2008 International Conference on Information Processing in Sensor Networks

SensorScope: Out-of-the-Box Environmental Monitoring

Guillermo Barrenetxea, Francois Ingelrest, Gunnar Schaefer, and Martin Vetterli
LCAV, 1&C School, EPFL, Switzerland
{Guillermo.Barrenetxea, Francois.Ingelrest, Gunnar.Schaefer, Martin. Vetterli } @epfl.ch

Olivier Couach and Marc Parlange
EFLUM, ENAC School, EPFL, Switzerland
{Olivier.Couach, Marc.Parlange } @epfl.ch

Abstract

Environmental monitoring constitutes an important field
of application for wireless sensor networks. Given the
severity of potential climate changes, environmental im-
pact on cities, and pollution, it is a domain where sen-
sor networks can have great impact and as such, is get-
ting more and more attention. Current data collection tech-
niques are indeed rather limited and make use of very ex-
pensive sensing stations, leading to a lack of appropriate
observations. In this paper, we present SensorScope, a col-
laborative project between environmental and network re-
searchers, that aims at providing an efficient and inexpen-
sive out-of-the-box environmental monitoring system, based
on a wireless sensor network. We especially focus on data
gathering and present the hardware and network architec-
ture of SensorScope. We also describe a real-world deploy-
ment, which took place on a rock glacier in Switzerland, as
well as the results we obtained.

1 Introduction

1.1 Context

A Wireless Sensor Network (WSN) is a self-organized,
multi-hop wireless network, composed of a large number
of sensor motes, deployed over an area of interest. These
motes are small embedded devices, able to gather various
information about their environment, such as temperature,
wind, humidity, or luminosity. They are constrained in
many ways (e.g., memory, processor), but energy is consid-
ered to be the scarcest resource, due to limited battery ca-
pacities. Moreover, as WSNs are often deployed in hostile
and/or remote areas, replacing batteries may be infeasible.

Most of the time, WSNs operate in an n-fo-I commu-
nication paradigm, in which collected data is forwarded to

978-0-7695-3157-1/08 $25.00 © 2008 IEEE
DOI 10.1109/IPSN.2008.28

332

a base station (sink). The sink may then perform further
computation on the data, or may in turn forward it via a
longer-range/more reliable network connection (e.g., wire-
line, GPRS).

WSNs may be divided into three categories:

1. Time-driven: Motes periodically forward gathered
data to the sink (e.g., pollution monitoring).

2. Event-driven: Motes forward an alert to the sink
when a particular event occurs (e.g., a forest fire).

3. Query-driven: Motes send gathered data only upon
reception of a query from the sink (e.g., storage room).

Typical uses of such networks include surveillance, habi-
tat monitoring, and elderly care. We are, however, es-
pecially interested in environmental monitoring. Indeed,
the natural environment is currently undergoing dramatic
changes at a global scale, i.e., global warming. Most of
the time, environmental scientists cannot answer questions,
such as “How much change is anticipated?” or “What are
the main causes and consequences of such change?”’. The
primary limitation in addressing these questions is a lack
of appropriately dense spatial and temporal observations.
Consequently, environmental researchers have difficulty to
test and validate their models, which simulate future scenar-
ios and make real-time predictions. An easy-to-deploy-and-
configure pervasive WSN can greatly help in collecting the
required data. This is our aim in the SensorScope project.

1.2 Contributions

In this paper, we present SensorScope, a WSN-based
system for efficient environmental monitoring. Sensor-
Scope falls into the category of time-driven networks, as
the stations intermittently transmit environmental data (e.g.,
wind speed and direction, soil moisture) to a sink. This, in

IEEE
computer
psouety

turn, is able to relay to a database server, which makes all
data publicly available in real-time on our Google Maps-
based web interface and on Microsoft’s SensorMap web-
site!. The main objective of the project is to provide a
low-cost and reliable WSN-based system for environmental
monitoring to a wide community, to improve present data
collection techniques with the latest technology.

By studying recent research results in WSNs, we have
developed a communication stack that features, among
other characteristics, a multi-hop data gathering protocol
and a synchronized duty-cycling MAC layer that greatly
helps in reducing the overall energy consumption. One of
the key features of our solution is the very simple interface
it presents to higher layers, abstracting all network details,
and allowing for great ease when writing applications. This
aspect is very important, since SensorScope aims at facili-
tating the adoption of WSNs as a common tool by a com-
munity with no expert knowledge in wireless networking.

As a case in point, during the summer 2007, we deployed
several lightweight WSNs for typical environmental appli-
cations at the following locations in Switzerland:

1. Morges: Thanks to a collaboration with the Clim-
Arbres project, a network was deployed on the bor-
der of the water stream Le Boiron de Morges. The
Clim-Arbres project aims at renaturing this stream to
improve its ecological quality, and was in need of ap-
propriate environmental measurements.

2. Le Génépi: In collaboration with authorities, we de-
ployed SensorScope in harsh conditions on a rock
glacier on Le Génépi. This site is the source of fre-
quent and dangerous mud streams, and the lack of
measurements prevents climatic models from being
elaborated. Our deployment allowed the gathering of
the required measurements.

3. Grand St Bernard: Again in collaboration with au-
thorities, we deployed another network at the Grand St
Bernard pass. The goal was to create a very precise
map of the evaporation in this place, thanks to soil wa-
ter content and suction measurements, as current hy-
drological models have not represented reality well.

Therefore, the WSN concept, architecture, hardware,
software, and web interface presented in this paper have had
an immediate impact on real-world environmental monitor-
ing applications. Here, we especially focus on how data
gathering works and we hence describe both the hardware
and the software architecture of SensorScope, the motiva-
tions that guided the design of our communication stack and
how we implemented its prominent features. We provide

"http://atom.research.microsoft.com/sensormap/

333

results gathered during deployments about the network, the
sensing stations, and, of course, the environment.

We also point out that the communication stack we have
designed and describe in this paper, is freely available on
our website2, under an open-source license.

