arxiv:0902.1278v1 [cs.IT] 8 Feb 2009

Fountain Codes Based Distributed Storage Algorithms for Lage-scale
Wireless Sensor Networks

Salah A. Aly Zhenning Kong Emina Soljanin
Dept. of Computer Science Dept. of Electrical Engineering Bell Laboratories
Texas A&M University Yale University Alcatel-Lucent
College Station, TX 77843 New Haven, CT 06520 Murray Hill, NJ 07974
salah@cs.tamu.edu zhenning.kong@yale.edu emina@]Ilucent.com
Abstract isolated, hard to reach areas, where human involvement is

limited. Consequently, data acquired by sensors may have

We consider large-scale networks withnodes, out of short lifetime, and any processing on it within the network
whichk are in possession, (e.g., have sensed or collected inshould have low complexity and power consumptlon [18].
some other way} information packets. In the scenariosin e consider a large-scale wireless sensor networks with
which network nodes are vulnerable because of, for exam-;, sensors. Among thenk < n sensors have collected
ple, limited energy or a hostile environment, it is desigabl (sensed) some information. Since sensors are often short-
to disseminate the acquired information throughout the net jived because of limited energy or hostile environment it i
work so that each of the nodes stores one (possibly coded) desirable to disseminate the acquired information threugh
packet and the originak source packets can be recovered oyt the network so that each of therodes stores one (pos-
later in & computationally simple way from aty + €)k sibly coded) packet and the originalsource packets can
nodes for some smadl> 0. be recovered in a computationally simple way from any

We developed two distributed algorithms for solving (1 4 ¢)k of nodes for some small > 0. Here, the sen-

this problem based on simple random walks and Fountain sprs do not know locations of each other, and they do not
codes. Unlike all previously developed schemes, our solu-maintain any routing tables.

tion is truly distributed, that is, nodes do not knaw k

or connectivity in the network, except in their own neigh-

borhoods, and they do not maintain any routing tables. In

the first algorithm, all the sensors have the knowledge of
n and k. In the second algorithm, each sensor estimates
these parameters through the random walk dissemination.
We present analysis of the communication/transmission and?
encoding/decoding complexity of these two algorithms, and
provide extensive simulation results as fen

Various solutions to the centralized version of this prob-
lem have been proposed, and are based on well known
coding schemes such as Fountain codégs [6] or MDS
codes [[16]. To distribute the information from multiple
sources throughout the network so that each node stores

coded packet as if obtained by centralized LT (Luby
ransform) coding([12], Liret al. [11] proposed a solu-
tion that uses random walks with traps. To achieve the de-
sired code degree distribution, they employed the Metropo-
lis algorithm to specify transition probabilities of thenra
dom walks. In this way, the origin&l source packets are
1 Introduction encoded by LT codes and the decoding process can be done
by querying any(1+¢)k arbitrary sensors. Because of prop-

Wireless sensor networks consist of small devices (sen-erties of LT codes, the encoding and decoding complexity
sors) with limited resources (e.g., low CPU power, small are linear and therefore have low energy consumption.
bandwidth, limited battery and memory). They can be Inthe methods of[11], the knowledge of the total num-
deployed to monitor objects, measure temperature, detecber of sensora and sources is required for calculating the
fires, and other disaster phenomena. They are often used imumber of random walks that each source needs to initiate

and for calculating the probability of trapping at each sen-
1This work was accomplished while S.A.A and Z.K. were spegain

summer research internship at Bell Labs & Alcatel-Lucentridy Hill, sor. Another type Of. gIObaI mfor.matlon’ namely' the. maxi-
N.J., 2007, and it was submitted as US patenin [2]. They diilsé to mum node degrge (i.e., the maximum number of ne|ghbo-rs)
thank Bell Labs & Alcatel-Lucent staff members for their itality. in the network, is also required to perform the Metropolis

http://arxiv.org/abs/0902.1278v1

algorithm. However, for a large-scale sensor network, suchlyzed techniques to increapersistenc®f sensed data in a
global information may not be easy to obtain by each indi- random wireless sensor network, and proposed two decen-
vidual sensor, especially when there is possibility of gen tralized algorithms using Fountain codes to guarantee the
in topology. Moreover, the algorithms proposed(inl[11] as- persistence and reliability of cached data on unreliabie se
sume that each sensor encodes only after receiving enougkors. They used random walks to disseminate data from
source packets. This requires each sensor to maintain anultiple sensors (sources) to the whole network. Based on
large enough temporary memory buffer, which may not be the knowledge of the total number of sensoe@nd sources
practical in real sensor networks. k, each source calculates the number of random walks it
In this paper, we propose two new algorithms to solve needs to initiate, and each sensor calculates the number of
the distributed storage problem in large-scale sensor netsource packets it needs to trap. In order to achieve some de-
works. We refer to these algorithms as LT-Codes basedsired packet distribution, the transition probabilitiégan-
Distributed Storage-l (LTCDS-I) and LT-Codes based Dis- dom walks are specified by the well known Metropolis al-
tributed Storage-Il (LTCDS-II). Both algorithms use sim- gorithm [11].
ple random walks without trapping to disseminate source
packets. In contrast to the methodslin/[11], both algorithms
demand little global information and memory at each sen-
sor. In LTCDS-I, only the values of andk are needed,
whereas the maximum node degree, which is more difficult

Dimakisel al. in [4} 6] proposed a decentralized imple-
mentation of Fountain codes that uses geographic routing,
where every node has to know its location. The motivation
for using Fountain codes is their low decoding complexity.
to obtain, is not required. In LTCDS-II, no sensor needs to Also, one dpes not know in advance the degrees of the out-

put nodes in this type of codes. The authors proposed a

know any 9'°b"?" information (that is, knowing andk 'S randomized algorithm that constructs Fountain codes over a
no longer required). Instead, sensors can obtain good es- .

