
Distributed Online Simultaneous Fault Detection for Multiple Sensors

Ram Rajagopal1, XuanLong Nguyen2, Sinem Coleri Ergen3 and Pravin Varaiya1

1 Electrical Engineering and Computer Sciences, University of California, Berkeley
2 SAMSI and Dept. of Statistical Science, Duke University

3 WSN Berkeley Lab, Pirelli and Telecom Italia
{ramr,varaiya}@eecs.berkeley.edu,xuanlong.nguyen@gmail.com,sinem.ergen@wsnlabberkeley.com

Abstract

Monitoring its health by detecting its failed sensors is es-
sential to the reliable functioning of any sensor network. This
paper presents a distributed, online, sequential algorithm for
detecting multiple faults in a sensor network. The algorithm
works by detecting change points in the correlation statistics
of neighboring sensors, requiring only neighbors to exchange
information. The algorithm provides guarantees on detection
delay and false alarm probability. This appears to be the
first work to offer such guarantees for a multiple sensor
network. Based on the performance guarantees, we compute
a tradeoff between sensor node density, detection delay and
energy consumption. We also address synchronization, finite
storage and data quantization. We validate our approach with
some example applications.

1. Introduction

A randomly time-varying environment is monitored by a
group of sensors. Each sensor has a fixed location where it
periodically collects a noisy sample of the environment. A
sensor may fail at any time, after which it reports incorrect
measurements. Based on the sensor reports we wish to identify
which sensors have failed and when the faults occurred.

If a failed sensor reports measurements with implausible
values the fault can be correctly and quickly identified; but
if it continues to report plausible values, fault detection is
more difficult. We propose fault detection algorithms for this
difficult case. The intuitive idea underlying the algorithms is
for each sensor to detect a change in the correlation of time
series of its own measurements with those of its neighbors’
measurements. We call this change point detection.

In order for the idea to work, we make two assumptions.
First, the measurements of functioning neighboring sensors
must be correlated, while the measurements of a faulty sensor
and a neighboring functioning sensor are not correlated. Sec-
ond, since the environment being monitored is time-varying
and the measurements are noisy, we require the average time
between successive faults to be longer than the event time
scale–the time between significant changes in the environment.
The first assumption helps identification of a faulty sensor

Research supported by California Department of Transportation and ARO-
MURI UCSC-W911NF-05-1-0246-VA-09/05

by comparing its measurements with its neighbors. Since
the identification is made through statistical correlations, the
probability of an incorrect fault identification (probability of
false alarm) will be positive. The second assumption implies
that a change in the environment can be distinguished from a
change in the status of sensors, and also that there is sufficient
time to reduce the false alarm probability at the cost of a delay
in identifying when the fault occurred.

As a concrete example consider the California freeway
performance measurement system or PeMS, comprising a col-
lection of 25,000 sensors, one per lane at 9,700 locations [23].
Every five minutes, a sensor reports the number of vehicles
that crossed the sensor and the average occupancy or density
(vehicles per meter) in the preceding five minutes. If no sensor
has failed, these reports are directly used to generate a real-
time traffic map on the PeMS website. On any day, however,
upwards of 40 percent of the sensors have failed. PeMS
uses statistical algorithms to identify the failed sensors and
generate the traffic map without their measurements [2]. These
algorithms rely on correlating each sensor’s measurements
with those of its neighbors but, unlike the approach here, they
do not use temporal correlation. Also, PeMS algorithms are
centralized, whereas ours are distributed as measurements are
only communicated among neighbors.

We summarize our contribution. Section 2 reviews related
work to our contribution. Section 3 proposes a change point
distributed fault model for multiple faults, together with perfor-
mance metrics to evaluate any sensor fault detection method.

Section 4 presents a distributed, online algorithm for simul-
taneously detecting multiple faults. The detection procedure
relies on online message passing of detection results only
among neighboring sensors.

Section 4 gives performance guarantees of the proposed
algorithm in terms of the probability of false alarm (PFA)
and the detection delay between the instant a fault occurs and
the time when the algorithm detects the failure.

Sections 5 and 6 consider the selection of event time scales
and propose efficient implementation schemes that minimize
the amount of data transfer. Section 7 analyzes node density
and fault detection tradeoffs.

2. Related Work

There is a sizable literature on detection in the context
of sensor networks [3]. Fault detection of multiple sensors
has received some attention [9]. An algorithm to increase

2008 International Conference on Information Processing in Sensor Networks

978-0-7695-3157-1/08 $25.00 © 2008 IEEE
DOI 10.1109/IPSN.2008.41

133

the reliability of a ‘virtual’ sensor by averaging values of
many physical sensors in a fault tolerant manner is presented
in [14]. The analysis assumes that each sensor measures the
same physical variable with a certain uncertainty and fault
specification. In [16], the authors develop a fault tolerant
event detection procedure based on the assumption that time-
varying failure probabilities of each node are known and a
threshold test is used for detection. They also use geographical
information to enhance spatial event detection. Decisions
are made using only the current time observations, without
accounting for trends in the data. [13] proposes a similar
model. [6] describes a method for outlier detection based
on Bayesian learning. The procedure learns a distribution
for interval ranges of the measurements conditional on the
neighbor’s interval ranges and last observed range. Neighbor’s
information and past information are assumed conditionally
independent when the current range is observed. The idea
of detecting malfunctioning sensors based on correlation-type
reliability scores among the neighboring sensors is consid-
ered in [10]. The model leads to a detection rule based
on the posterior probability of the sensor failure given the
observed scores at a certain time instance without looking
at the time series of measurements. A model-based outlier
detection method is developed in [21]. The method relies on
estimating a regression model for each individual sensor, and
estimating deviations from the predictions of the model. [7]
proposes a systematic database approach for data cleansing.
A time window primitive for outlier detection based on model
estimation is proposed.

A related branch of work lies in the large literature on
decentralized detection (see, e.g., [20], [22] for a survey).
The main distinction between this line of work and ours is
that the former tends to focus on aggregating measurements
from multiple sensors to perform test a single hypothesis
or conduct an estimation task, whereas our method deals
with multiple dependent testing/estimation tasks from multiple
sensors. The key technical ingredient in our analysis is drawn
from the well-established sequential analysis and sequential
change point detection literature [1], [11], but the departure
from the traditional formulation of a single change point to
a formulation involving multiple correlated change points is
novel and theoretically challenging, as well as important in
applications.

3. Problem statement

Figure 1. (a) Neighborhood graph of a sensor network and
(b) corresponding statistical dependency graph.

3.1. Set-up and underlying assumptions

There are m sensors, labeled u1 to um. Sensor u’s mea-
surements form the time series {Xt(u)}. We are interested in
developing an online and distributed procedure for detecting
faulty sensors based on the data {Xt(ui) | i = 1, . . . ,m}. Our
method relies on the following assumptions, elaborated further
below:
• Neighboring functioning sensors have correlated sensor

measurements, but a failed sensor’s measurements are not
correlated with its functioning neighbors. The neighbor-
hood relationship is specified by the known fault graph
G(V,E): V is the set of sensors or nodes and E is the
set of undirected edges (Figure 1). The graph normally
includes self loops. In practice, the neighborhood rela-
tionship is that of geographic proximity. In PeMS, for
example, sensors at the same and adjacent locations are
considered neighbors.