The remainder of this paper is organized as follows. In
the next section, we present an overview of previous WSN
deployments. We then present the architecture of Sensor-
Scope in Sec. 3, describing both the hardware we have de-
signed and the communication stack we have developed. In
Sec. 4, we give details about the key features of our network
architecture, while in Sec. 5, we provide and discuss the re-
sults obtained on our indoor testbed as well as those of our
aforementioned outdoor deployments. We finally conclude
in Sec. 6, also pointing out future work we are considering.

2 Related Work

Wireless Sensor Networks have recently received quite
some attention in the context of environmental monitor-
ing [9, 13, 14, 16], as the highly distributed nature of rel-
evant applications often renders wired deployments infeasi-
ble. Using inexpensive wireless sensor motes, it will even-
tually be possible to carry out measurement campaigns at
unprecedented scales and resolutions, but because the tech-
nology is still relatively new, earlier experiments were gen-
erally small-scale and short-term.

Among the most recent papers, researchers at Berke-
ley reported the results obtained from their sensor network
“Macroscope” [15], which was extensively used for the mi-
croclimate monitoring of a redwood tree. While this exper-
iment provided quite interesting insights into deployment
methodology and data analysis, it was a rather small-scale
deployment. The nodes were placed in a tree from 15 to
70m from the ground, and most sensor motes, especially
the ones we use in SensorScope, are able to directly com-
municate over such distance.

Macroscope is built on top of TASK [1], a set of WSN
software and tools, also designed at Berkeley. Authors of
TASK state that the majority of substantial sensor network
deployments have been driven and developed principally by
network theorists and engineers, and that the adoption of
WSNs as a generic tool requires the development of ade-
quate and easy-to-use software. In SensorScope, our goal
is actually to go one step further than TASK, and to pro-
vide not only a sensor network in a box, but an entire envi-
ronmental monitoring system. This includes the hardware,
such as the sensing stations, the software running on the
motes, but also the server-side and database software, to-
gether with a convenient web interface.

More recently, researchers at the Delft University de-
ployed a large-scale sensor network in a potato field [6].

2http://sensorscope.epfl.ch/network_code

The goal of the project was to improve the protection of
potatoes against a fungal disease, and thus to precisely mon-
itor the development of this disease. Unfortunately, the de-
ployment went wrong and their work could not be finished,
mainly because of time and money constraints. Their work,
however, led them to report the lessons they learned, espe-
cially how much more difficult it is to set up a WSN in the
real world rather than in a simulator.

Finally, we should point out that the SensorScope exper-
iments presented in this paper are actually not the first ones.
Previously, SensorScope was used for indoor monitoring,
and was relying on bare motes, not fitted for outdoor, long-
term operation [12]. The project is now much more mature,
and supports deployments in harsh, isolated locations, as we
shall show later on. The network architecture is also com-
pletely different.

3 Project Overview

As mentioned above, a lack of correct and continuous
observations is blocking the path to addressing crucial ques-
tions about our environment. Until now, there have been
only limited field campaigns with in-situ spatial observa-
tions, and these campaigns have mostly been based on
a small number of very expensive sensing stations, thus
greatly restricting spatial coverage. Furthermore, these sta-
tions commonly use data loggers. This storing technique
not only suffers from limited capacity, but also does not
allow users to get immediate feedback from the system,
since it requires manual downloading of the gathered data
from each station. Thus, using a wireless sensor network
is highly relevant to this area of research, as it allows for
both real-time monitoring of imminent natural events (e.g.,
storms, pollution) as well as long-term monitoring of per-
sistent ones (e.g., ice melting).

The SensorScope project aims at providing a new-
generation environmental monitoring system, centered
around a WSN, with a built-in capability to produce high-
density temporal and spatial measurements. The system
has to be effective out-of-the-box, with minimal require-
ments regarding network maintenance. Because the main
objective is to replace the very expensive sensing stations
that have been used until now, the baseline requirements
that have been followed during its design are low cost and
full autonomy, while maintaining sufficient accuracy for the
intended application. In this section, we first describe the
hardware architecture we designed, and then we provide an
overview of our communication stack.

3.1 Hardware Design

When the project was started, there were no sensing sta-
tions with embedded sensor motes that could be used off-

334

Solar panel

Sensor box

Secondary battery
Primary battery
Sensor mote

(a) A sensing station.

(b) A sensor box.

Figure 1: Design of a sensing station.

the-shelf. We, therefore, had to design and build suitable
stations. The sensor mote platform we chose is a Shockfish
TinyNode?. It is composed of a Texas Instruments MSP430
16-bit microcontroller, running at 8 MHz, and a Semtech
XE1205 radio transceiver, operating in the 868 MHz band,
with a transmission rate of 76 Kbps. The mote has 48 KB
ROM, 10KB RAM, and 512 KB flash memory. We opted
for this platform mainly for its long communication range
(up to 200 m outdoors) and its low power consumption [2].

The sensing station itself, depicted in Fig. la, is com-
posed of a 4-legged aluminum skeleton on which a solar
panel and the sensors are fixed. A station is 150 cm (60 in)
high, and is thus both very stable, thanks to the 4 legs, and
high enough to handle some snow build-up during winter.
The sensor board is fixed inside a hermetic box, as illus-
trated in Fig. 1b, which is itself attached just above the legs.
One can see the TinyNode mote on top of the board in this
picture. The average price of such a station, including ev-
erything, is around € 900 ($ 1280).

3.1.1 Power Source

In the spirit of Heliomote [11], we have designed a solar en-
ergy system to achieve sufficient autonomy during deploy-
ments. It is composed of three modules:

e Solar panel: A 162x140mm MSX-01F polycrys-
talline module that provides a nominal power out-
put of 1 W in direct sunlight, with an expected life-
time of around 20 years. We implemented a power
control driver, following a strategy similar to that of
Prometheus [5].