timates for those parameters by using some properties o . 3
P y 9 prop and local randomized decisions. Fast random walks are

random walks. Moreover, in both algorithms, instead of . : .
. : used to disseminate source data to the storage nodes in the
waiting until all the necessary source packets are collecte network

to do encoding, each sensor makes decisions and performs
encoding online upon each reception of resource packets. Kamarael al. in [9,[8] proposed a novel technique called

This mechanism reduces the memory demand significantly.growth codego increase dataersistencen wireless sen-

The main contributions of this paper are as follows: sor networks, namely, increase the amount of information

(i) We propose two new algorithms (LTCDS-I and that can be recovered at the sink. Growth coding is a lin-

LTCDS-II) for distributed storage in large-scale sen- ear technique in which information is encoded in an online

sor networks, using simple random walks and LT distributed way with increasing degree of a storage node.
codes. These algorithms are simpler, more robust, andkamarael al. showed thagrowth codesan increase the

less constrained in comparison to previous solutions. amount of information that can be recovered at any stor-

(i) We present complexity analysis of both algorithms, age node at any time period whenever there is a failure in

including transmission, encoding, and decoding com- some other nodes. They did not use robust or soliton dis-

plexity. tributions, but proposed a new distribution depending on
(iii) We evaluate and illustrate the performance of both al- the network condition to determine degrees of the storage
gorithms by extensive simulation. nodes. The motivation for their work was that i) Positions

This paper is organized as follows. We start with a short and topology of the nodes are not known. ii) They assume
survey of the related work in Secti@h 2. In Sectidn 3, we a round time of node updates, meaning with increasing the
introduce the network model and present Luby Transform time ¢, degree of a symbol is increased. This is the idea be-
(LT) codes. In Sectiohl4, we propose two LT codes basedhind growth degrees. iii) They provide practical implemen-
distributed storage algorithms called LTCDS-1 and LTCDS- tations of growth codes and compare its performance with
II. We then present simulation studies and provide perfor- other codes. iv) The decoding part is done by querying an
mance analysis of the proposed algorithms in Se€fion 5, andarbitrary sink, if the original sensed data has been caltect
concluded in Sectidn 6. correctly then finish, otherwise query another sink node.

Lun el. al. in [13] proposed two decentralized algo-
2 Related Work rithms to compute the minimum-cost subgraphs for estab-
lishing multicast connections using network coding. Also,
The most related work to one presented hergis[[1i1, 10].they extended their work to the problem of minimum-
Lin el al. studied the question “how to retrieve historical energy multicast in wireless networks as well as they stud-
data that the sensors have gathered even if some sensoisd directed point-to-point multicast and evaluated theeca
are destroyed or disappeared from the network?” They ana-of elastic rate demand.

3 Wireless Sensor Networks and Fountain
Codes

In this section, we introduce our network model and pro-
vide background of Fountain codes and, in particular, one
important class of Fountain codes—LT (Luby Transform)

codes[[12].

Figure 1. The encoding operations of Foun-

3.1 Network Model tain codes: each output is obtained by XOR-
ing d source blocks chosen uniformly and in-
Our wireless sensor network consistswafiodes that are dependently at random from & source inputs,
uniformly distributed at random in a regioh= [L, L]? for where d is drawn according to a probability
L > 1. Thedensityof the network is given by distribution Q(d).
n n
Rz W

where |A] is the two-dimensional Lebesgue measure (or wherelV| is the total number of nodes &.

area) of A. Each sensor node has an identical communi-
cation radiugl; thus any two nodes can communicate with
each other if and only if their distance is less than or equal t
1. This model is known as random geometric graphs[7, 15].
Among thesen nodes, there arg source nodes that have
information to be disseminated throughout the network for

storage. Thesé nodes are uniformly and independently g)
distributed at random among thenodes. Usually, the frac- by XORing d randomly and independently chosen source

tion of source nodes, i.e, is not very large (€.910%. or Iglocks, Whergi i; o_lrawn from_a specially designed Qistribu-
20%) " ylarge (e.g10% tion Q(d). This is illustrated in FigurE=3l2. Fountain codes

Note that, although we assume the nodes are uniformlyare rateless, and one of their main advantage is that the en-
distributed at random in a region, our algorithms and result coding operations can be performed online. The encoding

do not rely on this assumption. In fact, they can be applied cos§ is the expected number of operation_sufficienF for gen-

for any network topology, for example, regular grids. erating an output symbo_l, and th_e_ decoding cost is the ex-
We assume that no node has knowledge about the |oPected number of operations suff|C|ent_t0 recoverktimput

cations of other nodes and no routing table is maintained;bIOCkS' Another advantage of FOU'?ta'” COd.eS’ as oppoged

consequently, the algorithm proposedIin [5] cannot be ap-to purely random codes is that thelr.decodlng.cor_nplexny

plied. Moreover, we assume that each node has limited orcan be m_ade low by appropriate chopeﬂ(ﬁi), with I{ttle

no knowledge of global information, but know its neigh- sacrifice in performance. The decoding of Fountain codes

bors. The limited global information refers to the total rum can be done by message passing.

bers of nodes and sources. Any further global informa- Definition 2. (Code Degree) For Fountain codes, the num-
tion, for example the maximal number of neighbors in the ber of source blocks used to generate an encoded oytput
network, is not available. Hence, the algorithms proposedis called the code degree gf and denoted byi.(y). By

in [11,[10] are not applicable. constraction, the code degree distributifiid) is the prob-
ability distribution ofd.(y).

