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Abstract

We consider large-scale networks withn nodes, out of
whichk are in possession, (e.g., have sensed or collected in
some other way)k information packets. In the scenarios in
which network nodes are vulnerable because of, for exam-
ple, limited energy or a hostile environment, it is desirable
to disseminate the acquired information throughout the net-
work so that each of then nodes stores one (possibly coded)
packet and the originalk source packets can be recovered
later in a computationally simple way from any(1 + ǫ)k
nodes for some smallǫ > 0.

We developed two distributed algorithms for solving
this problem based on simple random walks and Fountain
codes. Unlike all previously developed schemes, our solu-
tion is truly distributed, that is, nodes do not known, k
or connectivity in the network, except in their own neigh-
borhoods, and they do not maintain any routing tables. In
the first algorithm, all the sensors have the knowledge of
n and k. In the second algorithm, each sensor estimates
these parameters through the random walk dissemination.
We present analysis of the communication/transmission and
encoding/decoding complexity of these two algorithms, and
provide extensive simulation results as well1.

1 Introduction

Wireless sensor networks consist of small devices (sen-
sors) with limited resources (e.g., low CPU power, small
bandwidth, limited battery and memory). They can be
deployed to monitor objects, measure temperature, detect
fires, and other disaster phenomena. They are often used in

1This work was accomplished while S.A.A and Z.K. were spending a
summer research internship at Bell Labs & Alcatel-Lucent, Murray Hill,
N.J., 2007, and it was submitted as US patent in [2]. They would like to
thank Bell Labs & Alcatel-Lucent staff members for their hospitality.

isolated, hard to reach areas, where human involvement is
limited. Consequently, data acquired by sensors may have
short lifetime, and any processing on it within the network
should have low complexity and power consumption [18].

We consider a large-scale wireless sensor networks with
n sensors. Among them,k ≪ n sensors have collected
(sensed) some information. Since sensors are often short-
lived because of limited energy or hostile environment, it is
desirable to disseminate the acquired information through-
out the network so that each of then nodes stores one (pos-
sibly coded) packet and the originalk source packets can
be recovered in a computationally simple way from any
(1 + ǫ)k of nodes for some smallǫ > 0. Here, the sen-
sors do not know locations of each other, and they do not
maintain any routing tables.

Various solutions to the centralized version of this prob-
lem have been proposed, and are based on well known
coding schemes such as Fountain codes [6] or MDS
codes [16]. To distribute the information from multiple
sources throughout the network so that each node stores
a coded packet as if obtained by centralized LT (Luby
Transform) coding [12], Linet al. [11] proposed a solu-
tion that uses random walks with traps. To achieve the de-
sired code degree distribution, they employed the Metropo-
lis algorithm to specify transition probabilities of the ran-
dom walks. In this way, the originalk source packets are
encoded by LT codes and the decoding process can be done
by querying any(1+ǫ)k arbitrary sensors. Because of prop-
erties of LT codes, the encoding and decoding complexity
are linear and therefore have low energy consumption.

In the methods of [11], the knowledge of the total num-
ber of sensorsn and sourcesk is required for calculating the
number of random walks that each source needs to initiate
and for calculating the probability of trapping at each sen-
sor. Another type of global information, namely, the maxi-
mum node degree (i.e., the maximum number of neighbors)
in the network, is also required to perform the Metropolis
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algorithm. However, for a large-scale sensor network, such
global information may not be easy to obtain by each indi-
vidual sensor, especially when there is possibility of change
in topology. Moreover, the algorithms proposed in [11] as-
sume that each sensor encodes only after receiving enough
source packets. This requires each sensor to maintain a
large enough temporary memory buffer, which may not be
practical in real sensor networks.

In this paper, we propose two new algorithms to solve
the distributed storage problem in large-scale sensor net-
works. We refer to these algorithms as LT-Codes based
Distributed Storage-I (LTCDS-I) and LT-Codes based Dis-
tributed Storage-II (LTCDS-II). Both algorithms use sim-
ple random walks without trapping to disseminate source
packets. In contrast to the methods in [11], both algorithms
demand little global information and memory at each sen-
sor. In LTCDS-I, only the values ofn andk are needed,
whereas the maximum node degree, which is more difficult
to obtain, is not required. In LTCDS-II, no sensor needs to
know any global information (that is, knowingn andk is
no longer required). Instead, sensors can obtain good es-
timates for those parameters by using some properties of
random walks. Moreover, in both algorithms, instead of
waiting until all the necessary source packets are collected
to do encoding, each sensor makes decisions and performs
encoding online upon each reception of resource packets.
This mechanism reduces the memory demand significantly.

The main contributions of this paper are as follows:
(i) We propose two new algorithms (LTCDS-I and

LTCDS-II) for distributed storage in large-scale sen-
sor networks, using simple random walks and LT
codes. These algorithms are simpler, more robust, and
less constrained in comparison to previous solutions.

(ii) We present complexity analysis of both algorithms,
including transmission, encoding, and decoding com-
plexity.

(iii) We evaluate and illustrate the performance of both al-
gorithms by extensive simulation.