3http: //www.tinynode.com

Application |

Data gathering

Application
Data gathering
I

Transport
Queuing
Network
Routing / Synchro

30B]S UOIEDIUNWWOD

MAC
Energy / ACKs

Figure 2: The first SensorScope software architecture (a)
and the current one (b).

e Primary battery: A 150 mAh NiMH rechargeable
battery (see Fig. 1b) is primarily used to power the sta-
tions. We chose a NiMH battery over a supercapacitor
due to its superior capacity and its lower price.

e Secondary battery: A Li-Ion battery with a capacity
of 2200 mAh at 3.7 V. It is the cylinder-shaped battery
located on the left in Fig. 1b. This buffer is used as
a backup source of energy during long periods of low
solar radiation. It is charged via the primary buffer,
thus undergoing fewer charging cycles.

This system, in conjunction with the power conserving
algorithms implemented at the network level, theoretically
makes the batteries’ recharge cycle-count the only limiting
factor for long-term deployments (see Sec. 5).

3.1.2 Sensing Modalities

The stations can accommodate up to 7 different external
sensors, some of them being able to measure multiple quan-
tities. With our choice of sensors, the stations are capable
of measuring 9 distinct environmental quantities: air tem-
perature and humidity, surface temperature, incoming solar
radiation, wind speed and direction, precipitation, soil water
content, and soil water suction. Note that not all stations are
equipped with all sensors, as SensorScope is perfectly able
to cope with a heterogeneous set of sensors at each station.
To ensure the quality of the measured values, all sensors are
calibrated before deployment by comparing their readings
to reference sensors over several days. The correlation co-
efficient obtained for the measured values is required to be
higher than 0.98.

3.2 Network Design

The very first outdoor deployment of SensorScope oc-
curred in July 2006 on the campus of EPFL, and it mainly

335

aimed at validating the hardware design of the sensing sta-
tions. Accordingly, the software running on the motes was
rather simple. The application, implemented in nesC for
TinyOS [7], was not built on top of a real communication
stack. This implied multiple limitations, especially in terms
of range, reliability, and efficiency. Moreover, the applica-
tion itself had to cope with network-related details, making
it difficult, in case of a problem, to determine whether the
network or the application was the culprit.

Gathering data in remote and difficult-to-access places
(e.g., Le Génépi deployment, described in Sec. 5) requires a
robust system design, and we have found the assertion made
in the TASK paper [1] to be true: simple and application-
specific approaches provide the most robust solutions for
real-world usage. Moreover, gluing existing components
together takes a lot of time and effort for an in-depth un-
derstanding of their interactions. For these reasons, and to
overcome the aforementioned limitations of existing sys-
tems, we chose to design and implement from scratch a
communication stack for our stations with TinyOS. One of
the main advantages of using such a stacking architecture
is to completely separate the network management from the
application, which just has to give the data to the stack and
let it go to the sink by itself. Fig. 2 shows our stack, which
is inspired by the well-known OSI model. The arrows indi-
cate that currently, no data is forwarded to the application
by the stack. The multi-hop mechanism is indeed automat-
ically managed, and there is no need for the application to
care about received packets. This may change in the future,
for instance, if in-network processing is considered.

Our stack needs to store only 4 bytes of information per
packet. We chose to put these into the payload, leaving 24
bytes for the application layer, out of the 28 available in
TinyOS, as illustrated in Fig. 3. Another solution would
have been to add our own header to the standard network
header and to leave the TinyOS payload unchanged, but this
would have implied to maintain the files after each new re-
lease of the radio drivers. Moreover, these files are radio-
specific, and one would need to modify them each time a
different mote/radio is used. By storing these bytes in the
TinyOS payload, our stack is independent of the underly-
ing radio drivers. In the following, we describe the different
layers of our stack, starting from the highest one.

3.2.1 Application Layer

This layer is quite simple and is only responsible for col-
lecting the data that have to be sent to the sink. In Sensor-
Scope, it periodically queries both the sensors and the bat-
teries, whose readings are used to monitor the energy level
of the stations at the server. The values are then passed to
the transport layer.

TinyOS payload (28 bytes)

<
<

\

Sender , Costto, Hop . Seq ' '
ID__| sink , count ;number ! X

< > »

Network header (4 bytes) - Application payload (24 bytes) g

Figure 3: Format of a SensorScope packet.

3.2.2 Transport Layer

This layer exposes a simple interface composed of two dif-
ferent commands for sending data. Each of them creates a
different kind of packet:

e Data packets: They contain some data that must be
routed towards the sink, examples of such data being
the sensors’ or the batteries’ readings.

e Control packets: They are intended for a specific
neighbor of the node, or to all of them, in case of a
local broadcast, and they are thus not forwarded once
received. Examples of such messages, which are de-
tailed later on, are beacons or synchronization packets.

As we assume overall network traffic to be relatively low,
this layer does not include any congestion avoidance mech-
anisms. It is responsible for creating packets out of the
data received via the two aforementioned commands, and
for storing them in the corresponding queue. Whenever one
of the queues is not empty, this layer tries to send the next
packet, by passing it to the network layer. Priority is cur-
rently given to control packets, i.e., if there is both a data
and a control packet waiting, then the latter is sent first.
We chose this behavior because control packets are quite
important for the network operation, and thus have higher
timeliness requirements than data messages.

The transport layer is responsible for filling two fields
in the network header (cf. Fig. 3). The first one is the hop
count, which is set to 0 for newly created packets, and in-
cremented each time a data packet is received. Note that
this information is not mandatory, and is used only for sta-
tistical purposes. The second field is the sequence num-
ber, filled with an internal data or control message counter.
These counters are incremented only when messages are
correctly sent: if the sending fails for some reason (e.g.,
no acknowledgment), the packet is resent with the same se-
quence number. This field is used for link quality evalua-
tion, as explained later on in Sec. 4.1. Note that this layer is
exactly the same for both the sink and the motes.

3.2.3 Network Layer

This layer has to decide whether a packet should be routed
towards the sink, based on its type (data or control), and if

336

s0, how this should be done. At the sink, this layer simply
forwards data packets to the serial port, while control pack-
ets are passed to the MAC layer. At the motes, the network
layer passes both kinds of packets to the MAC layer. Since
control messages already have a recipient, no further action
is required. For data packets, this layer first has to choose
a next hop toward the sink. How this is done is protocol-
specific and is detailed in the next section. Note that imple-
menting a new routing protocol simply requires to write a
new network layer, leaving the rest of the stack untouched.
The network layer is also responsible for filling the two
remaining header fields, the sender identifier and the cost to
the sink. How this information is obtained is, once again,
protocol-specific, and detailed in the next section.