3.2 Fountain Codes

For k source blocks{x1,xo,...,x;} and a probabil-
ity distribution Q(d) with 1 < d < k, a Fountain code
with parametergk, 2) is a potentially limitless stream of
output blocks{y1, y2,...}. Each output block is obtained

Definition 1. (Node Degree) Consider a grapydy =
(V,E), whereV and E denote the set of nodes and links,
respectively. Givem,v € V, we sayu andv are adjacent

(or u is adjacent tov, and vice versa) if there exists a link .
betweenu and v, i.e., (u,v) € E. In this case, we also LT (Luby Transform) codes are a special class of Foun-

say thatu andv are neighbors Denote by\(u) the set of tain codes which usedsleal Solitonor Robust Solitordis-
neighbors of a node. The number of neighbors of a node tributions [12]. The Ideal Soliton distributiaf;(d) for

3.3 LT Codes

uis called thenode degreefu, and denoted by, (u), i.e., ~ Source blocks s given by
IV(u)] = d,(u). Themean degreef a graphG is then 1 .
et IRCR TR L ®
1 is(1) =Pr(d =1) =
= mzdn(u), 2) L i=2,3,..,k.

Let R = coVkIn(k/6), wherec, is a suitable constant and
0 < § < 1. The Robust Soliton distribution fdr source
blocks is defined as follows. Define

R k
%, Z_l’.'.’ﬁ_l
. RIn(R/)) k
== B = — 4
(i) R @
k
0 =—=+1,...k
) 1 R +)))
and let
k
B = 7(i) + Qs(i). (5)
i=1
The Robust Soliton distribution is given by
Qi) = T F X oo Z1 0k (6)

B

The following result provides the performance of the LT
codes with Robust Soliton distribution 12, Theorems 12
and 13].

Lemma 3 (Luby [12]). For LT codes with Robust Soliton
distribution, % original source blocks can be recovered from
anyk + O(v/kIn?(k/4)) encoded output blocks with prob-
ability 1 — §. Both encoding and decoding complexity is
O(k1n(k/9)).

4 LT-Codes Based Distributed Storage
(LTCDS) Algorithms

In this section, we present two LT-Codes based Dis-
tributed Storage (LTCDS) algorithms. In both algorithms,

the source packets are disseminated throughout the network

by a simple random walk. In the first one, called LTCDS-

| algorithm, we assume that each node in the network has

limited the global information, that is, knows the total num
ber of source% and the total number of nodes Unlike

the scheme proposed in in[10], our algorithm does not re-
quire the nodes to know the maximum degree of the graph,

which is much harder to obtain th&nandn». The second
algorithm, called LTCDS-II, is a fully distributed algdhin

which does not require nodes to know any global informa-
tion. The price we pay for this benefit is extra transmissions

of the source packets to obtain estimatesfandk.

4.1 With Limited Global Information—
LTCDS-I

In LTCDS-I, we assume that each node in the network

knows the values ok andn. We use simple random

walks [1,17] for each source to disseminate its information

to the whole network. At each round, each nadthat has

packets to transmit chooses one no@mong its neighbors
uniformly independently at random, and sends the packet
to the nodev. In order to avoid local-cluster effect—each
source packetis trapped most likely by its neighbor nodes—
we let each node accept a source packet equiprobably. To
achieve this, we also need each source packet to visit each
node in the network at least once.

For a random walk on a graph, teever timeis defined

as follows [1[17]:

Definition 4. (Cover Time) Given a grap@¥, let Troper ()

be the expected length of a random walk that starts at node
u and visits every node i at least once. Theover time
of G is defined by

Tcover (G) - quleac);(Tcouer (u) . (7)

For a simple random walk on a random geometric graph,
the following result bounds the cover tinié [3].

Lemma 5 (Avin and Ercal [[3]) If a random geometric
graph withn nodes is a connected graph with high prob-
ability, then

Teover(G) = ©(nlogn). (8)

As a result of Lemmal5, we can set a counter for each
source packet and increase the counter by one after each
forward transmission until the counter reaches some thresh
old Cinlog n to guarantee that the source packet visits each
node in the network at least once. The detailed descriptions
of the initialization, encoding and storage phases (steps)
LTCDS-I algorithm are given below:

() Initialization Phase:

(1) Each node: in the network draws a random num-
ber d.(u) according to the distributiorf;s(d)
given by [3) (or,..(d) given by [6)). Each
source node;, i = 1,...,k generates a header
for its source packet,, and puts its ID and a
counterc(xg,) with initial value zero into the
packet header. We set up tokens for initial and up-
date packets. We assume that a token is set to zero
for an initial packet and for an update packet.

packets, = (IDs,, s, c(s,))

(2) Each source node; sends out its own source
packetr,, to another node which is chosen uni-
formly at random among all its neighbok§(s;).

(3) The chosen node accepts this sourcguckets,

with probability@ and updates its storage as
9

wherey,, andy," denote the packet that the node
u stores before and after the updating, respec-
tively, and® represents XOR operation. No mat-
ter whether the source packet is accepted or not,

y;r =Yy DTy,

the nodeu puts it into its forward queue and set
the counter of,, as

c(zs,;) = 1. (20)
(i) Encoding Phase:

(1) In each round, when a nodereceives at least
one source packet before the current rounfiyr-
wards the head-of-line (HOL) packetin its for-
ward queue to one of its neighboyr chosen uni-
formly at random among all its neighbok§(u).
Depending on how many timeshas visited, the
nodev makes its decisions:

e [fitis the firsttime thate visitsv, then the node
v accepts this source packet with probabi%ty
and updates its storage as

(2)

vl =y, ®w. (11)

If = has visitedv before and:(z) < Cinlogn
where(C is a system parameter, then the node
v accepts this source packet with probability O.
No matterz is accepted or not, the node
puts it into its forward queue and increases the
counter ofx: by one:

c(z) = c(x) + 1. (12)

e If z has visitedv before and:(z) > Cinlogn
then the node discards the packatforever.

(iii) Storage Phase:
When a node: makes its decisions for all the source
packetsz,,, zs,, ..., Ts,, I.€., all these packets have
visited the node. at least once, the node finishes
its encoding process by declaring the currgnto be
its storage packet.
The pseudo-code of these steps is given in LTCDS-I Al-
gorithm[1.
The following theorem establishes the code degree dis-
tribution of each storage node induced by the LTCDS-I al-
gorithm.

