
UCLA
Posters

Title
Deriving State Machines from TinyOS programs using Symbolic Execution

Permalink
https://escholarship.org/uc/item/92w6g3md

Authors
Kothari, Nupur
Millstein, Todd
Govindan, Ramesh

Publication Date
2009-05-12

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/92w6g3md
https://escholarship.org
http://www.cdlib.org/

FSMGenFSMGen: : System OverviewSystem Overview

FSMGenFSMGen: : Details Details

Deriving State Machines from Deriving State Machines from TinyOSTinyOS
Programs using Symbolic Execution Programs using Symbolic Execution

Nupur Kothari, Todd Millstein and Ramesh Govindan

IntroductionIntroduction
• Programs written for Sensor Networks are quite complex

– Event-driven programming style of most sensor network languages
– Programmers need to handle resource and energy constraints

• Program complexity makes detecting discrepancies between
programmer intent and program functionality hard for sensor
networks

• A high-level representation makes programs easier to understand
• FSMGen is a tool to generate high-level representations in the form of

user-understandable Finite State Machines (FSMs) from TinyOS
programs, where TinyOS is one of the most popular programming
systems for sensor networks

Example State Machine: RfmToLed

Predicate Abstraction

UCLA UCLA –– UCR UCR –– Caltech Caltech –– USC USC –– UC MercedUC Merced

Center for Embedded Networked SensingCenter for Embedded Networked Sensing

• Program analysis technique that statically approximates program
behaviour

• Involves simulating the execution of a program without actually
running it, maintaining at each point information about the value of
each variable (symbolic state)

• Adapted Symbolic Execution for event-driven model of TinyOS in
FSMGen

– Keep track of events enabled during execution and add this to symbolic
state

– Push task posted during execution into queue. At the end of the symbolic
execution, execute all the tasks in the queue to obtain the final symbolic state

• FSMGen Symbolic Execution Framework built as an inter-procedural
analysis in the CIL front-end for C

• Symbolic Execution Framework uses constraint solver CVC3 to solve
for predicates during symbolic execution

Symbolic Execution

Generated FSM for Surge

• A technique to map a symbolic state to a corresponding valuation of a
set of predicates (corresponds to a state in the FSM)

• The set of predicates that make up the state space of the FSM are
obtained from the application code, and from the set of enabled events

• FSMGen Predicate Abstraction module
– Takes as input a symbolic state
– Generates as output a state in the FSM being derived

Future Work
• Optimizations to improve efficiency/running time of FSMGen
• Improve analysis of loops and iterative procedures
• Better approximation of TinyOS model
• Uses of the generated FSMs – race conditions, memory errors
• Release for public use

RfmToIntM.nc
…
event TOS_MsgPtr

ReceiveIntMsg.receive
(…) {

…
call IntOutput.output

(message->val);
…

}

IntToLedsM.nc
...
command result_t

IntOutput.output(uint16_t
value){

if (value & 1)
call Leds.redOn();

else
call Leds.redOff();

post outputDone();
return SUCCESS;

}

Evaluation

Generating an FSM
• FSM Generator first generates initial FSM state and makes note of

possible events that can occur at this point
• For each possible event that is enabled initially, the FSM Generator

calls upon the symbolic execution module to generate resulting
symbolic states and converts them to FSM states using the Predicate
Abstraction module

• The FSM Generator adds the new FSM the state machine using the
events that were analyzed as edges

• The above process is repeated for all the new states that were created,
and the events that are enabled for them

• Tested FSMGen for a number of TinyOS applications and system
components

– TinyOS-1.x: Surge, RfmToLeds, CntToRfm, FTSP, MultiHopEngine
– TinyOS-2.x: TestNetwork

• At most 15 minutes to infer FSMs in all but one cases – FTSP took
~24 hrs

– Analysis is worst-case exponential in the number of predicates in the state
space

• At most 16 states in all generated FSMs
• Inconsistencies discovered in 2 components – Surge, MultiHopEngine

Generated FSM for FTSP

Limitations
• Coarse approximation of execution model of TinyOS

– Not applicable to low-level interrupt driven code
– May miss potential execution paths

• Symbolic Execution Framework
– Does not handle recursive functions, conservatively deals with pointers
– Analysis of unbounded loops/iterative functionality is incomplete

	Deriving State Machines from TinyOS Programs using Symbolic Execution

