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Abstract

We develop a theory to predict the localization perfor-
mance of randomly distributed sensor networks consisting
of various sensor modalities when only a constant active
subset of sensors that minimize localization error is used
for estimation. The characteristics of the modalitiesinclude
measurement type (bearing or range) and error, sensor re-
liability, FOV, sensing range, and mobility. e show that
the localization performance of a sensor network is a func-
tion of a weighted sum of the total number of each sensor
modality. We also show that optimization of this weighted
sumisindependent of how the sensor management strategy
chooses the active sensors. We combine the utility objec-
tive with other objectives, such as lifetime, coverage and
reliability to determine the best mix of sensors for an opti-
mal sensor network design. The Pareto efficient frontier of
the multi objectives are obtained with a dynamic program,
which also accommodates additional convex constraints.

1 Introduction

Beginning late 90’s, there has been an ever-growing in-
terest in sensor networks research, where a large number
of sensors are networked wirelessly to tackle larger sensing
problems in a bandwidth constrained and distributed man-
ner. New hardware technologies, communications, signal
processing, and optimization algorithms have been devel-
oped to increase the sensing capabilities and lifetime of sen-
sor networks while simultaneously decreasing their cost. As
of now, a staggering amount of sensor choices and sensor
network management strategies is commercially available.

In this paper, we develop a localization utility for the sen-
sor network design problem, which entails three entangled
aspects: sensor choices, operational choices, and deploy-
ment plans. Given how the sensor network is operated and
how it is deployed, the sensor choices involve the budget al-
location in purchasing different sensors with varying costs
and capabilities. On the other hand, given the available sen-
sors and a deployment plan, the operational aspect of the
design concerns how the sensor network is run and man-
aged, e.g., by using distributed sensor-to-sensor communi-
cation and data fusion schemes [11, 18] and algorithms for
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dynamic assignment of a subset of sensors for parameter
estimation to preserve network energy [12, 17]. Finally, the
sensor network deployment strategy is related to the actual
emplacement of the sensors in the deployment area, e.g., to
maximize coverage and visibility [10, 15] and can under-
standably affect as well as be affected by the sensor choices
and how one operates the sensors depending on the knowl-
edge of the geometry and the conditions of the deployment
area (e.g., locations of occluders and weather).

We build upon our previous work in [7] to determine the
sensor choices for acoustic sensor network design. In [7],
the network is composed of different sensors where each
sensor is one of T' possible sensor types (or modalities).
Each sensor type is characterized by a number of per-
formance parameters. Then, under a limited budget $,
sensor network design determines a design vector n =
[n1, na,...,n7], whose elements consists of the number
of sensors of type-t (t = 1, ..., T) to deploy given that each
sensor type has a cost ¢;. For generality, a random deploy-
ment strategy over the surveillance region A is used. In
[7], various objectives such as localization utility, lifetime,
and coverage were defined and convex optimization solu-
tions were provided to determine the Pareto frontier for the
multiple objectives.

In this paper, different from [7], we consider how the
operational aspects of the sensor network affect the local-
ization performance. We identify a duality of range and
bearing sensors where for any given range (bearing) sen-
sor, there exists a dual bearing (range) sensor that results in
the same average localization performance under random
deployment. Subsequently, the localization performance
is analytically related to a functional whose argument is a
weighted sum of the total number of each sensor type when
only a constant number of sensors is activated per period to
minimize localization error for energy conservation. To our
knowledge, no such formula has been derived before. In
contrast, [7] uses all sensors within sensing range for local-
ization and approximates the localization utility by fitting
models to network simulation results. Compared to [7],
we also account for additional sensor characteristics such
as limited field-of-view (FOV), sensor reliability, and mo-
bility. We assess the performance equivalence of mobile
sensors and the stationary sensors when mobile sensors use



random walk that preserves their distribution. We empha-
size that this paper investigates the effects of sensor mobil-
ity on the average network localization performance as op-
posed to its effects on the sensor network coverage. Hence,
mobile sensors operating in a tracking mode is beyond the
scope of this paper. Finally, the new localization utility is
combined with the design tools developed in [7] to deter-
mine how to choose the sensor types for a given budget to
trace the Pareto efficient frontier of multiple objectives such
as sensor network utility, lifetime, coverage, etc.

The paper is organized as follows. Section 2 describes
the sensor network geometry and defines the common vari-
ables used in the paper. The sensor design tools are re-
viewed in Section 3, and the sensor characteristics and re-
sulting localization performance are described in Section 4.
Section 5 derives the localization performance and corre-
sponding utility for a heterogeneous network of stationary
and mobile nodes that exploits sensor management. Sec-
tion 6 provides simulations to validate the theoretical per-
formance characterization and to demonstrate the sensor
network design. Finally, concluding remarks are provided
in Section 7.