This paper is organized as follows. We start with a short
survey of the related work in Section 2. In Section 3, we
introduce the network model and present Luby Transform
(LT) codes. In Section 4, we propose two LT codes based
distributed storage algorithms called LTCDS-I and LTCDS-
II. We then present simulation studies and provide perfor-
mance analysis of the proposed algorithms in Section 5, and
concluded in Section 6.

2 Related Work

The most related work to one presented here is [11, 10].
Lin el al. studied the question “how to retrieve historical
data that the sensors have gathered even if some sensors
are destroyed or disappeared from the network?” They ana-

lyzed techniques to increasepersistenceof sensed data in a
random wireless sensor network, and proposed two decen-
tralized algorithms using Fountain codes to guarantee the
persistence and reliability of cached data on unreliable sen-
sors. They used random walks to disseminate data from
multiple sensors (sources) to the whole network. Based on
the knowledge of the total number of sensorsn and sources
k, each source calculates the number of random walks it
needs to initiate, and each sensor calculates the number of
source packets it needs to trap. In order to achieve some de-
sired packet distribution, the transition probabilities of ran-
dom walks are specified by the well known Metropolis al-
gorithm [11].

Dimakisel al. in [4, 6] proposed a decentralized imple-
mentation of Fountain codes that uses geographic routing,
where every node has to know its location. The motivation
for using Fountain codes is their low decoding complexity.
Also, one does not know in advance the degrees of the out-
put nodes in this type of codes. The authors proposed a
randomized algorithm that constructs Fountain codes over a
grid network using only geographical knowledge of nodes
and local randomized decisions. Fast random walks are
used to disseminate source data to the storage nodes in the
network.

Kamarael al. in [9, 8] proposed a novel technique called
growth codesto increase datapersistencein wireless sen-
sor networks, namely, increase the amount of information
that can be recovered at the sink. Growth coding is a lin-
ear technique in which information is encoded in an online
distributed way with increasing degree of a storage node.
Kamarael al. showed thatgrowth codescan increase the
amount of information that can be recovered at any stor-
age node at any time period whenever there is a failure in
some other nodes. They did not use robust or soliton dis-
tributions, but proposed a new distribution depending on
the network condition to determine degrees of the storage
nodes. The motivation for their work was that i) Positions
and topology of the nodes are not known. ii) They assume
a round time of node updates, meaning with increasing the
time t, degree of a symbol is increased. This is the idea be-
hind growth degrees. iii) They provide practical implemen-
tations of growth codes and compare its performance with
other codes. iv) The decoding part is done by querying an
arbitrary sink, if the original sensed data has been collected
correctly then finish, otherwise query another sink node.

Lun el. al. in [13] proposed two decentralized algo-
rithms to compute the minimum-cost subgraphs for estab-
lishing multicast connections using network coding. Also,
they extended their work to the problem of minimum-
energy multicast in wireless networks as well as they stud-
ied directed point-to-point multicast and evaluated the case
of elastic rate demand.



3 Wireless Sensor Networks and Fountain
Codes

In this section, we introduce our network model and pro-
vide background of Fountain codes and, in particular, one
important class of Fountain codes—LT (Luby Transform)
codes [12].

3.1 Network Model

Our wireless sensor network consists ofn nodes that are
uniformly distributed at random in a regionA = [L,L]2 for
L > 1. Thedensityof the network is given by

λ =
n

|A| =
n

L2
, (1)

where |A| is the two-dimensional Lebesgue measure (or
area) ofA. Each sensor node has an identical communi-
cation radius1; thus any two nodes can communicate with
each other if and only if their distance is less than or equal to
1. This model is known as random geometric graphs [7, 15].
Among thesen nodes, there arek source nodes that have
information to be disseminated throughout the network for
storage. Thesek nodes are uniformly and independently
distributed at random among then nodes. Usually, the frac-
tion of source nodes, i.e.,k

n
, is not very large (e.g.,10%, or

20%).
Note that, although we assume the nodes are uniformly

distributed at random in a region, our algorithms and results
do not rely on this assumption. In fact, they can be applied
for any network topology, for example, regular grids.

We assume that no node has knowledge about the lo-
cations of other nodes and no routing table is maintained;
consequently, the algorithm proposed in [5] cannot be ap-
plied. Moreover, we assume that each node has limited or
no knowledge of global information, but know its neigh-
bors. The limited global information refers to the total num-
bers of nodesn and sourcesk. Any further global informa-
tion, for example the maximal number of neighbors in the
network, is not available. Hence, the algorithms proposed
in [11, 10] are not applicable.

Definition 1. (Node Degree) Consider a graphG =
(V,E), whereV andE denote the set of nodes and links,
respectively. Givenu, v ∈ V , we sayu andv are adjacent
(or u is adjacent tov, and vice versa) if there exists a link
betweenu and v, i.e., (u, v) ∈ E. In this case, we also
say thatu andv are neighbors. Denote byN (u) the set of
neighbors of a nodeu. The number of neighbors of a node
u is called thenode degreeof u, and denoted bydn(u), i.e.,
|N (u)| = dn(u). Themean degreeof a graphG is then
given by

µ =
1

|V |
∑

u∈G

dn(u), (2)
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Figure 1. The encoding operations of Foun-
tain codes: each output is obtained by XOR-
ing d source blocks chosen uniformly and in-
dependently at random from k source inputs,
where d is drawn according to a probability
distribution Ω(d).

where|V | is the total number of nodes inG.