Theorem 6. When a sensor network with nodes andk
sources finishes the storage phase of the LTCDS-I algo-
rithm, the code degree distribution of each storage node

is given by

where d.(u) is given in the initialization phase of the
LTCDS-I algorithm from distributio?’ (d) (i.e., 2;s(d) or
Q,(d)), andd.(u) is the code degree of the nodeesult-
ing from the algorithm.

Pr(d,(u) = i)
k k—i
(

" (4, (u)), (13)

(-2

k

de(u)=

Input: number of nodes, number of sourcek,
source packets,,,i = 1,2, ...,k and a
positive constant’;

Output: storage packetg,i =1,2,...,n

foreachnodeu = 1:n do

| Generatel.(u) according ta2;5(d) (or Q,.5(d));
end

foreachsource node;,i =1 : k do
Generate header af,, andtoken = 0;

c(zs,) = 0;

Chooseu € N(s;) uniformly at random, send,
to u;

coin = rarllid(l);

if coin < % then y, =y @ zs,;

Putz,, into w’s forward queue;
c(as,) = clas,) +1;
end
while source packets remainirap
foreachnodeu receives packets before current
rounddo
Choosev € N (u) uniformly at random;
Send HOL packet,, in u's forward queue to
v,
if v receivesey, for the first timethen
coin =rand(1);
if coin < dCT(”) then
Yo = Yo D Ts,;
Putz,, into v’s forward queue;
c(xs,) = cws,) +1
end
Ise ifc(x,,) < Cinlogn then
Putz,, intov’s forward queue;
C(Isi) = C(Isi) + 1
else
| Discardzs,;
end
end

end

Algorithm 1: LTCDS-I Algorithm: LT-Codes based Dis-
tributed Storage Algorithm for a wireless sensor network
(WSN) with limited global information, i.e., values of
andk are known at every node. It consists of three phases:
initialization, encoding and storage phases. The algorith
can also be deployed in a WSN after estimating values of
n ank, as shown in LTCDS-II algorithm.

e

Proof. For each node, d.(u) is drawn from a distribution
V' (d) (i.e., Qis(d) or Q,.5(d)). Givend.(u), the nodeu
accepts each source packet with probabﬁ@t) indepen-
dently of each other and.(u). Thus, the number of source
packets that the nodeaccepts follows a Binomial distribu-

gree distributions. The fact that higher probability atmdeg

1 turns out to compensate the lower probability at degree 2
so that the resulting degree distribution has very simitar e
coding and decoding behavior as LT codes using either the
” Ideal Soliton distribution or the Robust Soliton distriiout.

o2 o2 In our future study, we will provide theoretical analysislan

o o prove that the degree distribution[in]13 is equivalent, but
not the same, as the degree distributed used in LT encod-
ing [12]. Therefore, we have the following theorem, which

@ (b) can be proved by the same method for Leniina 3,[sée [12].
Figure 2. Code degree distribution compar- Theorem 7. Suppose sensor networks havaodes and:
ing: (a) Ideal Soliton distribution €, (given sources and the LTCDS-I algorithm uses the Robust Soliton
by @) and the resulting degree distribution distribution 2. Then, whem and k are sufficient large,
from LTCDS-I algorithm (given by (I3)). Here the & original source packets can be recovered from any
k = 40; (b) Robust Soliton distribution ©,, k+ O(Vkn?(k/5)) storage nodes with probability — .
(given by @) and the resulting degree distri- The decoding complexity &(k In(k/9)).

bution from LTCDS-l algorithm (given by (13)).

Theore asserts that whenand £ are sufficientl
Here k = 40, ¢cg = 0.1 and 6 = 0.5. my W umciently

large, the performance of the LTCDS-I is similar to LT cod-

ing.
Another main performance metric is the transmission
tion with parameteii“,(c—“). Hence, cost of the algorithm, which is characterized by the total
. _ number of transmissions (the total number of stepsrain-
Pr(dc(u) = 1) dom walks).
k
= Z Pr(Jc(u) = i|de () (d.(u) Theorem 8. Denote byTL(IT)CDS the total number of trans-
do(w)=1 missions of the LTCDS-I algorithm, then we have
k i k—1i
=y (k) (#) <1 - #) Q' (de(uw)), TR ops = O(knlogn), (14)
1
de(u)=1 wheref is the total number of sources, amdis the total
and thereaftef{13) holds. 0 number of nodes in the network.

Theorenf indicates that the code degtge) is not the Proof. We know that each one of source packets is
same asl.(u). In fact, one may achieve the exact desired stooped and discarded if and only if it has been forwarded
code degree distribution by letting all the sensors hold the for Cinlog(n) times, for some constant;. Then the total
received source packets in their temporary buffer unty the number of transmissions of the LTCDS-I algorithm for/all
collectallk source packets. Then they can randomly choosepackets is a direct consequence and it is giveri Dy (14).
d.(u) packets. In this way, the resulting degree distribution
is exactly the same &3;, or Q,.,. However, this requires 4.2 Without any Global Information—
that each sensor has enough buffer or memory, which is usu- LTCDS-II
ally not practical, especially whéenis large. Therefore, in
LTCDS-I, we assume each sensor has very limited memory In many scenarios, especially when a change in network
and let them make their decision upon each reception. topology occurs because of, for example, node mobility or

Fortunately, from Figurgl2, we can see that at the high node failures, the exact valuesiondk may not be avail-
degree end, the resulting code degree distribution olitaine able to all nodes. Therefore, to design a fully distributed
by the LTCDS-I algorithm[{1I3) perfectly matches the de- storage algorithm which does not require any global infor-
sired code degree distribution, i.e., either the Idealt8oli mation is very important and useful. In this subsection,
distributionQ;, (3) or the Robust Soliton distributiof, we present such an algorithm based on LT codes, called
(6). For the resulting degree distribution and the desieed d LTCDS-II. The idea behind this algorithm is to utilize some
gree distributions, the difference only lies at the low @egr features of simple random walks to do inference to obtain
end, especially at degree 1 and degree 2. In particular, thendividual estimates of. andk for each node.
resulting degree distribution has higher probability at de We introduce ofnter-visit timeandinter-packet timg/],
gree 1 and lower probability at degree 2 than the desired def17,[14] as follows:

