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INTRODUCTION: Cyclic Cellular Automata (CCAs) have
been found to provide a natural, beguilingly simple, and el-
egant infrastructure for the design of sensor systems with
sleep-wake scheduling to maximize system lifetime. The
Greenberg-Hastings model (GHMZ) [3, 2] defined on the
integer lattice Z2 is particularly appropriate and is described
as follows. Each grid square of the integer lattice is a cell
with a set of k > 1 states and a neighborhood N ; the
neighborhoods of interest here are the von Neumann neigh-
borhood and the Moore neighborhood. The von Neumann
neighborhood Nx of cell x consists of just those cells to the
north, east, south, and west of x, whereas the Moore neigh-
borhood expands to that 3 × 3 array of cells with x at its
center, i.e., all cells that touch x at a side or vertex. All
cells change state synchronously step by step according to a
clock cycle and transition function common to all. The local
rule for state changes is little more than a counter: The state
ξt+1(x) of cell x at time t + 1 is a simple mod k incre-
ment: ξt+1(x) = ξt(x) + 1 if ξt(x) > 0. But if ξt(x) = 0,
the state is incremented to 1 if and only if it has at least one
neighbor in Nx which is currently in state 1.

In a discrete sensor system, we would consider a finite
version of this automaton where we identify cells with
sensors, and the 0 state with the wake state. But a better
model of reality requires a continuous relaxation of this
model, one that we define on R2. Instead of discrete cells,
we take a Poisson pattern contained in a square area with an
intensity chosen so as to yield the desired expected number
of sensors. With cells (sensors) now replaced by points, we
then redefine a neighborhood of a sensor x as a circle of
communication radius rc, a given parameter, with the circle
centered at x. A sensor y is in the neighborhood of sensor
x if and only if y is inside this circle. With this basic model
we are done: the transition function is the same as before
and yields the continuous GHMR model of synchronous
sensor systems . With the number of states, sensor density,
and rc properly chosen, we can start the automaton in a

random state and create thereby a remarkably effective
sleep-wake sensor system. It will be a system of “sweep”
type, in which waves of wake sensors sweep the entire
field periodically in a metastable equilibrium in which each
sensor cycles endlessly through the states 0,1, . . . , k − 1.
(See [5] for another sweep system based on a far more
complicated mechanism.)

THE DEMO: The demo that we have available will provide
simulations illustrating the evolution to equilibrium. In the
demo, states are identified with colors where the wake state
0 is always taken to be black. Figure 1 gives snapshots of
the evolution of the system at times 0, 10, 15, and 50 with
parameter values: unit sensor density, 200 by 200 sensor
field (an average of 40, 000 sensors), a communication ra-
dius of 1.5, and a number of states k = 20 (sensors sleep
roughly k−1

k (95%) of the time). Full coverage is virtually
guaranteed and intruder-detection delay is at most 8 clock
cycles. The scaling of the figure blurs the discrete sensor
locations, as can be seen. Recall that it is only the black
in the figure that represents wake (0) states. The initial
state, often called primordial soup in the CCA literature, is
a sample from the product measure on the uniform law on
{0, 1, . . . , k − 1}. To other than CCA mavens, the highly
developed structure that truly simplistic local rules will pro-
duce from primordial soup can be quite startling. Note that
GHMR rather quickly enters states with a large number of
sensors resting temporarily in the wake (black) state. Soon,
structure in the form cyclically expanding curves of circu-
lar shapes appears and reaches an equilibrium where only
about 5% of the sensors are awake; the wake sensors form
narrow waves sweeping the field and missing no intruders.
The points where the circular shapes originate are called
nucleating centers.

Before further discussion, we digress briefly to mention
another distributed sleep-wake technique, again much
more complicated than the one here. This is the domatic
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Figure 1. Greenberg-Hastings Model in R2

partition technique [4] that cycles wake states through a
sequence of disjoint sensor-field covers. This approach is
quite different in that it doesn’t provide the same ease of
trading off time-to-detection with energy consumption (the
fraction of sensors that are awake). For other methods, see
the references in [1]. More detailed comparisons are the
subject of a paper to appear.

PROPERTIES: The GHMR has the following critically im-
portant behavior: it is scalable, effective against intrud-
ers with knowledge of sensor locations, fault tolerant, and
seamlessly works around obstacles effectively, and has a
high performance/cost ratio. It is striking that these addi-
tional properties essentially ‘come for free,’ as artifacts of
the self-organizing protocol that clearly were not objectives
that influenced such a simplistic design. Naturally, however,
these properties do vary with parameter values. The first
two properties are readily seen. Fault tolerance is similar to
self-healing and allows constant fractions of the sensors to
malfunction or have communication failures. The near per-
fect accommodation of obstacles is quite unexpected and
will be a feature of the demo, as will fault tolerance.

We leave engineering details to [1], recalling only that
sensing intruders, and sensing neighbors broadcasting a
state-1 occupancy signal both take place in state 0; broad-
casting the state-1 occupancy signal is done in state 1; and
the remaining sleep states involve no sensing or communi-
cation and simply make the deterministic state change.

Figure 2. Wake Sensor Waves

A problem with the GHMR (and CCAs generally) is that
for k large, the process may well die out; the CCA is said to
fixate, meaning that, in our case, all sensors eventually go
into the wake state and stay there. In practice this is easily
avoided by the placement of seeds which consist simply of
a cluster of sensors in states 0, 1, . . . , k − 1 such that the
sensor in state i is within communication range of the sensor
in state (i + 1) mod k. These guarantee “liveness” and
are illustrated in Figure 2 for the case of two seeds, whose
locations are obvious from the figure. The parameters are
unit sensor density in a 200 by 200 field, k = 30, and rc =
1.5. This figure gives a snapshot suppressing all but the
black state, and showing the wake-sensor waves sweeping
the sensor field. (The demo will show the actual motion
with an appropriately chosen clock cycle.) Note that with
seeds planted, the initial state outside of the seeds can be
arbitrary.
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