• Each sensor makes a periodic noisy p-dimensional mea-
surement of its environment. Xt(u) is the measurement
at time t. The sensors need not be synchronized.

• Sensors fail independently and for notational simplicity
we assume a stationary failure rate of d faults per
period. The true failure rate need not be known, but we
require a known lower bound. λu denotes the random
geometrically distributed time node u fails.

• Instead of making a decision at each sampling time t,
we choose to make decisions after a block of T samples
has been observed. The time scale T is selected to be
longer than that of an event. For instance, in PeMS, T
corresponds to the number of samples for a day. We index
blocks by k and n.

3.2. Performance metrics

A fault detection rule for sensor u is denoted νu. Based on
the information available at time n, the rule sets νu = n if it
decides that u has failed at time n. Thus the random variable
νu is a stopping time [5]. In the change point literature,
such a stopping time is evaluated according to two metrics:
probability of false alarm and detection delay, see e.g., [19]:

Definition 1 (Probability of false alarm): The probability
of false alarm of the procedure νu is

PFAπ(ν) =
∞∑
k=1

π(k)P(νu ≤ λu | λu = k).

Here λu is the true time the change (failure) occurred, and π
is the prior distribution of λu, π(k) = e−d T (k−1)(1− e−d T).

Definition 2 (Detection delay): The mth moment of the
delay of νu for change time λu = k is

D(k)
m (νu) = Ek [(νu − k)m |νu ≥ k]

In our Bayesian formulation with prior π, this moment is

Dπ
m(νu) = Eλ [(νu − λu)m |νu ≥ λu] =

∞∑
k=1

π(k)D(k)
m (νu).

134

A good procedure achieves small (even minimum) delay
Dπ
m(νu), while maintaining PFAπ(νu) ≤ α, for a pre-specified

PFA α.
The key distributed computation constraint requires sensor

u’s stopping time νu to be based only on the scores it
shares with its own neighbors. We express this constraint
symbolically as νu ∈ FnN (u).

3.3. Data Preprocessing and Fault Behavior Model

Denote by Xn(u) the nth observed sample block by sensor
u, which has size T × p. Let Hu,n denote data available up
to block n − 1. Each sensor computes a vector score at time
n, determined by a transformation F :

Sn(u, u) = F (Xn(u),Hu,n), (1)
Sn(u, u′) = F (Xn(u),Xn(u′),Hu,n,Hu′,n), u′ ∈ Nu, (2)

Nu is the set of neighbors u′ of u. We call Sn(u, u′) the link
score of the link (u′, u) ∈ E. The transformation is symmetric,
so Sn(u, u′) = Sn(u′, u). The statistic F captures a notion of
distance between two block samples. We focus on correlation
statistics, defined in the next subsection. In time block units
the random change time is λu

T , which is a geometric random
variable with parameter d T .

Intuitively, our fault detection model posits that the score
Sn(u, u′) undergoes a change in distribution whenever either
u or u′ fails, i.e., at time min(λu, λ′u). This model captures the
notion that in a networked setting, failed sensor data cannot be
used to detect faults in other sensors. Thus our model departs
from the traditional single change point detection models [11],
in that we are dealing with multiple dependent change points
based on measurements from a collection of sensors. The
standard theory for a single change point can no longer be
applied in a straightforward manner.

We formally specify our change point model. Given a score
function Sn(u, u′) for each pair of neighbors (u, u′), it is
assumed that Sn for different pairs of sensors are independent.
Also given are distributions f0(·|u, u′) and f1(·|u, u′) such that

Sn(u, u′) i.i.d∼ f0(·|u, u′), n <
1
T

min(λu, λu′),

i.i.d.∼ f1(·|u, u′), n ≥ 1
T

min(λu, λu′).

We require f0 and f1 to be different, that is the Kullback-
Liebler divergence between the two densities D(f1‖f0) > 0,

D(f‖g) =
∫

f(x) log
f(x)
g(x)

dx. (3)

3.4. Correlation scores

Our choice of correlation score function is motivated by
the observation that in many applications when a sensor fails
the the correlation experiences an abrupt change (e.g. [10]).
The choice of correlation statistics is also attractive because it
can be used in non-stationary environments if the time scale is
appropriately chosen. Without losing generality assume p = 1
so that Xt(u) is a scalar and Xn(u) is a vector of size T .

Figure 2: Focusing on two sensors .

The score is defined as

µn(u) =
1
T

∑
t∈Tn

Xt(u), (4)

sn(u, u′) =
1
T

∑
t∈Tn

(Xt(u)− µn(u))(Xt(u′)− µn(u′)),

Sn(u, u′) = φ

(
sn(u, u′)√

sn(u, u)sn(u′, u′)

)
,

Tn = [(n− 1)T + 1, nT].

The actual score is a transformation of the empirical corre-
lation estimate. The trivial choice is φ(x) = x. To obtain
desired statistical behavior, it is sometimes better to choose a
combined Fisher and Box-Cox type transformation,

φf (x, γ) =
1
2

log
(

1 + xγ

1− xγ

)
. (5)

We assume that the scores scaled by
√
T converge to a normal

distribution, and that the scores are pairwise independent.
This assumption is not required and more complex covariance
structures inferred from the data could be used. But our choice
works well in practice, and simplifies exposition. Thus

Sn(u, u′) ∼ N(µ(u, u′), T−1 σ2
u,u′), n <

1
T

min(λu, λ′u),

∼ N(0, T−1 σ2), n ≥ 1
T

min(λu, λ′u), (6)

Before the change time, each computed score (in our case
covariances) is approximately normal. The mean and variance
parameters depend on the pairs of sensors. The variance scales
as 1/T with respect to the window size T . Above we assumed
mean and variance are time invariant, but this is not necessary.
The assumption can be justified with a simple model. Suppose
the blocks Xn(u) and Xn(u′) are jointly Gaussian random
variables, and the Fisher-Box transformation (Equation 5) with
γ = 1 is used; it can then be shown [12] that asymptotic
normality holds and

σ2
u,u′ =

{
(1−µu,u′)2

T , for φ(x) = x
1
T , for φ(x) = φf (x, 1)

.

The link information measure for (u, u′) is [12]:

q1(u, u′) = D(f1‖f0) (7)

= T
µ(u, u′)2

2σ2
u,u′

+
1
2

[
σ2

σ2
u,u′

+ log

(
σ2
u,u′

σ2

)
− 1

]
.

The link information measure is minimized when σ2
u,u′ = σ2.

4. Multiple Sensor Online Detection

To simplify the analysis of the solution proposed in this
paper, let us first consider the two-sensor case before proceed-
ing to the multiple sensor setting. In the two-sensor scenario

135

illustrated in Figure 2, the shared link score between the two
sensors is Z, all the other links (if any) of sensor 1 are
aggregated into a random variable X , and all other links of
sensor 2 are aggregated into Y .