3.24 MAC Layer

The MAC layer manages the radio itself, namely switching
it on/off and sending/receiving messages. When a packet is
received, it is immediately passed to the network layer. In
case of a data message, an acknowledgment (ACK) is also
sent back to the previous sender. Note that control pack-
ets are not acknowledged. In SensorScope, the MAC layer
is also responsible for power management, as explained in
Sec. 4.3.

When we prepared for our deployments, the radio drivers
of the TinyNode were still lacking a carrier sense, and we
could thus not add a busy-channel detection. Therefore, we
decided to use a simple backoff mechanism, whose max-
imum delay is exponentially increased, each time a data
packet is not acknowledged. Upon a successful transmis-
sion, the maximum delay reverts to the minimum value.
Whenever sending fails because of a lost acknowledgment,
the failure is signaled to the network layer with the appro-
priate flags. A busy-channel detection will be part of future
releases of our code.

4 Networking

In this section, we describe the prominent features of the
SensorScope communication stack that make the whole sys-
tem auto-organized and energy-efficient, and how they are
currently implemented. In the following, broadcast desig-
nates a local broadcast (i.e., a packet sent to all neighbors),
and not a network-wide one. The distance always desig-
nates the hop-distance to the sink, not the Euclidean one.

4.1 Neighborhood Management

For proper operation, nodes manage a neighborhood ta-
ble in which they store the nodes they can hear from (liter-
ally their neighbors). A typical solution for nodes to acquire
such knowledge is to let them regularly broadcast beacon

messages, containing their identifier; all receivers of such
packets may then add the sender to their table. To reduce
the network load, we chose to let nodes discover their neigh-
borhood by overhearing neighbors’ packets, in the spirit of
MintRoute [17]. Only the sink has to send real beacons to
initiate the process: upon receiving beacons, nodes at 1-hop
distance start transmitting their data messages to the sink,
letting nodes at 2-hop distance discover them, and so on.
Each time a node updates its table, it also updates its cost to
the sink. Note that we currently use the hop-distance to the
sink as the cost metric. For instance, if a mote’s best neigh-
bors are at x hops from the sink, then it assumes that its own
distance, and thus its cost, is + 1. Because neighborhood
information is mainly needed for routing data to the sink,
the table is managed by the network layer.

Due to the randomness of the radio channel, it is possi-
ble for a node to sometimes receive a message from a dis-
tant neighbor. In this situation, considering these nodes as
neighbors may lead to routing problems, since messages
would then have a low probability of being correctly re-
ceived. To avoid this issue, it is required to provide the
nodes with an estimation of the quality of service (QoS)
of links, so that poor-quality neighbors may be considered
separately, if applicable. To evaluate this QoS, the neigh-
borhood table stores the sequence numbers of the last pack-
ets received, and the QoS is estimated by counting how
many of them were not received: the quality then varies
with the quantity of missing sequence numbers. When not
enough messages were received from a given neighbor, we
temporarily set its quality to 0. An alternative solution
would have been to use the received signal strength indi-
cator (RSSI), but we found this method not to be precise
enough. The RSSI is indeed influenced by a lot of pa-
rameters (e.g., antenna matching, location of nodes, ground
effect), and the measured value for a given neighbor may
greatly vary each time a packet is received.

Since the final goal is to route data messages to the sink,
it is important for the estimated QoS of a neighbor to re-
flect its capacity to forward messages to the sink. A simple
problematic situation may be, for instance, caused by a very
good neighbor, in terms of QoS, with a poor capacity to
route messages toward the sink. To avoid this, the sequence
numbers of data messages are used to estimate the QoS. In-
deed, when a neighbor is unable to successfully send a data
message to a next hop, the message is resent with the same
sequence number, thus decreasing the QoS of that neigh-
bor. This mechanism ensures that the quality of a neighbor
is based on how well it can be heard, as well as how good it
is at “communicating” with the sink.

To account for dead neighbors (e.g., hardware failure),
the table needs to be cleaned from time to time. To do so,
each entry has an associated timestamp, updated upon the
reception of a packet, and a timer is used to regularly check

337

how much time has elapsed since the last update of the cor-
responding entry. If that time is too long, then the neighbor
is removed from the table. Regularly, a data packet is sent to
the sink with the identifiers of the neighbors and their QoS,
so that it is possible at the server to reconstruct the network
topology. This greatly helps in identifying problems during
deployments, due to the lack of good links between some
stations.

4.2 Synchronization

Because of the randomness of radio connectivity, pack-
ets can be stuck at a node for some time, resulting in rout-
ing delays. This rules out that the server time-stamps the
reports and implies that nodes have to put a timestamp in
their reports to allow for meaningful interpretation of the
sensed data. As our power management approach relies on
duty-cycling (see next section), we opted for a global syn-
chronization mechanism.

We have implemented this synchronization based on
SYNC_REQUEST/SYNC_REPLY messages, the goal being
to propagate the current time into the network from the sink,
assuming it knows the current time. When a node wants to
update its clock, it sends a request to a neighbor, closer than
itself to the sink. If it knows the current time, that neighbor
then broadcasts back a reply with this value. Upon recep-
tion of such a message, all nodes further than the sender
from the sink update their clocks. Taking care of the dis-
tance ensures that the time always propagates away from the
sink, while the sink simply puts it into its beacon messages.
Broadcasting the replies helps in reducing the quantity of re-
quests, since receivers postpone them, once their clock has
been updated. Note that this synchronization mechanism is
managed by the network layer, because it manages the dis-
tance information, but time-stamping is actually performed
by the MAC layer since this eliminates delay errors, as ob-
served by Ganeriwal et al. [3]. Another solution may have
been to include the current time in the packet header, so that
nodes could have updated their clock upon each packet re-
ception. However, as a timestamp is stored on 4 bytes, this
method would have decreased the available payload space
to 20 bytes. Moreover, it is not needed to update clocks so
frequently.