Definition 9. (Inter-Visit Time) For a random walk on From Lemma&10 and Lemnhall2, it is easy to see that for
a graph, theinter-visit time of nodew, Ty;sit(u), is the any nodeu, an estimation ok can be obtained by
amount of time between any two consecutive visits of the

random walk to node. This inter-visit time is also called ;};(u) - M

return time ElTpacket (u)]

For a simple random walk on random geometric graphs, ~ After obtaining estimates for both andk, we can em-
the following lemma provides results on the expected inter- ploy similar techniques used in LTCDS-I to do LT coding
visit time of any node. The proof is straightforward by and storage. The detailed descriptions of the initialaati
following the standard result of stationary distributidneo ~ inference, encoding, and storage phases of LTCDS-II algo-
simple random walk on graphs and the mean return time forfithm are given below:

a Markov chain[[lLL_17, 14]. For completeness, we provide (i) Initialization Phase:

(19)

the proofin Appendix 6.1. (1) Each source node;,i = 1,...,k generates a
Lemma 10. For a nodeu with node degreé,, (v) in a ran- header for its source packet, and puts its ID
dom geometric graph, the mean inter-visit time is given by and a counter(x,,) with initial value zero into
un the packet header.
ElTyisi(v)] = ma (15) (2) Each source node; sends out its own source

)) packetz,, to one of its neighbors, chosen uni-
where . is the mean degree of the graph given by Equa- formly at random among all its neighboké(s;).

tion @. (3) The nodeu putsz,, into its forward queue and
From Lemmd_I0, we can see that if each nadean sets the counter af;, as

measure the expected inter-visit tiriT,;s:: (u)], then the

total number of nodes can be estimated by c(ws;) = 1. (20)

_ dp, (W) E[Tyisic(w)] (ii) Inference Phase:

1 (16) (1) For each node, suppose:,,,), is the first source

However, the mean degreeis a global information and packet that visits:, and denote bysjzl)l the time
may be hard to obtain. Thus, we make a further approxima- whenz,), has itsj-th visit to the node:. Mean-
tion and let the estimate af by the node: be while, each node: also maintains a record of

. visiting time for each other source packet,,),

A(u) = ElTvisi (u)] (17) that visited it. Lett() be the time when source
Hence, every node computes its own estimate of In packetr,(,, has |th th visit to the node:. After
our distributed storage algorithms, each source packet fol T4y, Visiting the nodeu Cs times, whereCs is
lows a simple random walk. Since there arsources, we system parameter which is a positive constant, the
havef individual simple random walks in the network. For nodeu stops this monitoring and recoding proce-
a particular random walk, the behavior of the return time is dure. Denote by:(u) the number of source pack-
characterized by Lemniall0. On the other hand, Lemrha 12 ets that have visited at least once upon that time.
below provides results on the inter-visit time among/all (2) For each node, let J(s(u);) be the number of
random walks, which is called inter-packet time for our al- visits of source packet,,, to the node: and let
gorithm, defined as follows: st
Definition 11. (Inter-Packet Time) Fok random walks on Ty, = 1 Z LD (21)
a graph, theinter-packet timef nodeu, Tyacker (1), is the b I o s(wi S(“
amount of time between any two consecutive visits of those 1
k random walks to node. = Ji(i (8(u)s)) til)). (22)

(s(u);) o0

For the mean value of inter-packet time, we have the fol-

lowing lemma, for which the proofis givenin Appendix 6.2. Then, the average inter-visit time for nodeis

given by
Lemma 12. For a nodeu with node degreéd,, (u) in a ran-
dom geometric graph with simple random walks, the mean _ 1)
inter-packet time is given by Tyisit(u o) Ts(u), - (23)
1=1
_ ETyisit(u)] pn
E[Tpacket(u)] - L - kdn(u)’ (18) Let szn _ mlns(u)T{titl)l} and Jmaz

wherey is the mean degree of the graph given(By maxs(u)i{ti‘(]iif“)”)}, then the inter-packet time

is given by

Jmin - Jmaz

Thacket(u) = m B

Then the node: can estimate the total number
of nodes in the network and the total number of

sources as -
ﬁ(u) — Tvisit (u)a (25)
and Lo (1)
7 Tm’sit U
k(u) = =—————. 26
(U) Tpacket (u) ()

(3) In this phase, the countefz,,) of each source
packetc(xs,) is incremented by one after each
transmission.

(i) Encoding Phase: R
When a node: obtains estimate®(u) andk(u), it be-

4.3 Updating Data

Now, we turn our attention to data updating after all stor-
age nodes saved their valugs y», .. ., y,, but a sensor
node, says;, wants to update its value to the appropriate
set of storage nodes in the network. The following updat-
ing algorithm applies for both LTCDS-1 and LTCDS-II. For
simplicity, we illustrate the idea with LTCDS-I.

Assume the sensor node prepared a packet with its ID,
old datax,, new datar’, along with a time-to-live param-
eterc(s;) initialized to zero. We will use also a simple ran-
dom walk for data update.

packets, = (IDs,, x, ® 7, c(s;)). (28)

If we assume that the storage nodes keep ID’s of the ac-
cepted packets, then the problem becomes simple. We just
run a random walk and check for the coming packéfs
Assume the node keeps track of all D’s of its accepted

gins encoding phase which is the same as the one inPackets. Them accepts the updated messagéiif of the

LTCDS-I Algorithm except that the code degrégu)
is drawn from distributiorf2;; (d) (or £2,-s(d)) with re-
placement of:: by k(u), and a source packet,, is
discarded ifc(zs,) > Csn(u)logn(u), whereCs is a
system parameter which is a positive constant.