Let ν̄1 be the decision rule for sensor 1 and ν̄2 the rule for
sensor 2. The distributed computation constraint requires ν̄1 to
depend only on X and Z, expressed as ν̄1 ∈ FnX,Z ; similarly,
ν̄2 ∈ FnY,Z . Furthermore, denote the information distance for
X , q1(X) = D(f1(X)‖f0(X)), where f0(X) is the density
before change, and f1(X) the density after change. Similarly
define q1(Z) and q1(Y). All proofs in this section can be found
in the Technical Report [17].

4.1. Background

Consider the single change point detection problem, which
can be cast in our framework as a single sensor network with a
self-loop graph. Shiryaev [18] showed that a threshold rule on
the posterior probability is the optimal choice of stopping time
to minimize the weighted sum of the expected delay and the
probability of false alarm. The Shiryaev statistic and stopping
time are

Λn(X) =
Pπ(λ ≤ n|FnX)
Pπ(λ > n|FnX)

, (8)

νS(X) = inf{n : Λn ≥ B}. (9)

[19] showed that the Shiryaev rule with threshold Bα = 1−α
α ,

with α the false alarm probability bound, achieves the optimal
asymptotic delay for the problem of minimizing the expected
delay constrained to a given false alarm probability. The
asymptotic mth moment of delay for the procedure is

lim
α→0

Dπ
m(νS(X)) .=

[
| log(α)|
q1(X) + d

]m
(10)

The single change point problem is considerably simpler than
the multiple change problem, since once a change is detected,
it is attributed to a unique fault, and there is no chance of
confusion with other potentially failed sensors.

4.2. Detection without information exchange

The natural generalization of the Shiryaev rule for the
multiple change point model is to use a threshold rule on the
posterior probability of change for each sensor. In a decentral-
ized setting, sensor 1 should use the posterior probability of
random variable λ1, conditional on the observed values of X
and Z. Similarly, sensor 2 should use the posterior probability
of random variable λ2, conditional on observed values of Y
and Z. This leads to the tests

Λn(X,Z) =
Pπ(λ1 ≤ n|FnX,Z)
Pπ(λ1 > n|FnX,Z)

,

Λn(Y, Z) =
Pπ(λ2 ≤ n|FnY,Z)
Pπ(λ2 > n|FnY,Z)

,

ν1 = inf{n : Λn(X,Z) ≥ Bα}, (11)
ν2 = inf{n : Λn(Y,Z) ≥ Bα}.

Unfortunately this turns out not to be a good choice, as we can
show that asymptotic delays are independent of the statistics
of the random variable Z.

Theorem 4.1: The asymptotic delay of the stopping time
rules based on posterior probabilities (Equation (11)) are

Dπ
m(ν1) .=

[
| log(α)|
q1(X) + d

]m
, Dπ

m(ν2) .=
[
| log(α)|
q1(Y) + d

]m
.

Thus in this extension, the common link information is not
useful in determining which sensor has failed. The reason is
that the information in either link pair (X,Z) or (Y,Z) by
itself is not helpful in determining whether the change in Z
is induced by a failure in sensor 1 or in sensor 2.

4.3. Detection with information exchange

We propose a new distributed procedure that benefits from
the information contained in the shared link. Our procedure
requires the definition of two stopping times for each sensor.
Define:

ν1 = inf{n : Λn(X,Z) ≥ Bα},
ν2 = inf{n : Λn(Y, Z) ≥ Bα},
ν̃1 = inf{n : Λn(X) ≥ Bα}, (12)
ν̃2 = inf{n : Λn(Y) ≥ Bα},

where Λn(X,Z) is the Shiryaev statistic constructed under
the assumption that only λ1 can be finite (only sensor 1 may
fail), and Λn(Y,Z) is the Shiryaev statistic constructed under
the assumption that only sensor 2 may fail. The statistics are
given by

Λn(X,Z) =

n∑
k=0

π(k)
k∏
r=1

f0(Xr)f0(Zr)
n∏

r=k+1

f1(Xr)f1(Zr)

∞∑
k=n+1

π(k)
n∏
r=1

f0(Xr)f0(Zr)

,

Λn(Y,Z) =

n∑
k=0

π(k)
k∏
r=1

f0(Yr)f0(Zr)
n∏

r=k+1

f1(Yr)f1(Zr)

∞∑
k=n+1

π(k)
n∏
r=1

f0(Yr)f0(Zr)

,

Λn(X) =

n∑
k=0

π(k)
k∏
r=1

f0(Xr)
n∏

r=k+1

f1(Xr)

∞∑
k=n+1

π(k)
n∏
r=1

f0(Xr)

,

Λn(Y) =

n∑
k=0

π(k)
k∏
r=1

f0(Yr)
n∏

r=k+1

f1(Yr)

∞∑
k=n+1

π(k)
n∏
r=1

f0(Yr)

. (13)

We now define the stopping rules for the two sensors:

ν̄1 = ν1I(ν1 ≤ ν2) + max (ν̃1, ν2) I(ν1 > ν2),
ν̄2 = ν2I(ν2 ≤ ν1) + max (ν̃2, ν1) I(ν2 > ν1). (14)

136

The procedure works in an intuitive manner: Each sensor
computes posteriors as if the other sensor is always working,
until the time one of them declares itself as failed. Notice
that both sensors at this point are using the information in
the shared link. When one sensor is thought to have failed
(e.g. ν1 > ν2) the other sensor stops using the shared link
information, and recomputes the change point test using only
the information of its own ‘private’ link. The max operator
reflects the situation that information for one’s own private
link also dictates that its sensor hsa failed (e.g., ν̃1 < ν2), in
which case one should stop immediately at the present time
(ν2).

Implementation of the procedure requires an extra single
bit of information that is issued to neighbors when a sensor
declares itself as failed. If this bit is received the neighboring
sensors stop using the shared link with the failed sensor, and
use a rule based on the remaining links.

The procedure as described requires each sensor to keep
track of all the link variables, since when the shared link is
dropped, the sensor has to recompute the score using only the
remaining links. In the two-sensor case this is not an issue
since all stopping times can be computed simultaneously. In a
network setting this matters, since we have multiple possible
link combinations. But we propose very efficient solutions for
this in section 5.

4.4. Performance Analysis

The detection with information exchange algorithm is inter-
esting if we are able to show that for a given false alarm rate
O(α), it achieves expected delays smaller than if the common
link information is not used.

First, we compute the PFA for the algorithm, focusing on
sensor 1 at time n. We can break up the false alarm cases
into two distinct situations: when neither change point has
occurred by time n (λ1 > n and λ2 > n) and when sensor 2
has already failed (λ2 ≤ n). In the first case, a false alarm
happens in the same way it happens in a problem with a
single change point, thus the probability is O(α) for the chosen
threshold. The second situation is unique to our problem: there
is a chance that sensor 1 is confused by link Z, behaving as
if it is failed, when in reality it is working. We need to show
that this confusion probability is small. We formally define
this quantity.