Because sensor motes are subject to time drift, clocks
must be regularly updated. We decided to use two different
update modes: a high-frequency mode, used when nodes
do not have the current time (e.g., after boot), and a low-
frequency mode for later updates. The theoretical drift of
the crystal used in TinyNodes is 20 ppm (i.e., around 1 s
every 14h), and Fig. 4 shows that the average experimen-
tal value is close to the theoretical one, with the amplitude
getting quite large after some time. Based on these results,
we consider that a period of 1 hour (average drift of 72 ms)

Theoretical value

Experimental value

Time drift (seconds)
©

0
0 20 40 60 80 100 120 140 160

Elapsed time (hours)

Figure 4: Theoretical and experimental time drift on a
TinyNode (based on results with 7 motes).

for the low-frequency mode is sufficient. The particular
choice of the high frequency is explained in the next sub-
section. With reasonable frequencies, this solution allows
for synchronization of nodes within a few dozens of mil-
liseconds. Although some high-accuracy solutions exist,
such as FTSP [8], our approach is simple and provides suf-
ficient precision for both time-stamping and duty-cycling.
Moreover, high-accuracy solutions compensate time drift
with linear regression, while the drift, however, can vary
depending on weather conditions, making it quite difficult
to completely avoid synchronization errors. From our expe-
rience, if the application allows it, it is better to live with a
slight drift rather than trying to eliminate it.

We first decided to regularly send the real time from the
server to the remote sink, but we found this method to be
problematic: when using GPRS to forward data from the
sink (e.g., the Génépi deployment), it is difficult to send
data from the server to the sink. We thus chose to use the
local time of the sink as the network time, and to translate
timestamps at the server. To achieve this, the sink regularly
sends a message with its local time to the server, which in
turn can compute the offset between the network time and
the real time. To account for accidental reboots of the sink,
it first tries to synchronize with other nodes, by broadcast-
ing requests, using the high-frequency mode. In case of no
reply (i.e., the network has just been started), it starts using
its own local time as the network time, which then propa-
gates.

4.3 Power Management

Power management is essential for long-term operation,
and, although our solar energy system is quite efficient, the
mote’s radio is a big energy consumer: keeping it on all
the time may lead to a negative energy balance (i.e., with
regards to the incoming solar power). A quick look at the
TinyNode’s data sheet shows that the energy consumption

338

is equal to 2mA when the radio is off, while it is equal
to 16 mA when the radio is on for reception. This means
that turning off the radio as frequently as possible, rather
than listening constantly, reduces energy consumption by a
factor of approximately 8.

For energy-efficiency, nodes thus have to organize them-
selves into two-state communication cycles: an active state,
where the radio is on for sending/receiving messages, and
an idle state, where the radio is off. Achieving good energy
savings, of course, requires the idle state to be as long as
possible. Two major mechanisms exist:

1. Low-power listening (LPL). This solution is asyn-
chronous, meaning that nodes do not have to wake up
at the same time to communicate. To achieve this, a
preamble (i.e., a specific pattern of bits) is sent before
the packet itself. If its length is longer than the idle
state, all neighbors are ensured to detect it during their
upcoming active state, and to wait for the incoming
packet. B-MAC [10] is a well-known MAC layer that
uses this mechanism.

2. Duty cycling. In contrast, this solution requires all
nodes to synchronously switch their radio on. Because
they are all active at the same time, there is no need for
preambles and packets can be sent as usual, resulting in
slightly better savings upon transmissions. TASK [1]
makes use of duty cycling to conserve energy.

Although we were almost forced to opt for the duty cy-
cling method because of the lack of a carrier sense of our
radio drivers, we found this solution to be generally better
than LPL. LPL indeed requires the preamble to be longer
than the idle state, and since good energy savings require
this state to be long, transmissions can themselves get very
long, resulting in congestions when the traffic level is not
low enough. It has also been shown that LPL may actu-
ally decrease a mote’s lifetime compared to duty cycling
because of a slightly higher energy consumption [1].

Moreover, waking up nodes at the same time is easily
done, thanks to the synchronization mechanism previously
described, which is precise enough for this purpose. To
take care of the startup, when nodes do not have the net-
work time, they keep their radio on until being synchro-
nized, and the high frequency mentioned in the previous
subsection must thus be chosen carefully. To ensure that a
request will be received by a neighbor during its next com-
munication cycle, the delay used in this mode simply has to
be smaller than the length of the active state. To account for
a slight time drift, a node first waits for a few dozen mil-
liseconds, without sending messages at the beginning of its
active state, to ensure that its neighbors are indeed awake.

Note that this energy-saving mechanism is completely
managed by the MAC layer, and is transparent to the other

(a) The network topology.

(b) A possible backbone.

Figure 5: Using a backbone for data gathering greatly re-
duces the possibilities to reach the sink.

ones. When a message has to be sent while the node is
idle, then the message is kept and sent only during the next
active state. Since upper layers wait for the sendDone sig-
nal (TinyOS is based on split-phase operations), the actual
waiting time does not matter.

4.4 Routing

To route data messages to the sink, a possible solution is
to maintain a backbone, generally a tree rooted at the sink
itself, such as the one illustrated in Fig. 5b. This implies a
maintenance cost to detect broken links, but also quite an ef-
fort of organization to balance the network load between the
different possible routes. Indeed, without any further pro-
vision, one could imagine a situation where all 2-hop nodes
would use the same 1-hop node as their next hop. This node
would then become a bottleneck, and would spend most of
its energy forwarding not only the messages of 2-hop nodes,
but also the messages of 3-hop nodes, 4-hop nodes, and so
forth. This situation may, for instance, happen when motes
are linked to their best parent (with regards to the consid-
ered metric), such as in MintRoute [17].