(iv) Storage Phase:
When a node: has made its decisions fdr source
packets, it finishes its encoding process apdbe-
comes the storage packetaf

The total number of transmissions (the total number of
steps ofk random walks) in the LTCDS-II algorithm has

the same order as LTCDS-I.

Theorem 13. Denote byTéIT%DS the total number of
transmissions of the LTCDS-II algorithm, then we have

PRt

rreps = O(knlogn), (27)

wherek is the total number of sources, amdis the total
number of nodes in the network.

Proof. Inthe interference phase of the LTCDS-Il algorithm,
the total number of transmissions is upper boun@édfor
some constant§” > 0. That is because each node needs
to receive the first visit source packet f0s times, and by
Lemmd1D, the mean inter-visit time@(n).

In the decoding phase, the same as in the LTCDS-I al-

gorithm, in order to guarantee that each source packesvisit

all the nodes at least once, the number of steps of the sim-

ple random walk i®©(nlogn). In other words, each source

packet is stopped and discarded if and only if the counter

reaches the threshottsn log(n) for some system parame-
ter C3. Therefore, we havé (27). O

coming packet is already included in thés 1D list. Oth-
erwiseu forwards the packet incrementing the time-to-live
counter. If this counter reaches the threshold value, then t
packet will be discarded.

The following steps describe the update scenario:

(i) Preparation Phase:
The nodes; prepares its new packet with the new and
old data along with its ID and counter. Alsg,add an
update countetoken initialized at1 for the first up-
dated packet. So, we assume that the following steps
happen wheroken is set tol.

packets, = (IDs,, x5, ® a7, c(5;)). (29)

s; chooses at random a neighbor nedand sends its
packets, .
(i) Encoding Phase:
The node: checks if thevacket s, is an update or first-
time packet. If it is first-time packet it will accept, for-
ward, or discard it as shown in LTCDS-I algoritfiin 1.
If packet, is an updated packet, then the nadwill
check if I Dy, is already included in its accepted list.
If yes, then it will update its valug, as follows.

(30)

If no, it will add this updated packet into its forward
gueue with incrementing the counter

Y =Yy ©xy, DI

Thepacket,, will be discarded ife(2,) > Cinlogn

where(is a system parameter. In this case, we need
(4 to be large enough, so all old datg will be up-

dated to the new date .

(iii) Storage Phase:
If all nodes are done with updating their valugs
One can run the decoding phase to retrieve the orig-
inal and update information.
Now, since we run only one simple random walk for each
update, ifh is the number of nodes updating their values,
then we have the following result.

Lemma 14. The total number of transmissions needed for
the update process is bounded®ghn logn).

5 Performance Evaluation

In this section, we study performance of the proposed
LTCDS-I and LTCDS-II algorithms for distributed storage
in wireless sensor networks through simulation. The main
performance metric we investigate is theccessful decod-
ing probabilityversus thelecoding ratio

Definition 15. (Decoding Ratiopecoding ratia; is the ra-
tio between the number of queried nodesnd the number

of sources, i.e.,
h
= _. 32
n= g (32)

Definition 16. (Successful Decoding Probabilit@uccess-
ful decoding probabilityP; is the probability that thek
source packets are all recovered from thguerying nodes.

In our simulation,P; is evaluated as follows. Suppose
the network has nodes and: sources, and we query
nodes. There arf!) ways to choose sudhnodes, and we
pick one tenth of these choices uniformly at random:

1 /n n!
M:To(h) =0 R =) (33)

Let M, be the size of the subset thekechoices ofh query
nodes from which thé: source packets can be recovered.
Then, we evaluate the successful decoding probability as

P= =2 (34)

i

o o o
~ @ ©
T T T

o
o
T

Successful Decoding Probability P
[S) <) o s
w S 3
T T

o
)
T

o
B

—&— 100 nodes and 10 sources
—v— 100 nodes and 20 sources
- 200 nodes and 20 sources
- 200 nodes and 40 sources

L
15

L
2 25

Decoding Ratio n

Figure 3. Decoding performance of LTCDS-
| algorithm with small number of nodes and

sources

0.9

0.8

Successful Decoding Probability PS

0.2

0.1

0.7F

0.6

0.5F

0.4

0.3

—&— 200 nodes and 20 sources

—%— 500 nodes and 50 sources

- 1000 nodes and 100 sources
.

L
15

2 25
Decoding Ratio n

Figure 4. Decoding performance of LTCDS-I
algorithm with medium number of nodes and

sources

In Figure®, we fix the decoding ratipas 1.4 and 1.7, re-

Figure[3 shows the decoding performance of LTCDS-I spectively, and fix the ratio between the number of sources
algorithm with Ideal Soliton distribution with small num- and the number of nodes d8%, i.e., k/n = 0.1, and
ber of nodes and sources. The network is deployed inchange the number of nodesfrom 500 to 5000. From
A = [5,5]2, and the system parametér is set ag’; = 5. the results, it can be seen thatragrows, the successful
From the simulation results we can see that when the decoddecoding probability increases until it reaches some plat-
ing ratio is above 2, the successful decoding probability is form which is the successful decoding probability of real
about99%. Another observation is that when the total num- LT codes. This confirms that LTCDS-I algorithm has the
ber of nodes increases but the ratio betweendn andthe ~ same asymptotical performance as LT codes.
decoding ratio) are kept as constants, the successful decod- To investigate how the system parametgraffects the
ing probability P, increases when > 1.5 and decreases decoding performance of the LTCDS-I algorithm, we fix the
whenn < 1.5. This is also confirmed by the results shown decoding ratio; and chang€’;. The simulation results are
in Figure[4. In Figurél4, The network has constant density shown in Figurél. For the scenario of 1000 nodes and 100
as\ = 49—0 and the system parametéy = 3. sourcesy) is set as 1.6, and for the scenario of 500 nodes

s

Successful Decoding Probability P
o o
o o o N
> a3 o
T

o

o

a
T

/7 ‘ —
0.95Y

—&— decoding ratio n=1.4
—— decoding ratio n=1.7

0.5
500

.
1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of nodes n

0.9

0.8

s

Successful Decoding Probability P,

0.7F

0.6

0.5

0.4

0.3

0.2

0.1

—&— LTCDS-I: 100 nodes and 10 sources
—¥— LTCDS-I: 200 nodes and 20 sources
< - LTCDS-II: 100 nodes and 10 sources
+ - LTCDS-II: 200 nodes and 20 sources