Definition 3: The confusion probabilities of a set of proce-
dures (ν̄1, ν̄2) are

ξαλ1,λ2
(ν̄1) = Pλ1,λ2(ν̄1 ≤ ν̄2, λ2 ≤ ν̄1 ≤ λ1) (15)

ξαλ1,λ2
(ν̄2) = Pλ1,λ2(ν̄2 ≤ ν̄1, λ1 ≤ ν̄2 ≤ λ2) (16)

A fault detection procedure is regular if

lim
α→0

ξαλ1,λ2
(ν̄1) = 0,

lim
α→0

ξαλ1,λ2
(ν̄2) = 0.

We see the importance of regularity in the next theorem.
Theorem 4.2: The PFA of sensors 1 and 2 for the joint

procedure with information exchange are bounded as

PFAπ1,π2(ν̄1) ≤ 3α+ ξαλ1,λ2
(ν̄1),

PFAπ1,π2(ν̄2) ≤ 3α+ ξαλ1,λ2
(ν̄2). (17)

If a procedure is not regular we are unable to achieve arbi-
trarily low false alarm rates. But our procedure is regular.

Theorem 4.3: The procedure of Equation 14 is regular:

lim
α→0

ξαλ1,λ2
(ν̄1) = 0,

lim
α→0

ξαλ1,λ2
(ν̄2) = 0.

In section 8 we estimate numerically the confusion proba-
bility under a variety of settings and show that it is negligible
as long as the variance of X and Y is small compared to that
of Z. Given that we can achieve arbitrarily small false alarm
rates, what can be said about the detection delay?

Theorem 4.4: The delays of the regular procedures ν̄1 and
ν̄2 are

Dπ
m(ν̄1) .= Dπ

m(ν1)(1− δα) +Dπ
m(ν̃1) δα,

Dπ
m(ν̄2) .= Dπ

m(ν2) δα +Dπ
m(ν̃2)(1− δα),

as α→ 0. Here

Dπ
m(ν1) =

[
| logα|

q1(X) + q1(Z) + d

]m
,

Dπ
m(ν̃1) =

[
| logα|

q1(X) + d

]m
,

Dπ
m(ν2) =

[
| logα|

q1(Y) + q1(Z) + d

]m
,

Dπ
m(ν̃2) =

[
| logα|

q1(Y) + d

]m
,

δα = Pλ1,λ2(ν1 > ν2).
Notice that the asymptotic moments of the delay are a
weighted combination (with weight δα ∈ [0, 1]) of the optimal
delays obtained in the scenario when only a single change
point exists. Since q1(Z) > 0, our procedure is always better
than a procedure that never uses the shared link: Dπ

m(ν̄1) ≤
Dπ
m(ν̃1) and Dπ

m(ν̄2) ≤ Dπ
m(ν̃2). To our knowledge this is

the first proposed procedure with provable guarantees.

4.5. General Networks

The shared information algorithm for the two-sensor net-
work can be suitably modified for a general network. Table I
shows the proposed procedure, following the same principle
as the two-sensor case. In this algorithm, whenever a sensor
declares itself failed, all its neighbors recompute their test
statistic excluding links with the failed sensor. Section 5
discusses implementation details, including finite storage, and
transmission efficient computation.

The analysis in Section 4.4 applies to the general network
if the probability of sensors failing simultaneously is small,
which will be the case if the fault rates are very small
compared to the number of neighboring sensors. The analysis
even with this simplification is quite involved, but a key
quantity emerges—the confusion probability. If the confusion
probability is small, the probability of false alarm is small.

The asymptotic delays depend crucially on the parameter
δα. In this subsection we explore this further, for the case of
independent identically distributed link distributions in a fully
connected network.

137

Networked Sensor Fault Detection: Each sensor u ∈ V initializes
its current neighbors set with all neighboring sensors in the fault graph
(including self loops), so NW (u) = N (u). Then each sensor updates
its current estimate of its own change point test statistic at time n:

(a) Data Dissemination: Each sensor broadcasts its current block
of T samples Xn(u) to sensors u′ that are active neighbors in
the fault graph (i.e. u′ ∈ NW (u)). Transmitted block might be
transformed or compressed (see Section 5).

(b) Score Computation: After collecting all data blocks, the sensor
computes the current score for shared links according to some
transformation F , for example the correlation (Equation 4):

Sn(u, u′) = F (Xn(u),Xn(u′)), u′ ∈ NW (u). (18)

(c) Update Test Statistic: Recursive update of test statistic using
active links(Section 5):

On(u) =
X

u′∈NW (u)


(Sn(u, u′))2

2σ2
+

−
(Sn(u, u′)− µuu′)2

2σ2
uu′

+ log

σ2

σ2
uu′

!)

log(Λn(u)) = log

„
Λn−1(u)

1− ρ
+

ρ

1− ρ

«
+On(u), (19)

Λ0(u) = π0/(1− π0), ρ = 1− e−dT

(d) Fault check and inform: If

Λn(u) ≥
1− α
α

, (20)

sensor u is declared faulty, and broadcasts failed bit δ(u) to all
sensors u′ ∈ NW (u).

(e) Update Current Links: For each u′ ∈ NW (u), if bit δ(u′) is
received:

NW (u) = NW (u)− u′, (21)
Recompute Λn(u) with new NW (u), using stored samples.

If NW (u) is empty (no self loops in fault graph), then stop
sensor u.

TABLE I. Description of the networked fault detection
algorithm. In a centralized data collection model, the data
dissemination stage has no cost.

In the two-sensor case, if X and Y have the same probabil-
ity density, it is clear from symmetry that δα = 1/2. Focusing
on sensor 1, we see that the delay in this case is

Dπ
m(ν̄1) .=

1
2
Dπ
m(ν1) +

1
2
Dπ
m(ν̃1).

Furthermore, it is known that if we have λ2 =∞ fixed (sensor
2 never fails), then any detection procedure ν has a delay that
satisfies [19]

Dπ
m(ν) ≥

[
| logα|

q1(X) + q1(Z) + d

]m
= Dπ

m(ν1).

In the case when λ2 = 0 fixed (sensor 2 is always failed), link
Z gives no information about the status of sensor 1, so any
procedure for detecting a fault in sensor 1 satisfies

Dπ
m(ν) ≥

[
| logα|

q1(X) + d

]m
= Dπ

m(ν̃1).

For any procedure

Dπ
m(ν) = Dπ

m(ν|λ1 < λ2)P(λ1 < λ2)+
+Dπ

m(ν|λ1 ≥ λ2)P(λ1 ≥ λ2).