2 Deployment Geometry and Notational Pre-
liminaries

For generality, random sensor deployment is assumed so
that sensor locations are distributed via a uniform distrib-
ution over a surveillance area A of size A. We ignore the
boundary effects by assuming that A is sufficiently large
and toroidal. The location of the ith node is given in Carte-
sian coordinates as ¢; = (.., y,;) and the location of the
target is z = (x, y). For notational convenience, we rewrite
the node position in polar coordinates (r;, 6;) where the ori-
gin is the target location. Then, the new coordinates are
related to the Cartesian coordinates via

7= (Gt = 2+ (G — ) tan = =Y (1)

Let the ith element of an N x 1 vector t fepresent an
index corresponding to the type of the ith sensor so that
t; € {1,...,T}. The purpose of the sensors is to estimate
the 2D target location z € R? of the target within A. To
achieve localization, each sensor type can provide an in-
complete inference of the target position (range or bearing,
but not both). Each sensor type is also characterized by a
number of parameters including measurement error, sensor
reliability, FOV, sensing range, and mobility as detailed in
Section 4. Let © and R represent the modality sets associ-
ated to sensors that collect bearing and range measurements
sothat © UR = {1,...,T}. Then, the ith node collects
a bearing/range estimate if ¢, € ©/R. To conserve energy,
only a set of ¢ sensors are activated to share their measure-
ments to localize the target.

For simplicity, the sensors are indexed in ascending dis-
tance to the origin (i.e., target) r1 < ro < ... < ry. After

deployment, the density for each sensor type-t, denoted as
Aty is given by Ay = =, where n; is the total number of
type-t sensors within a deployment area. The total num-
ber of sensors is denoted by N = S n,. Moreover,
each sensor’s orientation ¢, is a uniform random variable
on [0, 27).

It is known that the random deployment assumption can
be well approximated by a Poison point process (PPP), and
the joint distribution of the target distances for the first £ <
N nodes is as follows [19]:

k
p(ri,...,1k) = (H(Qﬂ')\ﬁ)) e*”)‘ri, 2

i=1

for0 < ry <ry <...<r The marginal distributions for
the distances follow scaled Chi distributions

) = (N ). @)

In [13], we show that for nodes randomly distributed over
a circular region, the histogram of the ordered distances to
the region center follow (3) closely. The overall joint dis-
tribution of the coordinates for the % closest nodes can be
written as

k
p(r1, 01,7y, ) = A (H 7“1',) e ™ (4)
i=1

since 6, isi.i.d. and uniformly distributed.

3 TheDesign Problem

The objective of this design problem is to determine
the vector n for deployment, which simultaneously satis-
fies multiple objectives and constraints such as utility (U),
d-connectivity (C), v-coverage (1), network reliability B,
and total resource $. As detailed is Section 4, each sensor
type has an effective sensing coverage radius R, and an as-
sociated purchase cost c¢;. The objectives and constraints are
further explained below, followed by a mathematical defin-
ition of the design problem.

3.1 Utility
The utility function is defined as the reciprocal of the
expected position MSE over all possible node locations:
1

v= stat- [trace{F ;" }]’ ©

where F' is the Fisher information matrix derived in Sec-
tion 4, and statc{-} is a statistic over the ensemble of possi-
ble node positions ¢ (in polar coordinates) that satisfies the
following scaling property,

stat{we} = wstat{e}, (6)

where w is an arbitrary deterministic weight. Mean and me-
dian values are examples of such statistics. In the rest of the



paper, we refer to such statistics as typical values. In Sec-
tion 5, we show that when only a constant number of sen-
sors that minimize the localization error are activated, max-
imization of U in (5) w.r.t. the design variables is equivalent
to the maximization of a weighted sum of the population of
each sensor type:

T
U= Z fent, (7
t=1

where f; is a function of the sensor characteristics, such as
the measurement noise o, field of view «y, reliability 5,
and sensor mobility gu.

3.2 Connectivity and Lifetime

In graph theory terms, a network is d-connected (with
connectivity degree C' = d) if, for any given pair of sensors,
there exists at least ¢ mutually independent paths connect-
ing them [5]. Each sensor usually has a fixed transmission
range ryan, Which is significantly smaller than the dimen-
sions of .A. A communications link can be created between
two sensors only if their physical distance is less than their
transmission range. Hence, given transmission range r an,
the probability of creating links between sensors increase as
the number of sensors in the field increases.