3.2 Fountain Codes

For k source blocks{x1, x2, . . . , xk} and a probabil-
ity distribution Ω(d) with 1 ≤ d ≤ k, a Fountain code
with parameters(k,Ω) is a potentially limitless stream of
output blocks{y1, y2, ...}. Each output block is obtained
by XORing d randomly and independently chosen source
blocks, whered is drawn from a specially designed distribu-
tion Ω(d). This is illustrated in Figure 3.2. Fountain codes
are rateless, and one of their main advantage is that the en-
coding operations can be performed online. The encoding
cost is the expected number of operation sufficient for gen-
erating an output symbol, and the decoding cost is the ex-
pected number of operations sufficient to recover thek input
blocks. Another advantage of Fountain codes, as opposed
to purely random codes is that their decoding complexity
can be made low by appropriate choice ofΩ(d), with little
sacrifice in performance. The decoding of Fountain codes
can be done by message passing.

Definition 2. (Code Degree) For Fountain codes, the num-
ber of source blocks used to generate an encoded outputy
is called the code degree ofy, and denoted bydc(y). By
constraction, the code degree distributionΩ(d) is the prob-
ability distribution ofdc(y).

3.3 LT Codes

LT (Luby Transform) codes are a special class of Foun-
tain codes which usesIdeal Solitonor Robust Solitondis-
tributions [12]. The Ideal Soliton distributionΩis(d) for k
source blocks is given by

Ωis(i) = Pr(d = i) =











1

k
, i = 1

1

i(i− 1)
, i = 2, 3, ..., k.

(3)



Let R = c0
√
k ln(k/δ), wherec0 is a suitable constant and

0 < δ < 1. The Robust Soliton distribution fork source
blocks is defined as follows. Define

τ(i) =



























R

ik
, i = 1, ...,

k

R
− 1

R ln(R/δ)

k
, i =

k

R
,

0, i =
k

R
+ 1, ..., k,

(4)

and let

β =

k
∑

i=1

τ(i) + Ωis(i). (5)

The Robust Soliton distribution is given by

Ωrs(i) =
τ(i) + Ωis(i)

β
, for all i = 1, 2, ..., k (6)

The following result provides the performance of the LT
codes with Robust Soliton distribution [12, Theorems 12
and 13].

Lemma 3 (Luby [12]). For LT codes with Robust Soliton
distribution,k original source blocks can be recovered from
anyk +O(

√
k ln2(k/δ)) encoded output blocks with prob-

ability 1 − δ. Both encoding and decoding complexity is
O(k ln(k/δ)).

4 LT-Codes Based Distributed Storage
(LTCDS) Algorithms

In this section, we present two LT-Codes based Dis-
tributed Storage (LTCDS) algorithms. In both algorithms,
the source packets are disseminated throughout the network
by a simple random walk. In the first one, called LTCDS-
I algorithm, we assume that each node in the network has
limited the global information, that is, knows the total num-
ber of sourcesk and the total number of nodesn. Unlike
the scheme proposed in in [10], our algorithm does not re-
quire the nodes to know the maximum degree of the graph,
which is much harder to obtain thank andn. The second
algorithm, called LTCDS-II, is a fully distributed algorithm
which does not require nodes to know any global informa-
tion. The price we pay for this benefit is extra transmissions
of the source packets to obtain estimates forn andk.

4.1 With Limited Global Information—
LTCDS-I

In LTCDS-I, we assume that each node in the network
knows the values ofk and n. We use simple random
walks [1, 17] for each source to disseminate its information
to the whole network. At each round, each nodeu that has

packets to transmit chooses one nodev among its neighbors
uniformly independently at random, and sends the packet
to the nodev. In order to avoid local-cluster effect—each
source packet is trapped most likely by its neighbor nodes—
we let each node accept a source packet equiprobably. To
achieve this, we also need each source packet to visit each
node in the network at least once.

For a random walk on a graph, thecover timeis defined
as follows [1, 17]:

Definition 4. (Cover Time) Given a graphG, letTcover(u)
be the expected length of a random walk that starts at node
u and visits every node inG at least once. Thecover time
ofG is defined by

Tcover(G) = max
u∈G

Tcover(u). (7)

For a simple random walk on a random geometric graph,
the following result bounds the cover time [3].

Lemma 5 (Avin and Ercal [3]). If a random geometric
graph withn nodes is a connected graph with high prob-
ability, then

Tcover(G) = Θ(n logn). (8)

As a result of Lemma 5, we can set a counter for each
source packet and increase the counter by one after each
forward transmission until the counter reaches some thresh-
oldC1n logn to guarantee that the source packet visits each
node in the network at least once. The detailed descriptions
of the initialization, encoding and storage phases (steps)of
LTCDS-I algorithm are given below:

(i) Initialization Phase:
(1) Each nodeu in the network draws a random num-

ber dc(u) according to the distributionΩis(d)
given by (3) (orΩrs(d) given by (6)). Each
source nodesi, i = 1, . . . , k generates a header
for its source packetxsi and puts its ID and a
counter c(xsi) with initial value zero into the
packet header. We set up tokens for initial and up-
date packets. We assume that a token is set to zero
for an initial packet and1 for an update packet.

packetsi = (IDsi , xsi , c(xsi ))

(2) Each source nodesi sends out its own source
packetxsi to another nodeu which is chosen uni-
formly at random among all its neighborsN (si).