Since the priors are identical, P(λ1 ≥ λ2) = 1/2. The statistics
of ν conditional on λ1 < λ2 are the same as when we
set λ2 = ∞. This result, shown in [17], can be understood
intuitively since Z indicates the failure of sensor 1 in this case.
So Dπ

m(ν|λ1 < λ2) ≥ Dπ
m(ν1). Intuitively, when λ1 ≥ λ2

link Z gives no information on the change point for sensor
1, so any procedure should only use link X in the limit
of small false alarm probability. Heuristically we reason that
Dπ
m(ν|λ1 ≥ λ2) ≥ Dπ

m(ν̃1). Putting it all together gives

Dπ
m(ν) ≥ 1

2
Dπ
m(ν1) +

1
2
Dπ
m(ν̃1).

Thus, in a sense the proposed procedure achieves optimality,
if the confusion probability is of O(α).

Consider now a fully connected network, with all links hav-
ing i.i.d. link distributions before and after change. Denote the
performance metric by q1. Notice that everything is symmetric
in this case. Each sensor has an equal chance of being the
(n−k)th sensor to fail. If we take small false alarm probability
(α → 0) and all pairwise confusion probabilities go to zero
with the false alarm probability going to zero, it is clear that
no false alarm occurs. In the limit, the kth sensor uses either
(k−1) sensors to make its decision (if there are no self loops
in the graph) or k (if there are self loops). The delay is

Dπ
m(νk) .=

[
| log(α)|

(k − 1 + δs)q1 + d

]m
, (22)

where δs = 1 if the fault graph has self loops. Since each
sensor has an equal chance of failing as the k-th sensor, the
average delay for each sensor is

Dπ
m(ν) .=

1
|V |

|V |∑
k=1

[
| log(α)|

(k − 1 + δs)q1 + d

]m
. (23)

5. Algorithm Implementation

We investigate several practical considerations in the imple-
mentation of the proposed detection algorithm.

5.1. Correlation Computation: Compression and Synchro-
nization

Given blocks Xn(u) and Xn(u′) from sensors u and u′,
direct correlation as in Equation 4 might not be the best choice,
either because the clocks of the two sensors may be delayed
relative to each other, or more importantly, there could be a
propagation delay in the underlying physical environment that
reduces the effective correlation score between both sensors. A
simple solution to improve performance and overcome these
difficulties is to use cross correlation instead of correlation
[15]. Denote by Xk

n(u) the block of samples Xt(u) for t ∈
[(n−1)T +k, nT +k], that is the samples delayed by k units.

The maximum cross correlation can be used to ‘synchro-
nize’ the samples:

[kopt, lopt] = arg max
k,l∈[0,M],k≤l

1
P

∑
n∈[1,P]

F (Xk
n(u), X l

n(u′)).

Here M is the maximum allowed shift between the sensor
samples, P is the number of blocks to evaluate the shift, and

138

F is the correlation score definition in Equation 4. The shift is
adjusted so that the correlation between samples is maximized
either once at initialization or periodically depending on the
clock skew between the nodes. Once the shift is adjusted,
correlations are computed with respect to the chosen shifts.

If the block size T is large enough, an alternative procedure,
which saves energy by reducing the amount of data transfer,
is to use a Discrete Cosine Transform (DCT) to evaluate the
maximum cross correlation. The method relies on computing
the DCT of each block Xn(u) appropriately zero-padded and
using these coefficients to compute the maximal correlations
with a simple scalar product. Additional savings can be
obtained by using only a few coefficients of the DCT. Details
of such a strategy can be found in [15]. If the underlying signal
has a few dominant frequencies this method is very efficient.
Alternative transforms such as wavelets could be used. In fact,
this is the suggested approach even when synchronization is
not required.

5.2. Quantization

Considerable savings can be obtained if the block vectors
Xn(u) are quantized to some finite precision before the
correlation is performed. Since we are working in a stochastic
framework, dithered quantization is favored. A stylized version
of quantizing a real number x in dithered quantization is to
output y = Qb(x+ ε), where ε is a uniform random variable
and Qb is a function that outputs a b-bit quantized version of
the input.

Denote by Sbn(u, u′) the correlation score computed from
the quantized samples of block Xn(u). The following lemma
gives the asymptotic behavior of the estimates, when the
expected value of the score without quantization is µu,u′ .

Lemma 1: Let us assume that the quantizer is B + 1-
bit with full scale Xmax such that the quantization error is
uniformly distributed in interval [−Xmax

2b , Xmax
2b] and statistically

independent of the system input. (This assumption is valid for
subtractive dither quantization when the dither satisfies certain
conditions, e.g. i.i.d uniform dither [15]). As T →∞,

√
T (Sbn(u, u′)− µu,u′) d→ N(0, T σ̄2

u,u′)

σ̄2
u,u′ =

1
T

(
σ2
u′,u + 2X2

max σ
2
b + σ4

b

)
; σ2

b =
1

12 · 22b

Proof: Once we replace xbi and ybi by xi + εbx,i and
yi + εby,i respectively, where εbx,i and εby,i are the quantization
errors for xbi and ybi respectively, xi, εbx,i, yi and εby,i are all
independent of each other, and the result follows.

Quantization increases the variance of a Gaussian distri-
bution by additional terms that are inversely proportional to
22b, so b = O(− log(σu′,u/Xmax)) gives a performance that
is about the same with or without quantization.

5.3. Windowed iteration

Computational efficiency is important in practical applica-
tions. The information sharing procedure proposed in Section
4.3 relies on computing the Shiryaev statistic for each sensor

(Equation 13). The statistic can be recursively computed as:

log(Λn) = log
(

Πn−1

Πn
Λn−1 +

πn
Πn

)
+ log

(
f1(Sn)
f0(Sn)

)
,

= log
(

Λn−1

1− ρ
+

ρ

1− ρ

)
+ log

(
f1(Xn)
f0(Xn)

)
, (24)

where ρ = 1
dT , and for correlation computation

log
(
f1(Xn)
f0(Xn)

)
= log

(
σ2

σ2
uu′

)
+

S2
n

2σ2
− (Sn − µuu′)2

2σ2
uu′

.

(25)

The log function is used for convenience and to increase
numerical precision.

The procedure in Section 4.3 requires each sensor to keep
a history of all observed link score samples, since whenever
a sensor detects a failure, others sensors that share links with
the failed sensor have to recompute the test statistic without
the shared link score. There is a practical implementation of
the algorithm that avoids this. Before a failure occurs, the test
statistic is ideally expected to be zero. After the failure, the
proposed procedure requires about Dπ

m(ν) samples to detect
a fault, so a procedure that remembers a constant multiple of
this number of samples works well. Notice that as sensors fail
sequentially we have to increase the number of stored samples.
Denoting by NW (u) the set of working neighbors at time n,
the sample storage size Mn(u) required at time n for u is

q̃1,n(u) = max
u′∈NW (u)

q1(u, u′),

Mn(u) = T
C log(α)∑

u′∈NW (u)

q1(u, u′)− q̃1(u) + d T
, (26)

in which C is a constant factor (a good choice is C = 1.5)
and T is the window size. The memory estimate subtracts the
most informative link at each stage since we don’t know which
sensor might fail requiring recomputation, and we always
assume the most useful sensor (in terms of decreasing delay)
might. Each time a sensor reports a failure, sensors that share
fault links all recompute the Shiryaev statistic using the stored
samples.