15 2
Decoding Ratio n

25

Figure 5. Decoding performance of LTCDS-I

_ : k Figure 7. Decoding performance of LTCDS-
algorithm with different number of nodes

Il algorithm with small number of nodes and
sources

0.9

0.8

s

0.7+

0.6

05

0.4

0.3

Successful Decoding Probability P,

0.2

0.1r

—&— 500 nodes and 50 sources
—<— 1000 nodes and 100 sources
n n n T

L L
0.5 1 15 2 25 3 3.5 4 45 5

System Parameter C1

*o
=]
;

o
3
T

o
o
T

Successful Decoding Probability P
o o o o o
[N w S 3
T T T

(=}

—&— LTCDS-I: 500 nodes and 50 sources
—v— LTCDS-I: 1000 nodes and 100 sources
- LTCDS-II: 500 nodes and 50 sources
- - LTCDS-II: 1000 nodes and 100 sources

L
15

L
2

25

Decoding Ratio n
Figure 6. Decoding performance of LTCDS-I
algorithm with different system parameter ¢, Figure 8. Decoding performance of LTCDS-II
algorithm with medium number of nodes and

sources

and 50 sourceg, is set as 1.8. The code degree distribution

is also the ldeal Soliton distribution, and the network is de

ployed inA = [15,15]%. It can be seen that wheTy > 3, LTCDS-I with Ideal Soliton distribution with medium num-

P, keeps almost like a constant, which indicates that after ber of nodes and sources, where the network has constant

3nlogn steps, almost all source packets visit each node atdensity as\ = 42 and the system paramet€f = 20.

least once. We observe different phenomena. The decoding perfor-
Figure? compares the decoding performance of LTCDS- mance of the LTCDS-II algorithm is a little bit better than

Il and LTCDS-I with Ideal Soliton distribution with small the LTCDS-I algorithm when decoding ratids small, and

number of nodes and sources. As in Figure 3, the networkalmost the same whenis large. That is because for the

is deployed in4 = [5,5]2, and the system parameter is set Simulation in FiguréB, we set; = 20 which is larger than

asCs; = 10. To guarantee each node obtain accurate esti-Cs = 10 set for the simulation in Figure 6. The larger value

mations ofn andk, we setC, = 50. It can be seen that Of C3 guarantees that each node has the chance to accept

the decoding performance of the LTCDS-II algorithm is a €ach source packet, which results in a more uniformly dis-

little bit worse than the LTCDS-I algorithm when decoding tribution.

ration is small, and almost the same wheis large. Fig- Figure[@-Figur€10 shows the histogram of the estima-

ure 8 compares the decoding performance of LTCDS-II andtion results of» andk of each node for three scenarios: Fig-

0 A L L n L . . .
0 50 100 150 200 250 300 350 400 450 500 (] 5 10 15 2 2 E) 3)
Estimation of n

@

Figure 9. Estimation results in LTCDS-II algo-
rithm with n = 200 nodes and k£ = 20 sources:
(a) estimations of n; (b) estimations of k.

150

@

Figure 10. Estimation results in LTCDS-II al-
gorithm with n = 1000 nodes and k£ = 100
sources: (a) estimations of n; (b) estimations
of k.

ure[9 shows the results for 200 nodes and 20 sources; an
Figure 10 shows the results for 1000 nodes and 100 sources)

In the first two scenarios, we s€t = 50. From the results
we can see that, the estimationsiodre more accurate and
concentrated than the estimationswofThis is because the
estimation ofk only depends on the ratio between the ex-
pected inter-visit time and the expected inter-packet time
which is independent of the mean degyeand the node
degreed,, (u). On the other hand, the estimationrofs ac-
tually depends op andd,, (u). However, in the LTCDS-II
algorithm, each node approximatesas its own node de-
greed, (u), which causes the deviation of the estimations
of n.

To investigate how the system parametgraffects the
decoding performance of the LTCDS-II algorithm, we fix
the decoding ratigy and C'5, and chang&’,. The simula-
tion results are shown in Figufell1l. From the simulation
results, we can see that whéh is chosen to be small, the

*o
©

o
3

o
o

o
IS

o
w

Successful Decoding Probability P
o
ol

I
N}

—&— 100 nodes and 10 sources with n=1.5
—v— 100 nodes and 10 sources with n=2.0
- 200 nodes and 20 sources with n=1.5
- - 200 nodes and 20 sources with n=2.0

011

. . .
30 40 50
System Parameter Cz

I
20 60

Figure 11. Decoding performance of LTCDS-II
algorithm with different system parameter Cs

performance of the LTCDS-II algorithm is very poor. This
is due to the inaccurate estimationskaindn of each node.
When(C is large, for example, whefis > 30, the perfor-
mance is almost the same.

6 Conclusion

In this paper, we studied a model for large-scale wireless
sensor networks, where the network nodes have low CPU
power and limited storage. We proposed two new decen-
tralized algorithms that utilize Fountain codes and random
&valks to distribute information sensed bysensing source
odes ton storage nodes. These algorithms are simpler,
more robust, and less constrained in comparison to previ-
ous solutions that require knowledge of network topology,
maximum degree of a node, or knowing valuesnoéand
k [4,16,[9,10[11]. We computed the computational encod-
ing and decoding complexity of these algorithms and simu-
lated their performance with small and large numberk of
andn nodes. We showed that a node can successfully esti-
mate the number of sources and total number of nodes if it
can only compute thimter-visit timeandinter-packet time

Our future work will include Raptor codes based dis-
tributed networked storage algorithms for sensor networks
We also plan to provide theoretical results and proofs for
the results shown in this paper, where the limited space is
not an issue. Our algorithm for estimating values:aind
k is promising, we plan to investigate other network models
where this algorithm is beneficial and can be utilized.