To avoid such problems and the maintenance of a rout-
ing structure, we decided to let nodes choose their next hop
at random each time a packet has to be sent, resulting in an
alleviated form of opportunistic routing. In WSNe, it is in-
deed not really important to take care of which route is used
to reach the sink, provided that it eventually gets all data
messages. Fig. 5 clearly illustrates that philosophy: using a
backbone, such as the one in Fig. S5b, constrains node f to
use d as the next hop for all its messages, while there is no
reason to not use either node ¢ or node e. Moreover, node
a has to support 3 nodes (c, d and f) while node b supports
only e, resulting in poor load balancing. Using a different
next hop each time results in automatic load balancing, and

339

Table 1: System parameters used during deployments.

Layer Parameter Value
Application Sampling time 120 sec
High-quality links >90%
Low-quality links >70 %
Network Neighbor timeout 480 sec
High sync freq 5sec
Low sync freq 1 h (£ 72 ms drift)
Mac Active state 12 sec
Idle state 108 sec

each node is used in the best possible way, based on the
underlying topology.

While always selecting a next hop at random inherently
provides good load balancing between all possible neigh-
bors, it is, however, of interest to favor good neighbors. To
achieve this, we defined two thresholds: all neighbors with
a QoS above the first one are considered as high-quality
neighbors, while other ones above the second threshold are
low-quality neighbors. When a message needs to be for-
warded, one of the high-quality neighbors is chosen at ran-
dom. If none exists, the algorithm randomly picks a low-
quality one. Neighbors under the low-quality threshold are
not considered at all.

5 Experimental Results

In this section, we provide some of the experimental re-
sults, we gathered during our indoor and outdoor experi-
ments. Table 1 shows the different parameters, we used for
both of these experiments.

5.1 Indoor Experiments

We first tested the network code on our testbed, which
is composed of TinyNode motes, deployed in our office
building on different floors. Using the same motes in both
the testbed and the sensing stations is extremely important
because different drivers, especially the radio drivers, may
have different behaviors, and while the code could work just
fine on some motes, it could have problems on other ones.

Of course, these motes are not wired to any external
sensors since the testbed is used only to test the network
code. All of them are plugged into AC power, allowing us
to disregard any problems linked to energy management.
Moreover, all motes are equipped with a Digi Connect ME
module* which makes it possible to access and program the
motes over an Ethernet connection. Each Digi module is

“http://www.digi.com

Expected 1
Duplicate EXXXX3
Unique | |

8000

7000

6000 - 1.0 1.0 1.0 20 22 2.1 20 1.8 26 14 19 1.0 1.0 1.6 22 1.0 19 A

B B |

5000

4000 -

Reports

3000

2000

1000

4 6 7 1012 13 14 29 32 33 34 36 39 42 44 45 46
Node ID

(a) Data gathering reliability.

Not acknowledged &XxXxx3 | |
Canceled
Successful m==m

50000

40000 ?

30000 [
20000 [
10000 - ﬁ
0
6 7

Data packets sendings

il

10 12 13 14 29 32 33 34 36 39 42 44 45 46
Node ID

(b) Load distribution of the network.

4

Figure 7: Results of the testbed experiment over one full week of operation.

DN

)
(~}
o

10e

o |lo|e
39 |36 | 45

Figure 6: The map of our testbed.

[
44

indeed assigned an IP address which, in combination with
the appropriate PC-side drivers, allows for transparent PC—
mote serial communication. Such modules are very impor-
tant to allow for quick testing, and having to flash the motes
manually, by using a real serial port, would only be a waste
of time.

For the test run presented here, we deployed the code
on 17 motes of our testbed and let it run for one full week.
Fig. 6 provides a map of them, node 29 being one floor be-
low the other ones. The sink is symbolized by the big circle
at the bottom of the map. The approximate dimensions of
the building are 62x40m. One should note that the cen-
ter part of the building is empty, letting nodes communicate
through it. At that point, we did not care about measuring
energy consumption since the external sensors can consume
quite a bit, and they are not present in the testbed.

Fig. 7a shows how many reports were received from the
motes, the numbers above the bars giving the average hop
count for the whole run. Thanks to the MAC-layer acknowl-
edgment mechanism, we were able to receive all reports, ex-
cept from node 44. It seems that this one got disconnected
for some time, and its data message queue overflowed, re-

340

sulting in a loss of more or less 200 reports. We could not
really increase the maximum number of hops because of
the aforementioned long range of the TinyNodes, but after
all we chose them mainly for that good property. The fur-
thest nodes were 32 and 44, their distance varying between
2 and 3 hops.

Duplicate packets, which appear upon the loss of ac-
knowledgments, were kept at an acceptable level during the
run, the average percentage of them being around 6.5%.
Duplicates cannot be easily filtered out of the network be-
cause a random next hop is chosen each time, being a re-
transmission or not. So when a node receives a packet,
chances are that if it is a duplicate, this node will not be
able to determine it and thus to drop it. A possible improve-
ment could be of course to filter out duplicates at least when
twice the same next hop is chosen.

Fig. 7b shows the total quantity of sent data packets for
each node, including all those packets forwarded because
of the multi-hopping mechanism. All kinds of data packets
are included in this figure (e.g., reports, network statistics).
Not surprisingly, nodes 4, 6, and 33 were the ones with the
highest number of sent data packets. Indeed, due to their
central location in the building, they were mainly used as
next hops by the nodes in the upper part of the map. Node
12 also has a central location, but for some reason, it was
not able to communicate directly with the sink. Node 29,
being on a lower floor, was most of the time at 2 hops from
the sink and was thus not used by upper motes.

Most of the time, canceled sendings occur when a data
packet is received and an ACK has to be sent with high pri-
ority. In this case, the current backoff, if any, is canceled by
the MAC layer to immediately send the ACK. A good ex-
ample of such a situation is node 33: because it was highly
used as a relay, a lot of its sendings were canceled. In con-
trast, node 36 has a low rate of cancellation because it was
not really used as a next hop.

o

(a) Global view.

(b) Local view.

Figure 8: The map of the Génépi deployment.