6. Time Scale Selection

We address the choice of time scale or block size T . We
first show how performance for different T values can be
compared. We then discuss how to choose T . Lastly, we show
a practical problem using PeMS data.

6.1. Delay scaling

The fault model of Equation 6 might suggest that we could
reduce detection delay arbitrarily, since by increasing T we
can make the variance arbitrarily small. But to legitimately
compare the mth moment of the delay for different T , we
should consider the total number of samples rather than the

139

(a) (b) (c)

(d) (e) (f)
Figure 3. (a) Daily correlation values for different time scales, (b) Correlation distribution for 1/16 of total daily samples, (c)
Symmetrized version of (b), (d) Fisher transform with γ = 1, (e) Information parameter q1 normalized by T and (f) Correlation
distribution for broken sensors from [10].

number of blocks,

Dπ,T
m (νu) = Tm ×Dπ

m(νu),

=
[
T

log(α)
q1 + d T

]m
=
[

log(α)
q1
T + d

]m
.

Here q1 is a sum or average of the individual link quality
metric, which by Equation 7 is given by

q1(u, u′)
T

=
µ(u, u′)2

2σ2
u,u′

+
1

2T

[
σ2

σ2
u,u′

+ log

(
σ2
u,u′

σ2

)
− 1

]
.

Thus merely by increasing T one cannot reduce the delay
arbitrarily: If the variances are equal before and after a fault,
the delay (in number of samples) is independent of T ; and if
the variances are different, there could even be a performance
loss as q1(u,u

′)
T might decrease with T .

6.2. Events and faults time scale comparison

The choice of the time scale parameter must compare the
time scale of faults–duration between successive faults–and
the time scale of events–time between signification changes
in the environment. In most sensing environments, one expect
events to have a much smaller time scale than faults. That is, a
change in sensor measurements caused by an event is expected
to propagate to neighboring sensors at a speed that depends
on the physical environment. On the other hand, sensor faults
should not propagate to neighboring sensors and these faults
are likely to persist longer.

Sensor failures frequently are intermittent: a sensor fails
and after some time it spontaneously recovers. (PeMS sensors
suffer from intermittent failures.) In such situations, if a large
enough density of sensors is available, the detection delay

can be made small enough to detect intermittent failures.
In fact, once a sensor is detected as failed, the sequential
procedure can continue with some modifications to detect
when the measurements are reliable again. So the requirement
for detection of intermittent failures is that the average length
of time a sensor remains failed is of the same order as the
detection delay.

Consider a simple model in which once an event occurs
at the location of sensor u, its measurements become un-
correlated with those of its neighbor u′. Suppose events on
average last τ samples. This could be either how long the
event lasts, or the time to propagate the change caused by an
event to neighboring sensors. During the time window τ , u
samples an i.i.d. random variable with variance σ2

e . At other
times, the sensors sample i.i.d. values with a correlation of
ρu,u′ and a variance of σ2

S . If τ >> T , we are unable to
distinguish the event at sensor u from the sensor’s failure. In
fact, a simple computation reveals that the expectation of the
empirical correlation with a window of size T (assuming an
event at u occurs at the beginning of the time block) is

ρ̂u,u′(T, τ) =

{
(1− r)+√

(1− r)+ + r ψe,S

}
ρu,u′ ,

r =
τ

T
, ψe,S =

σ2
e

σ2
S

As expected, when T is large relative to τ , the effect of
the event is reduced (implying a correlation that is close
to the case when the event is not present). Furthermore, if
event uncertainties are large with respect to usual behavior
uncertainties, a larger time scale helps even more. If event
uncertainties are small, expected correlations are smaller, but
the events do not significantly affect the system.

140

6.3. Example

To show how to select the time scale in a real application,
we use 5-minute average density data from PeMS for Interstate
210-West in Los Angeles, which has 45 sensing stations, about
2 miles apart. Events such as accidents and demand-induced
traffic congestion cause changes in the measured density, and
we wish to distinguish the changes due to these events from
changes due to sensor failures. We select two neighboring
stations. Figure 3(a) shows the correlation over time for
different time scales. Notice that for small time scales, we can
observe large correlation drops, which correspond to events
that have a low propagation speed. The implicit averaging
proposed by our algorithm is essential in such situations.

Notice from Figure 3(b) that the correlation with the identity
transformation function does not have a gaussian characteris-
tic. The main reason for this is that our data set is limited. We
propose two different approaches for handling such situations.
Both are simple and fit within the methodology proposed here.
The first approach uses a padded density estimate. Figure 3(c)
shows the padded histogram for our sample set, in which we
can clearly see a bell curve. From this curve we are able
to estimate the parameters µ = 1 (by definition) and σ2 =
0.0928. But we also know that correlation values never exceed
1 (which is also the mean of our estimated distribution). Thus,
we should use as a distribution for the score the distribution
conditional on the fact that the score is less than the mean,
which can be directly computed as

Sn(u, u′) ∼ 2N(1, T−1 σ2
u,u′), n <

1
T

min(λu, λ′u).

After failure we don’t see the cutoff effect [10], so the distribu-
tion remains as before (Equation 6). Notice that the algorithm
is identical, except that the constant factor (−|NW (u)| log 2)
should be added to the definition of On(u) in Table I. The
second approach is to use the Fisher type transformation in
Equation 5. Figure 3(d) shows the result for the parameter
value γ = 1. The distribution is more gaussian shaped. Figure
3(e) computes the scaled information metric q̄1/T for several
choices of the time scale parameter T . Observe that if the time
is less than half a day, performance is the same. Some gains
are observed as we increase the time scale.

7. Energy, delay and density tradeoff

We develop a tradeoff model to evaluate optimal choices of
neighborhood size on an energy constrained network. We use
delay results from previous sections to evaluate choices faced
by a sensor under such constraints in a random placement
setting.

7.1. Correlation decay

Many sensor networks monitor spatial and temporal changes
in the environment. The correlation between measurements at
different locations usually decays with distance. For example,
in PeMS, the correlation of traffic measurements by adjacent
sensors decays with the distance between them, since there are

Figure 4. Informativeness models with respect to connectiv-
ity radius R .

more points (ramps) where vehicles enter and exit. A simple
way to capture this effect is an additive model

F (k + 1) = F (k) + Fin(k + 1)− Fout(k),

where k denotes the kth section of the highway, F (k) denotes
the flow in the kth section, Fin(k + 1) denotes the incoming
flow to the kth section through an on-ramp, Fout(k) denotes
the outgoing flow in the previous section. Assume that the
incoming flows are i.i.d. random variables with variance σ2.
If the outgoing flows are proportional to the input flows
(Fout(k) = −βF (k), for 0 < β < 1) we have

ρ(k, k̃) =
σ2

1− β2
β|k−k̃|.