(3) The chosen nodeu accepts this sourcepacketsi
with probability dc(u)

k
and updates its storage as

y+u = y−u ⊕ xsi , (9)

wherey−u andy+u denote the packet that the node
u stores before and after the updating, respec-
tively, and⊕ represents XOR operation. No mat-
ter whether the source packet is accepted or not,



the nodeu puts it into its forward queue and set
the counter ofxsi as

c(xsi) = 1. (10)

(ii) Encoding Phase:
(1) In each round, when a nodeu receives at least

one source packet before the current round,u for-
wards the head-of-line (HOL) packetx in its for-
ward queue to one of its neighborv, chosen uni-
formly at random among all its neighborsN (u).

(2) Depending on how many timesx has visitedv, the
nodev makes its decisions:
• If it is the first time thatx visitsv, then the node
v accepts this source packet with probabilityd

k

and updates its storage as

y+v = y−v ⊕ x. (11)

• If x has visitedv before andc(x) < C1n logn
whereC1 is a system parameter, then the node
v accepts this source packet with probability 0.

• No matterx is accepted or not, the nodev
puts it into its forward queue and increases the
counter ofx by one:

c(x) = c(x) + 1. (12)

• If x has visitedv before andc(x) ≥ C1n logn
then the nodev discards the packetx forever.

(iii) Storage Phase:
When a nodeu makes its decisions for all the source
packetsxs1 , xs2 , ..., xsk , i.e., all these packets have
visited the nodeu at least once, the nodeu finishes
its encoding process by declaring the currentyu to be
its storage packet.

The pseudo-code of these steps is given in LTCDS-I Al-
gorithm 1.

The following theorem establishes the code degree dis-
tribution of each storage node induced by the LTCDS-I al-
gorithm.

Theorem 6. When a sensor network withn nodes andk
sources finishes the storage phase of the LTCDS-I algo-
rithm, the code degree distribution of each storage nodeu
is given by

Pr(d̃c(u) = i)

=

k
∑

dc(u)=1

(

k

i

)(

dc(u)

k

)i(

1− dc(u)

k

)k−i

Ω′(dc(u)), (13)

where dc(u) is given in the initialization phase of the
LTCDS-I algorithm from distributionΩ′(d) (i.e.,Ωis(d) or
Ωrs(d)), andd̃c(u) is the code degree of the nodeu result-
ing from the algorithm.

Input : number of nodesn, number of sourcesk,
source packetsxsi , i = 1, 2, ..., k and a
positive constantC1

Output : storage packetsyi, i = 1, 2, ..., n
foreachnodeu = 1 : n do

Generatedc(u) according toΩis(d) (orΩrs(d));
end
foreachsource nodesi, i = 1 : k do

Generate header ofxsi andtoken = 0;
c(xsi ) = 0;
Chooseu ∈ N (si) uniformly at random, sendxsi

to u;
coin = rand(1);
if coin≤ dc(u)

k
then yu = yu ⊕ xsi ;

Putxsi into u’s forward queue;
c(xsi ) = c(xsi) + 1;

end
while source packets remainingdo

foreachnodeu receives packets before current
rounddo

Choosev ∈ N (u) uniformly at random;
Send HOL packetxsi in u’s forward queue to
v;
if v receivesxsi for the first timethen

coin = rand(1);
if coin≤ dc(v)

k
then

yv = yv ⊕ xsi ;
Putxsi into v’s forward queue;
c(xsi) = c(xsi ) + 1

end
else ifc(xsi) < C1n logn then

Putxsi into v’s forward queue;
c(xsi) = c(xsi ) + 1;

else
Discardxsi ;

end
end

end

Algorithm 1 : LTCDS-I Algorithm: LT-Codes based Dis-
tributed Storage Algorithm for a wireless sensor network
(WSN) with limited global information, i.e., values ofn
andk are known at every node. It consists of three phases:
initialization, encoding and storage phases. The algorithm
can also be deployed in a WSN after estimating values of
n ank, as shown in LTCDS-II algorithm.

Proof. For each nodeu, dc(u) is drawn from a distribution
Ω′(d) (i.e., Ωis(d) or Ωrs(d)). Given dc(u), the nodeu
accepts each source packet with probabilitydc(u)

k
indepen-

dently of each other anddc(u). Thus, the number of source
packets that the nodeu accepts follows a Binomial distribu-
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Figure 2. Code degree distribution compar-
ing: (a) Ideal Soliton distribution Ωis (given
by (3)) and the resulting degree distribution
from LTCDS-I algorithm (given by (13)). Here
k = 40; (b) Robust Soliton distribution Ωrs

(given by (6)) and the resulting degree distri-
bution from LTCDS-I algorithm (given by (13)).
Here k = 40, c0 = 0.1 and δ = 0.5.

tion with parameterdc(u)
k

. Hence,

Pr(d̃c(u) = i)

=

k
∑

dc(u)=1

Pr(d̃c(u) = i|dc(u))Ω′(dc(u)

=

k
∑

dc(u)=1

(

k

i

)(

dc(u)

k

)i (

1− dc(u)

k

)k−i

Ω′(dc(u)),

and thereafter (13) holds.