5.2 Outdoor Deployments

Based on these results, we performed a small deploy-
ment (10 stations) on EPFL campus to test the code on the
actual stations. Of course, the network did not work at first
because of some bad interactions between the code and the
various drivers used on the stations (e.g., solar panel, ex-
ternal sensors), but we could quickly resolve these issues.
We decided to keep this network up and running, as a test
deployment for future versions of the code.

During the last 15 months, we have run 6 outdoor de-
ployments, ranging in size from 6 to 97 stations, from the
EPFL campus to high mountain. Due to space limitations,
we solely focus on our most important deployment, which
occurred on a rock glacier located at 2 500 m on Le Génépi,
in Switzerland. This site was chosen because it is always
the source of dangerous mud streams during intense rain,
and several people were killed because of them in the last
decade. The authorities in charge did not have any mea-
sures of rain at that site, and asked us to deploy SensorScope
there, the final goal being to correlate rain measurements
with wind and temperature, based on the shape of the land-
scape. They gave us all the needed technical help for this
deployment, including a helicopter and a container to sleep
in at night. The sensing stations were deployed during the
last days of August 2007 and taken down again two months
later, in October 2007.

The 16 stations were deployed on a 500500 m area (see
Fig. 8). Special care was taken to put them at good lo-
cations, in order to retrieve meaningful measurements for
environmental monitoring and modeling. For instance, sta-
tion 20 was specifically put at the dislocation border of the
glacier, and station 11 in the soil slope. To transmit the
packets to the server, the sink, placed close to station 3, was
equipped with a GPRS module. This was actually the first
time we used such a module for a real-world deployment,
and although the connectivity was quite poor on the site, it
was sufficient for the deployment to be successful.

341

We believe that visual feedback is important to assess
the development of a potentially critical situation (e.g.,
avalanches, rock slides) or to better interpret gathered data
(e.g., presence of snow). Thus, in collaboration with an in-
dustrial partners, we have developed an autonomous, smart
camera. The first version of this project resulted in a stan-
dalone camera that was installed on the glacier and trans-
mitted a 640x480 image of the deployment every 30 min.
Since the traffic generated by the camera is higher than the
environmental data as a whole, the camera uses an indepen-
dent GPRS connection. We do not give much details about
the project in this paper because of lack of space, but trans-
mitted images may be viewed on our website®.

This deployment was a very good opportunity for us to
thoroughly test the autonomy of the stations in real and
harsh conditions. Fig. 9 shows the variation of energy of
station 15 for one whole week, the associated incoming so-
lar power and the correlation with the observed air temper-
ature at that station. The observation started at 06h00 in
the morning of the 16th of September 2007, and during that
period the sunrise was around 06h00 and the sunset around
21h00. These results are more realistic than just consider-
ing the mote’s consumption, since here we consider external
sensors which can consume quite some energy.

One can clearly see that the main battery slowly de-
pletes during periods of low solar radiation, obviously at
night, and starts charging upon the sunrise until being fully
charged during full daylight. On day 3, the weather was
very cloudy, resulting in a brutal drop of the temperature,
but the incoming solar power was still high enough for the
battery to charge sufficiently. During the whole week, the
secondary battery was actually not used at all, and would
have powered the system in case of a failure of the primary
one. Overall, we are satisfied with the energy system, since
all batteries were always fully charged during the whole
deployment, and even if some other hardware failures oc-
curred, we did not have to worry about the energy level.

Fig. 10 provides the sensing reports gathered during one
full month period, starting from the 10th of September
2007. We used the same set of parameters as for the indoor
experiments, and we were able to collect all the reports from
10 stations. Some hardware failures occurred with the other
ones, especially station 7, and we had to go back to the site
to repair them. Because of the importance of this deploy-
ment, we absolutely wanted it to be successful and we thus
used a very conservative approach that resulted, in conjunc-
tion with the clear outdoor environment, in having many
stations at more or less one hop from the sink. Because of
this, there are less duplicates than during the testbed run,
but also because some interferences we may have in our
building do not exist on top of a mountain.

Shttp://www.quividi.com
Shttp://sensorscope.epfl.ch/vidicam

Main battery voltage (v)
Incoming solar energy (mA)

Voltage (v)
Current (mA)

(a) Available energy.

59

Temperature (°C)
Temperature (°F)

Day
(b) Observed air temperature.

Figure 9: One week of data from the solar energy system of a weather station. The first day starts at 06h00 in the morning.

Expected
Duplicate Xxxx3

30000 Unique

2 L 4
5000 1.1 1.0 1.0 1.1 1.2 21 11 12 1.0 L1 L1 L1 11 1.7 L1 12

20000

Reports

15000

10000

5000

4 6 7 8 10 11 12 13 15 16 17 18 19 20
Station

Figure 10: Reports gathered during the Génépi deployment
and the average distance of the stations from the sink.

Fig. 11a shows the location of the stations on the digital
elevation model of the rock glacier. One can see the valley
in the center of the picture, which is where the permafrost
is the thickest (around 10 to 15 m of ice under the rocks).
This is also where the Durnand river is rooted, which is the
source of the dangerous mud streams. The other maps of
Fig. 11 show the spatial distribution of the air temperature
during the 2nd of October 2007. During that day, there was
perfect sunny weather, with a light wind from the south.
Each value is the average of the measurements of one hour.

These results show that even during sunny days, the tem-
perature is always very low along the valley of the rock
glacier. While the variation of temperature is around 5°C
on the border of the site, the maximal variation of the valley
is only around 2°C. This is interesting because the corre-
sponding stations are placed along the same axis and face
the same sun exposure, they should thus observe the same
temperature. This difference is actually caused by the thick
layer of ice under the granite rocks, located along the valley.

342

" eosts
46031
450005
503

46,0295, g

(a) Digital elevation model.

480315

46,031

460305

B0

46,0295,

46,029

7.046

7047

7007 708 7o 7040 705 7081

(c) 08h00.

7019 708 7051 7048

(d) 12h00.

460315 1 460315

45,031 48031

460305 460305

B0 603

46,0295, F w00 d

46.029 809

7048

707 7048

(f) 22h00.