The correlation decays with the distance between sensors, but
the decay rates are different. The performance of the proposed
fault detection algorithms depends crucially on the expected
correlations between the sensors, as well as on the variance of
this estimate, through the information parameter q1(ui, uj) of
the link between sensors ui and uj . Under reasonable condi-
tions, the variance of the correlation estimate increases as the
correlation itself decreases. Under our normality assumptions,
we showed that q1 = ρ2/σ2

ρ. If we assume a power law decay
with distance and σ2

ρ = O(1/ρ2p), we can state that

q1(ui, uj) ∝ T βγ· dist(ui,uj), (27)

in which the parameter γ ≥ 0 controls the decay rate of
the link informativeness as the distance between the sensors
dist(ui, uj) increases.

7.2. Energy consumption

Some sensor networks have limited energy. If most energy
is consumed in communication, it is important to minimize the
data to be transferred. Suppose the energy consumed in trans-
ferring data between ui and uj is proportional to the square of
the distance between them, eC(ui, uj) ∝ dist(ui, uj)2. There
might then be a maximum radius R of interest to realize fault
detection for a single sensor with a limited power budget.

7.3. Tradeoff analysis

We adopt the viewpoint of a single sensor u1, whose
neighbors are randomly placed following a Poisson process on

141

a disk with center u1 and mean (spatial) density ηF sensors
per m2 [8]. Assume these neighbors never fail. We use a mean
field approximation to evaluate the tradeoffs between energy,
detection delay and density.

The expected link informativeness in a disk with radius R,
normalized by time scale, is

q̄1 = E[q1(u1, uj)/T]

= C

∫ R

0

βγ dist(u1,uj)dµ(dist(u1, uj))

= C

∫ R

0

βγ x
2
R2

xdx

=
{
C γ = 0

2C
(log(β)γR)2

[
1 + βγR(log(β)γR− 1)

]
γ > 0 .

For density ηF , the disk has on average N = ηFπR
2 sensors.

Using the mean field approximation (valid for large N), the
expected sample delay of the detection procedure is

E[Dπ
m(ν1)] = E

[
logα∑

j q1(u1, uj) + d T

]
≈ E

[
logα

Nq̄1 T + d T

]
=

logα
ηF πR2q̄1 T + d T

.

The expected power consumption for each transmission round
to each neighbor is

E[eC(u1, uj)] = K

∫ R

0

dist(u1, uj)2µ(dist(u1, uj)),

= K

∫ R

0

x2 2
R2

xdx =
1
2
KR2.

The average number of rounds of communication is λ̄ +
Dπ
m(ν1), where λ̄ = ed T is the average failure time. Putting

these together, using the mean field approximation to the delay
in the first step, we obtain the total power consumed

P̄ = E[eC(u1, uj)(λ+Dπ
m(ν1))N],

≈ 1
2
KR2 [λ̄+ E[Dπ

m(ν1)]] ηF πR2.

If q̄1 is small compared to d, the expected delay is dominated
by 1/d, which is smaller than λ̄. If q̄1 is large, the delay is
small. Thus essentially the total average power consumed by
sensor u1 is O(ρR4). The expected sample delay is of order

E[Dπ,T
m (ν1)] = T E[Dπ

m(ν1)] = O

(
1

max {ηF R2 q̄1, d}

)
.

There are two ways to improve performance: (1) by increas-
ing R for a fixed density, which corresponds to communicating
with neighbors further away, and (2) by increasing the den-
sity as a function of R, requiring additional sensors. Which
choice is better depends on the parameter γ of the underlying
environment. For the model in Equation 27, R2q̄1 increases
with R2 when γ = 0, and is order constant when γ > 0. Thus
increasing R for a fixed density does not help reduce the delay
arbitrarily when γ > 0. Figure 4 plots q̄1 as a function of R
for the different models. In the order constant situations we
need to increase the density as a function of ηF (R) = Rp for

some p > 0, which increases energy consumption from O(R4)
to O(R4+p). If performance is measured as total average
power per unit detection delay, P̄ /E[Dπ

m(ν1)] = O(R2/q̄1),
increasing density improves performance.

8. Examples

We evaluate the performance of our algorithm in simu-
lations, which allows us to precisely define the moment of
failure. We simulate three different situations: the two-node
network and the fully connected network proposed in Section
4, and a toroidal grid network (see [4] for a definition). This
is basically a four connected network that wraps around.

As a benchmark, we compute the expected delay of a naive
fault detection strategy: direct thresholding of the correlation,
assuming that the distributions are known. For a 5-node fully
connected network, and a false alarm probability of 0.0001,
approximate computations reveal that the expected delay is on
the order of 172 blocks. By comparison, our approach yields
a delay of 50 blocks for a false alarm probability of 10−20

(essentially zero), which it is much more efficient. The main
reason is that we perform appropriate implicit averaging.

8.1. Two Sensor Network

We focus initially on the case in Figure 2. All variables
are Gaussian. The mean parameters are µX = µY = µZ = 1
before change, and zero after change. Random variables X and
Y are i.i.d. with variance σ2

S . The common link Z has a fixed
variance σ2

Z = 1. The prior failure rate is d = − log(0.01).
Figure 5(a) shows a typical correlation sample path when σ2

S =
0.2. Notice that without time averaging it is very hard to say
exactly when the change (failure) occurred.

In Section 4 we argued that the confusion probability should
go to zero as the false alarm rate α→ 0 for the procedure to be
consistent, and we see this in Figure 5(b). Notice though that
the rate depends on the uncertainty in the non-shared links σ2

S .
From Figure 5(c), if σ2

Z/σ
2
S < 1.8, the confusion probability

is O(αp) with p < 1, so the total false alarm rate of the
procedure (Equation 17) grows slower than α. But for higher
ratios, our procedure essentially has false alarm rate α, so it is
indeed valuable to have additional sensors in a neighborhood.

Figure 5(d) shows the theoretical and experimental average
delays obtained when the threshold is α = 10−7. There
is disagreement between the curves, although the qualitative
behavior is as expected. The disagreement is because our
results are for α→ 0. This issue is well known in sequential
analysis [19]. In the next section we show the high accuracy of
the approximation for small values of α. Figure 5(e) compares
the behavior of our procedure using the common link Z
and one that does not use it at all. There is a substantial
reduction in delay using a shared link. Figure 5(f) is the
corresponding theoretical prediction. There is a qualitative
agreement between theory and simulation experiment.

8.2. General Networks

Now consider a fully connected network of sensors. Figure
6(a) shows the average detection delay for α = 0.12 and

142

(a) (b) (c)

(d) (e) (f)
Figure 5. Two Sensor Network: (a)Sample path for correlation with change point at n = 50, (b) Confusion probability estimates
for different variance ratios and (c) Confusion probability exponent estimates. Covariance ratio in these figures refers to the quantity
σ2

Z/σ
2
S .