Acknowledgments

The authors would like to thank the reviewers for their

comments. They would like to express their gratitude to all
Bell Labs & Alcatel-Lucent staff members for their hospi-
tality and kindness.

7 Appendix

7.1 Proof of Lemma

Proof. For a simple random walk on an undirected graph
G = (V, E), the stationary distribution is given byl[1,117,
[14]

- dn(u)

On the other hand, for a reversible Markov chain, the

(35)

expected return time for a statés given by [1[17 14]

E[Tretum (Z)] = (36)

(i)’

wherer (i) is the stationary distribution of state

From [35%) and[(36), we have for a simple random on a

graph, the expected inter-visit time of nodés
oo 2B pn
E[Tvzszt (u)] — dn (u) - dn (U)7 (37)
wherey is the mean degree of the graph. O

7.2 Proof of Lemma

Proof. For a given node andk simple random walks, each
simple random walk has expected inter-visit ti%. We

now view this process from another perspective: we assume

there arek nodes{vy, ..., v} uniformly distributed in the
network and an agent from nodefollows a simple ran-
dom walk. Then the expected inter-visit time for this agent
to visit any particulaw; is the same a%. However,
the expected inter-visit time for any two nodgsandv; is

1

E ﬁ which gives the expected inter-packet time. [

w)?

References

[1] D. Aldous and J. Fill.

Reversible Markov Chains
and Random Walks on Graphs Preprint, available at
http://statwww.berkeley.edu/users/aldous/RWG/baoki,h
2002.

[2] S. A. Aly, Z. Kong, and E. Soljanin. Fountain codes based

distributed storage algorithm&).S. patentSubmitted, Oc-
tober, 2007.

(3]

(5]

(6]

(7]
(8]

9]

[10]

[11]

[12]

[13]

[14]
[15]

[16]

[17]

[18]

C. Avin and G. Ercal. On the cover time of random geomet-
ric graphs. InProc. 32nd International Colloquium of Au-
tomata, Languages and Programming, ICALP'Q5sboa,
Portugal, July, 2005.

A. G. Dimakis, V. Prabhakaran, and K. Ramchandran. De-
centralized erasure codes for distributed networked stor-
age. |EEE/ACM Transactions on Networking (TQN)
14(Sl):2809 — 2816, June 2006.

A. G. Dimakis, V. Prabhakaran, and K. Ramchandran. Ubig-
uitous access to distributed data in large-scale senser net
works through decentralized erasure codesProc. of 4th
IEEE Symposium on Information Processing in Sensor Net-
works (IPSN '05) Los Angeles, CA, USA, April, 2005.

A. G. Dimakis, V. Prabhakaran, and K. Ramchandran. Dis-
tributed fountain codes for networked storagAcoustics,
Speech and Signal Processing, ICASSP 268y 2006.

E. N. Gilbert. Random plane network3. Soc. Indust. Appl.
Math., 9:533-543, 1961.

A. Kamra, J. Feldman, V. Misra, and D. Rubenstein. Data
persistence in sensor networks: Towards optimal encoding
for data recovery in partial network failures. Vdorkshop

on Mathematical performance Modeling and Analydisne
2005.

A.Kamra, V. Misra, J. Feldman, and D. Rubenstein. Growth
codes: Maximizing sensor network data persistence. In
Proc. of the 2006 conference on Applications, technolggies
architectures, and protocols for computer communications
SigcommOBpages 255 — 266, Pisa, Italy, 2006.

Y. Lin, B. Li, , and B. Liang. Differentiated data persis
tence with priority random linear code. Rroc. of 27th In-
ternational Conference on Distributed Computing Systems
(ICDCS’07) Toronto, Canada, June, 2007.

Y. Lin, B. Liang, and B. Li. Data persistence in largeake
sensor networks with decentralized fountain code®rbt.

of the 26th IEEE INFOCOMQ7Anchorage, Alaska, May
6-12, 2007.

M. Luby. LT codes. InProc. 43rd Symposium on Founda-
tions of Computer Science (FOCS 2002§-19 November
2002, Vancouver, BC, Canada, 2002.

D. S. Lun, N. Ranakar, R. Koetter, M. Medard, E. Ahmed,
and H. Lee. Achieving minimum-cost multicast: A decen-
tralized approach based on network codinglnrProc. the
24th IEEE INFOCOMVvolume 3, pages 1607— 1617, March
2005.

R. Motwani and P. Raghavan.Randomized Algorithms
Cambridge University Press, 1995.

M. PenroseRandom Geometric Graph®xford University
Press, New York, 2003.

M. Pitkanen, R. Moussa, M. Swany, and T. Niemi. Erasure
codes for increasing the availability of grid data storalge.
Proc. of the Advanced International Conference on Telecom-
munications and International Conference on Internet and
Web Applications and Services (AICT/ICIV22D06.

S. Ross. Stochastic ProcessesWiley, New York, second
edition, 1995.

I. Stojmenovic. Handbook of sensor networks, algonish
and architechtruesWiley series on parallel and distributed
computing 2005.

	Introduction
	Related Work
	Wireless Sensor Networks and Fountain Codes
	Network Model
	Fountain Codes
	LT Codes

	LT-Codes Based Distributed Storage (LTCDS) Algorithms
	With Limited Global Information—LTCDS-I
	Without any Global Information—LTCDS–II
	Updating Data

	Performance Evaluation
	Conclusion
	Appendix
	Proof of Lemma 10
	Proof of Lemma 12