Theorem 6 indicates that the code degreed̃c(u) is not the
same asdc(u). In fact, one may achieve the exact desired
code degree distribution by letting all the sensors hold the
received source packets in their temporary buffer until they
collect allk source packets. Then they can randomly choose
dc(u) packets. In this way, the resulting degree distribution
is exactly the same asΩis or Ωrs. However, this requires
that each sensor has enough buffer or memory, which is usu-
ally not practical, especially whenk is large. Therefore, in
LTCDS-I, we assume each sensor has very limited memory
and let them make their decision upon each reception.

Fortunately, from Figure 2, we can see that at the high
degree end, the resulting code degree distribution obtained
by the LTCDS-I algorithm (13) perfectly matches the de-
sired code degree distribution, i.e., either the Ideal Soliton
distributionΩis (3) or the Robust Soliton distributionΩrs

(6). For the resulting degree distribution and the desired de-
gree distributions, the difference only lies at the low degree
end, especially at degree 1 and degree 2. In particular, the
resulting degree distribution has higher probability at de-
gree 1 and lower probability at degree 2 than the desired de-

gree distributions. The fact that higher probability at degree
1 turns out to compensate the lower probability at degree 2
so that the resulting degree distribution has very similar en-
coding and decoding behavior as LT codes using either the
Ideal Soliton distribution or the Robust Soliton distribution.
In our future study, we will provide theoretical analysis and
prove that the degree distribution in 13 is equivalent, but
not the same, as the degree distributed used in LT encod-
ing [12]. Therefore, we have the following theorem, which
can be proved by the same method for Lemma 3, see [12].

Theorem 7. Suppose sensor networks haven nodes andk
sources and the LTCDS-I algorithm uses the Robust Soliton
distributionΩrs. Then, whenn andk are sufficient large,
the k original source packets can be recovered from any
k + O(

√
k ln2(k/δ)) storage nodes with probability1 − δ.

The decoding complexity isO(k ln(k/δ)).

Theorem 7 asserts that whenn and k are sufficiently
large, the performance of the LTCDS-I is similar to LT cod-
ing.

Another main performance metric is the transmission
cost of the algorithm, which is characterized by the total
number of transmissions (the total number of steps ofk ran-
dom walks).

Theorem 8. Denote byT (I)
LTCDS the total number of trans-

missions of the LTCDS-I algorithm, then we have

T
(I)
LTCDS = Θ(kn logn), (14)

wherek is the total number of sources, andn is the total
number of nodes in the network.

Proof. We know that each one ofk source packets is
stooped and discarded if and only if it has been forwarded
for C1n log(n) times, for some constantC1. Then the total
number of transmissions of the LTCDS-I algorithm for allk
packets is a direct consequence and it is given by (14).

4.2 Without any Global Information—
LTCDS–II

In many scenarios, especially when a change in network
topology occurs because of, for example, node mobility or
node failures, the exact values ofn andk may not be avail-
able to all nodes. Therefore, to design a fully distributed
storage algorithm which does not require any global infor-
mation is very important and useful. In this subsection,
we present such an algorithm based on LT codes, called
LTCDS-II. The idea behind this algorithm is to utilize some
features of simple random walks to do inference to obtain
individual estimates ofn andk for each node.

We introduce ofinter-visit timeandinter-packet time[1,
17, 14] as follows:



Definition 9. (Inter-Visit Time) For a random walk on
a graph, theinter-visit time of nodeu, Tvisit(u), is the
amount of time between any two consecutive visits of the
random walk to nodeu. This inter-visit time is also called
return time.

For a simple random walk on random geometric graphs,
the following lemma provides results on the expected inter-
visit time of any node. The proof is straightforward by
following the standard result of stationary distribution of a
simple random walk on graphs and the mean return time for
a Markov chain [1, 17, 14]. For completeness, we provide
the proof in Appendix 6.1.

Lemma 10. For a nodeu with node degreedn(u) in a ran-
dom geometric graph, the mean inter-visit time is given by

E[Tvisit(u)] =
µn

dn(u)
, (15)

whereµ is the mean degree of the graph given by Equa-
tion (2).

From Lemma 10, we can see that if each nodeu can
measure the expected inter-visit timeE[Tvisit(u)], then the
total number of nodesn can be estimated by

n =
dn(u)E[Tvisit(u)]

µ
. (16)

However, the mean degreeµ is a global information and
may be hard to obtain. Thus, we make a further approxima-
tion and let the estimate ofn by the nodeu be

n̂(u) = E[Tvisit(u)]. (17)

Hence, every nodeu computes its own estimate ofn. In
our distributed storage algorithms, each source packet fol-
lows a simple random walk. Since there arek sources, we
havek individual simple random walks in the network. For
a particular random walk, the behavior of the return time is
characterized by Lemma 10. On the other hand, Lemma 12
below provides results on the inter-visit time among allk
random walks, which is called inter-packet time for our al-
gorithm, defined as follows:

Definition 11. (Inter-Packet Time) Fork random walks on
a graph, theinter-packet timeof nodeu, Tpacket(u), is the
amount of time between any two consecutive visits of those
k random walks to nodeu.

For the mean value of inter-packet time, we have the fol-
lowing lemma, for which the proof is given in Appendix 6.2.