7049 708 7081

(e) 18h00.

Figure 11: Digital elevation model (0.5x0.5 m resolution)
and spatial air temperature distribution over the Génépi rock
glacier along the 2nd of October at 03h00, 08h00, 12h00,
18h00 and 22h00 (local time).

Thus, the temperature is always kept low at that place, even
with exposure to the sun during the day. Thanks to Sensor-
Scope, we were able to identify this microclimate on the
Génépi, which plays an important role in the model, used to
predict the mud streams.

6 Conclusion

Throughout the various deployments, SensorScope ma-
tured into a key project, merging cutting-edge wireless sen-
sor technology (networking, sensing, hardware, software)
with leading environmental monitoring (modeling, predic-
tion, risk assessment). In particular, the Génépi deployment
has been a thrilling scientific adventure, which resulted in
the gathering of a unique set of meteorological data. This
allowed us to model a particular microclimate, which can
be used in flood monitoring and prediction, potentially re-
ducing a well-known, but poorly understood, environmental
hazard. We strongly believe in the potential of SensorScope
for such risk prevention.

This deployment also revealed how remote management
is crucial in such harsh conditions. Dynamic reconfigura-
tion of network and motes is our next main objective, and
support for a system, such as Deluge [4], is of high inter-
est. From the network management point of view, we also
plan to implement measures to cope with asymmetric links,
which result in transmission failures and an overly high ra-
dio usage. Finally, due to the difficult measurement con-
ditions, the measured data is of variable quality. Thus, sig-
nal processing techniques for better calibration, detection of
outliers, denoising, and interpolation will be developed.

7 Acknowledgments

This work is partially financed by the Swiss NCCR
MICS, the European FP6 project WASP, and Microsoft Re-
search.

References

[1] P. Buonadonna, D. Gay, J. Hellerstein, W. Hong, and
S. Madden. TASK: Sensor network in a box. In Proceed-
ings of the IEEE European Workshop on Wireless Sensor
Networks and Applications (EWSN), Jan. 2005.

H. Dubois-Ferriere, R. Meier, L. Fabre, and P. Metrailler.
Tinynode: A comprehensive platform for wireless sensor
network applications. In Proceedings of the ACM/IEEE In-
ternational Conference on Information Processing in Sensor
Networks (IPSN), Apr. 2006.

S. Ganeriwal, R. Kumar, and M. Srivastava. Timing-sync
protocol for sensor networks. In Proceedings of the ACM
International Conference on Embedded Networked Sensor
Systems (SenSys), Nov. 2003.

(2]

(3]

343

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

J. Hui and D. Culler. The dynamic behavior of a data dis-
semination protocol for network programming at a scale. In
Proceedings of the ACM International Conference on Em-
bedded Networked Sensor Systems (SenSys), Nov. 2004.

X. Jiang, J. Polastre, and D. Culler. Perpetual environ-
mentally powered sensor network. In Proceedings of the
ACM/IEEE International Conference on Information Pro-
cessing in Sensor Networks (IPSN), Apr. 2005.

K. Langendoen, A. Baggio, and O. Visser. Murphy loves
potatoes: Experiences from a pilot sensor network deploy-
ment in precision agriculture. In Proceedings of the IEEE in-
ternational Parallel and Distributed Processing Symposium
(IPDPS), Apr. 2006.

P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk,
K. Whitehouse, J. Hill, M. Welsh, E. Brewer, D. Culler, and
A. Woo. Ambient Intelligence, chapter TinyOS: An Operat-
ing System for Sensor Networks. Springer, 2005.

M. Maréti, B. Kusy, G. Simon, and A. Lédeczi. The flooding
time synchronization protocol. In Proceedings of the ACM
International Conference on Embedded Networked Sensor
Systems (SenSys), Nov. 2004.

K. Martinez, J. Hart, and R. Ong. Environmental sensor
networks. IEEE Computer, 37:50-56, 2004.

J. Polastre, J. Hill, and D. Culler. Versatile low power me-
dia access for wireless sensor networks. In Proceedings of
the ACM International Conference on Embedded Networked
Sensor Systems (SenSys), Nov. 2004.

V. Raghunathan, A. Kansal, J. Hsu, J. Friedman, and M. Sri-
vastava. Design considerations for solar energy harvest-
ing wireless emebedded systems. In Proceedings of the
ACM/IEEE International Conference on Information Pro-

cessing in Sensor Networks (IPSN), Apr. 2005.

T. Schmid, H. Dubois-Ferriere, and M. Vetterli. Sensor-
scope: Experiences with a wireless building monitoring sen-
sor network. In Proceedings of the Workshop on Real-World
Wireless Sensor Networks (REALWSN), June 2005.

P. Sikka, P. Corke, P. Valencia, C. Crossman, D. Swain, and
G. Bishop-Hurley. Wireless adhoc sensor and actuator net-
works on the farm. In Proceedings of the ACM/IEEE Inter-
national Conference on Information Processing in Sensor
Networks (IPSN), Apr. 2006.

R. Szewcszyk, A. Mainwaring, J. Polastre, J. Anderson, and
D. Culler. Lessons from a sensor network expedition. In
Proceedings of the IEEE European Workshop on Wireless
Sensor Networks and Applications (EWSN), Jan. 2004.

G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner,
K. Tu, S. Burgess, T. Dawson, P. Buonadonna, D. Gay, and
W. Hong. A macroscope in the redwoods. In Proceedings of
the ACM International Conference on Embedded Networked
Sensor Systems (SenSys), Nov. 2005.

G. Werner-Allen, J. Johnson, M. Ruiz, M. Welsh, and
J. Lees. Monitoring volcanic eruptions with a wireless
sensor network. In Proceedings of the IEEE European
Workshop on Wireless Sensor Networks and Applications
(EWSN), Jan. 2005.

A. Woo, T. Tong, and D. Culler. Taming the underlying chal-
lenges of reliable multihop routing in sensor networks. In
Proceedings of the ACM International Conference on Em-
bedded Networked Sensor Systems (SenSys), Nov. 2003.