Figure 6(c) for α = 10−20. As α becomes very small, our
theoretical predictions agree better with experiment. Further-
more, the reduction in delay diminishes as the number of
sensors increases beyond 20. Figure 6(b) shows the actual
PFA observed for selected false alarm targets. As with the
two-sensor case (in which the uncertainty ratio played the
role of the number of nodes), beyond 10 sensors the false
alarm probability is below the target level. Thus the confusion
probability rate becomes large at that point. Figure 6(d) shows
that with 20 nodes, the observed false alarm is always below
the target level.

Lastly, we simulate a toroidal network, in which each sensor
has four neighbors. The previous results lead us to believe that
the average delay should remain the same independent of the
number of sensors in the network, since the connectivity is
fixed. Figure 6(e) shows this (except for when we move from
4 nodes–which is fully connected). Compare the delay level
to the uncertainty ratio of 5 or a fully connected network with
4 sensors. The results are close. We can see also in Figure
6(f) that since the connectivity is still low, the false alarm is
slightly higher than the target.

9. Discussion and Conclusions

In the paper we developed and evaluated an algorithm for
distributed online detection of faulty sensors. We proposed a
set of basic assumptions and a framework based on the notion
of a fault graph together with fundamental metrics to evaluate
the performance of any sequential fault detection procedure.
Then we proceeded to analyze an efficient algorithm that
achieves a good performance under the proposed metrics, and
even an optimal performance under certain scenarios. As far as
we know, this is the first paper to derive bounds on detection

delay subject to false alarm constraints in a multiple fault or
multiple change point setting. We validated the assumptions
behind our algorithms with real data collected from a freeway
monitoring application.

Our algorithm performs an implicit averaging which lever-
ages the short term history of the samples reducing the
detection delay for a fixed false alarm. Most of the proposed
methods in the literature do not perform this averaging, and
therefore are subject to much longer delays. Our algorithm and
framework are general enough that even model based methods
for computing scores, such as the one proposed in [21] or the
primitive in [7], can benefit from the proposed procedure. That
score method though might not be very efficient if the observed
processes are non stationarity such as in freeway monitoring.
Compared to procedures such as in [6] and in [16], our method
benefits from implicit averaging, whereas those methods make
sequential decisions based on only the current observation.

One important feature of the proposed procedure is that
weak sources of evidence can be combined to give a reliable
detection of failure. As long as the average correlation when
a sensor is working is slightly larger then when it has failed
detection can be performed reliably. Notice that very large
uncertainties are tolerated, although detection delays increase.
On the other hand, as more neighboring sensors are added,
the shared information can be used to reduce delays. This
means that in situations where fault periods are short can still
be detected. Some straightforward adaptation of the algorithm
also allows for detecting when a malfunctioning sensor might
return to give reasonable readings in intermittent detection
scenarios.

Although we focused on the case where the distribution of
the correlations is approximately Gaussian, in case other score
metrics are used, the proposed algorithm can be adapted for

143

(a) (b) (c)

(d) (e) (f)
Figure 6. Fully Connected Network: (a)Detection Delay as a function of the number of sensors for α = 0.12 and (b)Empirical
average false alarm. (c)Detection Delay as a function of the number of sensors for α = 10−20 and (d) Selected false alarm rate and
actual rate for network with 20 nodes. Grid Network: (e)Average Detection Delay as a function of number of sensors and (f) False
alarm rate. Chosen false alarm rate α = 0.12.

different statistical distributions. As avenues for future work
we propose to investigate the estimation of the fault graph,
currently based on geographic proximity, and generalizations
of the methodology to applications such as event detection.

References

[1] B. E. Brodsky and B. S. Darkhovsky. Nonparametric methods in change-
point problems. Kluwer Academic Pub, 1993.

[2] C. Chen, J. Kwon, J. Rice, A. Sakabardonis, and P. Varaiya. Detecting
errors and imputing missing data for single loop surveillance systems.
Transportation Research Record, (1855):160–167.

[3] C. Chong and S. P. Kumar. Sensor networks: Evolution, opportunities,
and challenges. Proceedings of the IEEE, 91:1247–1256, 2003.

[4] A. G. Dimakis, A. D. Sarwate, and M. J. Wainwright. Geographic
gossip: efficient aggregation for sensor networks. In Information
Processing in Sensor Networks (IPSN), pages 69–76, 2006.

[5] R. Durrett. Probability: Theory and Examples. Duxbury Press, New
York, NY, 1995.

[6] E. Elnahrawy and B. Nath. Context-aware sensors. Lecture Notes in
Computer Science (LNCS), 2920:77–93, 2004.

[7] S. R. Jefferey, G. Alonso, M. J. Franklin, W. Hong, and J. Widom.
A pipelined framework for online cleaning of sensor data streams. In
ICDE, 2006.

[8] J.G.Proakis. Digital Communications. McGraw-Hill, New York,NY,
2000.

[9] F. Koushanfar, M. Potkonjak, and A. Sangiovanni-Vincentelli. Fault-
tolerance in sensor networks. Handbook of Sensor Networks, 36, I.
Mahgoub and M. Ilyas (eds.) 2004.

[10] J. Kwon, P. Bickel, and J. Rice. Web of evidence models: Detecting
sensor malfunctions in correlated sensor networks. Technical report,
University of California Berkeley, 2003.

[11] T. L. Lai. Sequential analysis: Some classical problems and new
challenges (with discussion). Statist. Sinica, 11:303–408, 2001.

[12] E. Lehmann. Elements of Large-Sample Theory. Springer, 1999.
[13] X. Luo, M. Dong, and Y. Huang. On distributed fault-tolerant detection

in wireless sensor networks. IEEE Transactions on Computers, 55:58–
70, 2006.

[14] K. Marzullo. Tolerating failures of continuous-valued sensors. ACM
Transactions on Computer Systems, 8:284–304, 1990.

[15] A.V. Oppenheim, R.W.Schafer, and J.R.Buck. Discrete-time Signal
Processing. Prentice-Hall, Inc., New Jersey, 1999.

[16] E. Ould-Ahmed-Vall, G. F. Riley, and B. Heck. Distributed fault-
tolerance for event detection using heterogeneous wireless sensor net-
works. Technical Report GIT-CERCS-06-09, Georgia Institute of Tech-
nology, 2007.

[17] R. Rajagopal, X. Nguyen, S. C. Ergen, and P. Varaiya. Distributed online
fault detection with multiple sensors. Technical report, University of
California Berkeley, 2007.

[18] A. N. Shirayev. Optimal Stopping Rules. Springer-Verlag, 1978.
[19] A.G. Tartakovsky and V.V. Veeravalli. General asymptotic bayesian

theory of quickest change detection. Theory of Probab. Appl., 49(3):458–
497, 2005.

[20] J. N. Tsitsiklis. Decentralized detection. In Advances in Statistical
Signal Processing, pages 297–344. JAI Press, 1993.

[21] D. Tulone and S. Madden. An energy-efficient querying framework
in sensor networks for detecting node similarities. In MSWiM, pages
191–300, 2006.

[22] V. V. Veeravalli. Sequential decision fusion: theory and applications.
Journal of the Franklin Institute, 336:301–322, 1999.

[23] PeMS website. http://pems.eecs.berkeley.edu.

144