Lemma 12. For a nodeu with node degreedn(u) in a ran-
dom geometric graph withk simple random walks, the mean
inter-packet time is given by

E[Tpacket(u)] =
E[Tvisit(u)]

k
=

µn

kdn(u)
, (18)

whereµ is the mean degree of the graph given by(2).

From Lemma 10 and Lemma 12, it is easy to see that for
any nodeu, an estimation ofk can be obtained by

k̂(u) =
E[Tvisit(u)]

E[Tpacket(u)]
. (19)

After obtaining estimates for bothn andk, we can em-
ploy similar techniques used in LTCDS-I to do LT coding
and storage. The detailed descriptions of the initialization,
inference, encoding, and storage phases of LTCDS-II algo-
rithm are given below:

(i) Initialization Phase:
(1) Each source nodesi, i = 1, . . . , k generates a

header for its source packetxsi and puts its ID
and a counterc(xsi ) with initial value zero into
the packet header.

(2) Each source nodesi sends out its own source
packetxsi to one of its neighborsu, chosen uni-
formly at random among all its neighborsN (si).

(3) The nodeu putsxsi into its forward queue and
sets the counter ofxsi as

c(xsi ) = 1. (20)

(ii) Inference Phase:
(1) For each nodeu, supposexs(u)1 is the first source

packet that visitsu, and denote byt(j)
s(u)1

the time
whenxs(u)1 has itsj-th visit to the nodeu. Mean-
while, each nodeu also maintains a record of
visiting time for each other source packetxs(u)i

that visited it. Lett(j)
s(u)i

be the time when source
packetxs(u)i has itsj-th visit to the nodeu. After
xs(u)1 visiting the nodeu C2 times, whereC2 is
system parameter which is a positive constant, the
nodeu stops this monitoring and recoding proce-
dure. Denote byk(u) the number of source pack-
ets that have visited at least once upon that time.

(2) For each nodeu, let J(s(u)i) be the number of
visits of source packetxs(u)i to the nodeu and let

Ts(u)i =
1

J(s(u)i)

J(s(u)i)
∑

j=1

t
(j+1)
s(u)i

− t
(j)
s(u)i

(21)

=
1

J(s(u)i)
(t

(J(s(u)i))
s(u)i

− t
(1)
s(u)i

). (22)

Then, the average inter-visit time for nodeu is
given by

T̄visit(u) =
1

k(u)

k(u)
∑

i=1

Ts(u)i . (23)

Let Jmin = mins(u)i{t
(1)
s(u)i

} and Jmax =

maxs(u)i{t
(J(s(u)i))
s(u)i

}, then the inter-packet time



is given by

T̄packet(u) =
Jmin − Jmax

∑

s(u)i
J(s(u)i)

. (24)

Then the nodeu can estimate the total number
of nodes in the network and the total number of
sources as

n̂(u) = T̄visit(u), (25)

and

k̂(u) =
T̄visit(u)

T̄packet(u)
. (26)

(3) In this phase, the counterc(xsi ) of each source
packetc(xsi) is incremented by one after each
transmission.

(iii) Encoding Phase:
When a nodeu obtains estimateŝn(u) andk̂(u), it be-
gins encoding phase which is the same as the one in
LTCDS-I Algorithm except that the code degreedc(u)
is drawn from distributionΩis(d) (orΩrs(d)) with re-
placement ofk by k̂(u), and a source packetxsi is
discarded ifc(xsi) ≥ C3n̂(u) log n̂(u), whereC3 is a
system parameter which is a positive constant.

(iv) Storage Phase:
When a nodeu has made its decisions for̂k source
packets, it finishes its encoding process andyu be-
comes the storage packet ofu.

The total number of transmissions (the total number of
steps ofk random walks) in the LTCDS-II algorithm has
the same order as LTCDS-I.

Theorem 13. Denote byT (II)
LTCDS the total number of

transmissions of the LTCDS-II algorithm, then we have

T
(II)
LTCDS = Θ(kn logn), (27)

wherek is the total number of sources, andn is the total
number of nodes in the network.

Proof. In the interference phase of the LTCDS-II algorithm,
the total number of transmissions is upper boundedC′n for
some constantsC′ > 0. That is because each node needs
to receive the first visit source packet forC2 times, and by
Lemma 10, the mean inter-visit time isΘ(n).

In the decoding phase, the same as in the LTCDS-I al-
gorithm, in order to guarantee that each source packet visits
all the nodes at least once, the number of steps of the sim-
ple random walk isΘ(n logn). In other words, each source
packet is stopped and discarded if and only if the counter
reaches the thresholdC3n log(n) for some system parame-
terC3. Therefore, we have (27).

4.3 Updating Data

Now, we turn our attention to data updating after all stor-
age nodes saved their valuesy1, y2, . . . , yn, but a sensor
node, saysi, wants to update its value to the appropriate
set of storage nodes in the network. The following updat-
ing algorithm applies for both LTCDS-I and LTCDS-II. For
simplicity, we illustrate the idea with LTCDS-I.

