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= + + =

d
d R S

T T R Mr
R

m

e r TM m M m
r

E m E

r D m m M

r m

   (14) 

This adjustment increases the node density above than the 
density λmin that requires for satisfaction of QoM constraint. Therefore 
a policy must be employed to control the node density such that at 
any reporting cycle, density of active nodes which are participating in 
sensing the environment and data routing reduces to λmin and the rest 
of the nodes are in the sleep mode (power saving).Therefore, not 
every node is awakened in each reporting cycle. More precisely, we 
assume that each sensor node is given a probability of wakeup and 
wakes up in a given cycle with that specified probability. That 
probability for a sensor which is located at distance r from the sink is 
given as λmin/λ(r)(Note that  λmin/λ(r) ≤1.) 

The underlying assumption in CSRT and theorem 3 is that any 
point in the region can find an optimal radial path to the sink which 
consumes least energy according to equations (7) and (8). Therefore, 
CSRT derives minimum the total energy needs to be allocated to R. 

Corollary 1: The minimum of the expected total energy required in 
the sensor network is: 

min min
1 ( )

1 1
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where ~ ( ), 0,1,..., 1;
( )

, .

b m m M
b m

R m M

= −⎧
= ⎨ =⎩

 

 

 
Figure 4. Energy density vs. distance from the sink. 

We have performed several simulations to evaluate CSRT 
algorithm and to find energy density in a given deployment region. 
The system parameters selected for those simulations are: 
Tmin/E0=1, µ=1,β=3, αR=αT0=αT =0.5, αS=0 and R=10.The energy 
density as a function of distance from the sink for the given system 
parameters is illustrated in the figure 4. The figure shows that as we 
get close to the sink, inside each disc, the energy density has several 
peaks with increasing height. Also sharp density transitions occur at 
the boundary between discs.  

In the next simulations we compare equation (15) and actual 
value of the total energy for different node densities. We simulated a 
Poisson distribution of sensor nodes in a circular region with the 
algorithm proposed in [ 17].In these simulations each sensor node 
finds its minimum energy path to the sink and sends its data through 
the nodes in that path to the sink for a period of time. At the end of 
simulations, total energy consumed by all nodes in the network was 
measured and is reported as the actual value of total energy. Figure 5 
shows the result for a circular region.  We did the same simulation for 
a collinear network and the result is reported in figure 6. It must be 
noted that the simulations were run many times and the average 
results of those runs are reported in the figures. In the collinear case, 
as node density increases, the error between CSRT-obtained and 
simulated energy dissipations diminishes, however, in the circular 
case, a small difference remains throughout. In the following we 
attempt to improve these results. 
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Figure 5.  Actual value of total energy and total energy obtained by CSRT 
algorithm for a circular region in different node densities. 

 

 

Figure 6.  Actual value of total energy and total energy obtained by CSRT 
algorithm for a collinear network in different node densities. 
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Figure 7.  Area that a node located at distance r can find its predecessor (in Ф-

CSRT algorithm.) 

C. Analyzing CSRT and Modifying Routing Scheme 
First we analyze why the error in the circular case persists as λ is 
increased. The CSRT algorithm assigns to each point 

( , ) ( )θ= ∈x r D m , a predecessor xp=(r-r/m,θ) with the assumption 

that ( ) 1 | ( ) 1Pr( ) 1= = =
p

N dx N dx . This means that if a node is 

located in (r,θ), then with probability 1 another node can be found as 
its predecessor at location (r-r/m θ).We call the conditional 
probability ( ) 1 | ( ) 1 Pr( )

p
N dx N dxh = ==  as the hit probability. By 

using the property of exponential distribution, h can be bounded as 
follows: 

( ) 0 for the circular region

( )          for the linear region

λ θ
λ

≈⎧
= ⎨
⎩

o drd
h

o dr
 

Therefore, for the circular region, h is bounded by a very small value 
even for large λ values whereas, for the linear region, the upper bound 
on h increases with λ. 

Next we modify the CSRT algorithm to increase its hit 
probability. From equation (15), we must spend more energy in order 
to increase the hit probability. The modification is only in the way 
that the predecessor of a sensor node is identified. More precisely, for 
a point that is placed at (r,θ), instead of selecting a predecessor at 
point (r-r/m,θ), we randomly assign a predecessor at point (r’,θ’) in 
the following  area(see figure 7): 

( , ) {( ', '): / / 2 ' / / 2 

and - /2 ' / 2}

r r r r m r r r r m rφ θ
θ φ θ θ φ

ϒ = − −∆ ≤ < − +∆
≤ < +

  

where ∆r denotes the width of an infinitesimally small ring.   

The hit probability of the modified algorithm is now bounded as 
follows: 

 Pr( ( ) 1 | ( ) 1) ( )pN dx N dx o rdrλφ= = =  

We call the modified algorithm as Ф-CSRT algorithm. 
Derivation of the minimum total energy in the network under this 
routing algorithm is straight-forward and is omitted here. We however 
report the total energy obtained by Ф-CSRT for several values of Ф 
and compare them with the actual values of total energy obtained by 
simulation in figure 8. As can be seen, this time, the actual total 
energy converges to the value predicted by the Ф-CSRT as λ is 
increased. 

5 CONCLUSIONS  

In this paper, we considered the problem of energy efficient random 
deployment of sensor network. We found the sensor node density, or 
alternatively, the energy resource density at every point inside a given 
deployment region, which results in allocating the minimum total 
number of deployed sensors, or alternatively, the minimum total 
energy source subject to constraints on the QoM and network lifetime. 
As future work we plan to modify and improve the algorithms scheme 
given in this paper for sparse networks when the node density is small. 
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Figure 8.  Actual total energy and the total energy obtained by Ф-CSRT 

algorithm in different node densities and Ф values. 
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