Assume the sensor node prepared a packet with its ID,
old dataxsi , new datax′

si
along with a time-to-live param-

eterc(si) initialized to zero. We will use also a simple ran-
dom walk for data update.

packetsi = (IDsi , xsi ⊕ x′

si
, c(si)). (28)

If we assume that the storage nodes keep ID’s of the ac-
cepted packets, then the problem becomes simple. We just
run a random walk and check for the coming packet’sID.
Assume the nodeu keeps track of allID’s of its accepted
packets. Thenu accepts the updated message ifID of the
coming packet is already included in theu’s ID list. Oth-
erwiseu forwards the packet incrementing the time-to-live
counter. If this counter reaches the threshold value, then the
packet will be discarded.

The following steps describe the update scenario:

(i) Preparation Phase:
The nodesi prepares its new packet with the new and
old data along with its ID and counter. Also,si add an
update countertoken initialized at1 for the first up-
dated packet. So, we assume that the following steps
happen whentoken is set to1.

packetsi = (IDsi , xsi ⊕ x′

si
, c(si)). (29)

si chooses at random a neighbor nodeu, and sends its
packetsi .

(ii) Encoding Phase:
The nodeu checks if thepacketsi is an update or first-
time packet. If it is first-time packet it will accept, for-
ward, or discard it as shown in LTCDS-I algorithm 1.
If packetsi is an updated packet, then the nodeu will
check if IDsi is already included in its accepted list.
If yes, then it will update its valueyu as follows.

y+u = y−u ⊕ xsi ⊕ x′

si
. (30)

If no, it will add this updated packet into its forward
queue with incrementing the counter

c(x′

si
) = c(x′

si
) + 1. (31)

Thepacketsi will be discarded ifc(x′

si
) ≥ C1n logn

whereC1 is a system parameter. In this case, we need
C1 to be large enough, so all old dataxsi will be up-
dated to the new datax′

si
.



(iii) Storage Phase:
If all nodes are done with updating their valuesyi.
One can run the decoding phase to retrieve the orig-
inal and update information.

Now, since we run only one simple random walk for each
update, ifh is the number of nodes updating their values,
then we have the following result.

Lemma 14. The total number of transmissions needed for
the update process is bounded byΘ(hn logn).

5 Performance Evaluation

In this section, we study performance of the proposed
LTCDS-I and LTCDS-II algorithms for distributed storage
in wireless sensor networks through simulation. The main
performance metric we investigate is thesuccessful decod-
ing probabilityversus thedecoding ratio.

Definition 15. (Decoding Ratio)Decoding ratioη is the ra-
tio between the number of queried nodesh and the number
of sourcesk, i.e.,

η =
h

k
. (32)

Definition 16. (Successful Decoding Probability)Success-
ful decoding probabilityPs is the probability that thek
source packets are all recovered from theh querying nodes.

In our simulation,Ps is evaluated as follows. Suppose
the network hasn nodes andk sources, and we queryh
nodes. There are

(

n
h

)

ways to choose suchh nodes, and we
pick one tenth of these choices uniformly at random:

M =
1

10

(

n

h

)

=
n!

10 · h!(n− h)!
. (33)

LetMs be the size of the subset theseM choices ofh query
nodes from which thek source packets can be recovered.
Then, we evaluate the successful decoding probability as

Ps =
Ms

M
. (34)

Figure 3 shows the decoding performance of LTCDS-I
algorithm with Ideal Soliton distribution with small num-
ber of nodes and sources. The network is deployed in
A = [5, 5]2, and the system parameterC1 is set asC1 = 5.
From the simulation results we can see that when the decod-
ing ratio is above 2, the successful decoding probability is
about99%. Another observation is that when the total num-
ber of nodes increases but the ratio betweenk andn and the
decoding ratioη are kept as constants, the successful decod-
ing probabilityPs increases whenη ≥ 1.5 and decreases
whenη < 1.5. This is also confirmed by the results shown
in Figure 4. In Figure 4, The network has constant density
asλ = 40

9 and the system parameterC1 = 3.
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Figure 3. Decoding performance of LTCDS-
I algorithm with small number of nodes and
sources
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Figure 4. Decoding performance of LTCDS-I
algorithm with medium number of nodes and
sources

In Figure 5, we fix the decoding ratioη as 1.4 and 1.7, re-
spectively, and fix the ratio between the number of sources
and the number of nodes as10%, i.e., k/n = 0.1, and
change the number of nodesn from 500 to 5000. From
the results, it can be seen that asn grows, the successful
decoding probability increases until it reaches some plat-
form which is the successful decoding probability of real
LT codes. This confirms that LTCDS-I algorithm has the
same asymptotical performance as LT codes.

To investigate how the system parameterC1 affects the
decoding performance of the LTCDS-I algorithm, we fix the
decoding ratioη and changeC1. The simulation results are
shown in Figure 6. For the scenario of 1000 nodes and 100
sources,η is set as 1.6, and for the scenario of 500 nodes
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Figure 5. Decoding performance of LTCDS-I
algorithm with different number of nodes
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Figure 6. Decoding performance of LTCDS-I
algorithm with different system parameter C1

and 50 sources,η is set as 1.8. The code degree distribution
is also the Ideal Soliton distribution, and the network is de-
ployed inA = [15, 15]2. It can be seen that whenC1 ≥ 3,
Ps keeps almost like a constant, which indicates that after
3n logn steps, almost all source packets visit each node at
least once.

Figure 7 compares the decoding performance of LTCDS-
II and LTCDS-I with Ideal Soliton distribution with small
number of nodes and sources. As in Figure 3, the network
is deployed inA = [5, 5]2, and the system parameter is set
asC3 = 10. To guarantee each node obtain accurate esti-
mations ofn andk, we setC2 = 50. It can be seen that
the decoding performance of the LTCDS-II algorithm is a
little bit worse than the LTCDS-I algorithm when decoding
ratio η is small, and almost the same whenη is large. Fig-
ure 8 compares the decoding performance of LTCDS-II and
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Figure 7. Decoding performance of LTCDS-
II algorithm with small number of nodes and
sources
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Figure 8. Decoding performance of LTCDS-II
algorithm with medium number of nodes and
sources

LTCDS-I with Ideal Soliton distribution with medium num-
ber of nodes and sources, where the network has constant
density asλ = 40

9 and the system parameterC3 = 20.
We observe different phenomena. The decoding perfor-
mance of the LTCDS-II algorithm is a little bit better than
the LTCDS-I algorithm when decoding ratioη is small, and
almost the same whenη is large. That is because for the
simulation in Figure 8, we setC3 = 20 which is larger than
C3 = 10 set for the simulation in Figure 6. The larger value
of C3 guarantees that each node has the chance to accept
each source packet, which results in a more uniformly dis-
tribution.

Figure 9–Figure 10 shows the histogram of the estima-
tion results ofn andk of each node for three scenarios: Fig-
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Figure 9. Estimation results in LTCDS-II algo-
rithm with n = 200 nodes and k = 20 sources:
(a) estimations of n; (b) estimations of k.
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Figure 10. Estimation results in LTCDS-II al-
gorithm with n = 1000 nodes and k = 100
sources: (a) estimations of n; (b) estimations
of k.

ure 9 shows the results for 200 nodes and 20 sources; and
Figure 10 shows the results for 1000 nodes and 100 sources.
In the first two scenarios, we setC2 = 50. From the results
we can see that, the estimations ofk are more accurate and
concentrated than the estimations ofn. This is because the
estimation ofk only depends on the ratio between the ex-
pected inter-visit time and the expected inter-packet time,
which is independent of the mean degreeµ and the node
degreedn(u). On the other hand, the estimation ofn is ac-
tually depends onµ anddn(u). However, in the LTCDS-II
algorithm, each node approximatesµ as its own node de-
greedn(u), which causes the deviation of the estimations
of n.

To investigate how the system parameterC2 affects the
decoding performance of the LTCDS-II algorithm, we fix
the decoding ratioη andC3, and changeC2. The simula-
tion results are shown in Figure 11. From the simulation
results, we can see that whenC2 is chosen to be small, the
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Figure 11. Decoding performance of LTCDS-II
algorithm with different system parameter C2

performance of the LTCDS-II algorithm is very poor. This
is due to the inaccurate estimations ofk andn of each node.
WhenC2 is large, for example, whenC2 ≥ 30, the perfor-
mance is almost the same.

6 Conclusion

In this paper, we studied a model for large-scale wireless
sensor networks, where the network nodes have low CPU
power and limited storage. We proposed two new decen-
tralized algorithms that utilize Fountain codes and random
walks to distribute information sensed byk sensing source
nodes ton storage nodes. These algorithms are simpler,
more robust, and less constrained in comparison to previ-
ous solutions that require knowledge of network topology,
maximum degree of a node, or knowing values ofn and
k [4, 6, 9, 10, 11]. We computed the computational encod-
ing and decoding complexity of these algorithms and simu-
lated their performance with small and large numbers ofk
andn nodes. We showed that a node can successfully esti-
mate the number of sources and total number of nodes if it
can only compute theinter-visit timeandinter-packet time.

Our future work will include Raptor codes based dis-
tributed networked storage algorithms for sensor networks.
We also plan to provide theoretical results and proofs for
the results shown in this paper, where the limited space is
not an issue. Our algorithm for estimating values ofn and
k is promising, we plan to investigate other network models
where this algorithm is beneficial and can be utilized.
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7 Appendix

7.1 Proof of Lemma 10

Proof. For a simple random walk on an undirected graph
G = (V,E), the stationary distribution is given by [1, 17,
14]

p(u) =
dn(u)

2|E| . (35)

On the other hand, for a reversible Markov chain, the
expected return time for a statei is given by [1, 17, 14]

E[Treturn(i)] =
1

π(i)
, (36)

whereπ(i) is the stationary distribution of statei.
From (35) and (36), we have for a simple random on a

graph, the expected inter-visit time of nodeu is

E[Tvisit(u)] =
2|E|
dn(u)

=
µn

dn(u)
, (37)

whereµ is the mean degree of the graph.

7.2 Proof of Lemma 12

Proof. For a given nodeu andk simple random walks, each
simple random walk has expected inter-visit timeµn

dn(u)
. We

now view this process from another perspective: we assume
there arek nodes{v1, ..., vk} uniformly distributed in the
network and an agent from nodeu follows a simple ran-
dom walk. Then the expected inter-visit time for this agent
to visit any particularvi is the same as µn

dn(u)
. However,

the expected inter-visit time for any two nodesvi andvj is
1
k

µn
dn(u)

, which gives the expected inter-packet time.
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