Under the random deployment assumption, it is possible
to show that the probability that each sensor has at least d-
neighbors within the transmission range ran (node degree
D = d) on a toroidal surface is given by the following [3]:

N log 1—2?25 7(”22§an)k
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It is shown in [20] that in a graph, as the number of vertices
increase, the node degree D converges to the connectivity
degree C' with probability one. In this paper, we approxi-
mate the connectivity of the sensor network by (8). In gen-
eral, the connectivity probability should be simulated for
the specific geometry of A (e.g., see [3] for simulations on
square .A). Itis important to note that the connectivity prob-
ability monotonically increases as a function of N. Hence,
to maximize the connectivity probability (p¢) at any given
degree, the total number of sensors NV in the sensor network
must be maximized.

Impacts of Connectivity on Power: Network connectivity
can always be increased by increasing the sensor transmis-
sion range ryan. However, the choice of rq4, also affects the
lifetime (L) of the sensor network.! A sensor consumes
power for (A) transmitting data, (B) receiving data, (C)
sensing, (D) aggregating/fusing information, (&) idling,
and (F) coping with radio interference/communications
overhead/etc. [4, 8, 9, 24]. The sensor transmission range
ryan directly affects A and indirectly affects F.

1The lifetime can be defined in various ways such as the time to first
node failure due to battery depletion or the time to appearance of the first
connectivity brake-down.

The explicit dependence of the sensor network lifetime
0N 74y IS beyond the scope of this paper. In [7], we explain
that for a given transmission range that allows high connec-
tivity, the lifetime of the sensor network linearly increases
with the total number of sensors in the network as the total
energy of the network is linearly increased (assuming effi-
cient communication protocols that can minimize losses).
Since the connectivity can be preserved with smaller trans-
mission ranges as the number of sensors is increased, the
actual lifetime of the sensor network grows faster than the
growth obtained by increasing IV while keeping ran fixed.
Hence, when po = 1 — € (¢ <« 1), we assume that the
network lifetime has approximately the following form:

L« N°, (9)

where § > 0 depends on the communication schemes and
the propagation loss factor, and the proportionality is inde-
pendent of r4qn. This form can also be motivated by the
idealized case where the sensor batteries are depleted only
by the rP-propagation loss (p > 4): if pc is high, then L
can be shown to have the form in (9) (see [7]).

3.3 Coverage

The coverage (V') problem in sensor networks aims to
quantify how well A is monitored. The coverage problem
has been extensively studied in the literature, see Sect. 2
in [15] for a survey. Given the random deployment assump-
tion, one can determine the number of sensors so that any
given pointin A is sensed by at least k-sensors with a given
probability (k-coverage). For the sensor network design, the
k-coverage probability is quite complicated as each sensor
can have a heterogeneous sensing range R;.

In [1], a Poisson approximation is given for the k-
coverage probability for randomly deployed sensor net-
works with heterogeneous sensing ranges (k; = wR;>/A):

1 —v T
P(V > kln, Q) =~ ; , wherev = > wens. (10)

>k ' t=1

Note that the coverage probability is a monotonically in-
creasing function of v. To increase k-coverage probabil-
ity to a desired level py, the average sensing area (v x A
in (10)) must be maximized.

3.4 Reliability

In the context of sensors networks, reliability can imply
sensing reliability and communications reliability. Commu-
nications reliability, which, e.g., relates to data loss corre-
sponding to the packet drops in the communications chan-
nel, is beyond the scope of this paper. Instead, we focus
on the sensing reliability where we assume that each sensor
type-t has a constant reliability probability 3;, with which
the sensor provides an observation to the network. In Sec-
tion 5, we model the effects of sensor reliabilities on the
localization performance of the whole network. However,



in the end, we also need to quantify how reliable the local-
ization utility is based on the reliability of the sensors.

It is possible to show that under independence assump-
tion of the sensor reliabilities, the average number of reli-
able sensors at any given time can be determined using the
Binomial distribution: Zthl Ging. Hence, the fraction of
the reliable sensors to the total number of sensors is a good
metric to quantify the average sensing reliability of the sen-
sor network, which is defined as

1 T
B= ;ﬁmt (11)

For robustness, a critical number of sensors must be able to
sense otherwise the network may not detect the target. A
threshold b can be formulated as a linear constraint (B > b)
which is handled in our solution.

3.5 The Pareto Optimization Problem

For the sensor network design, we consider the following
optimization problem:

Design Problem: [n*, ry,,] = argmaxn, . [U, L, V],
subject to pc > p&, pv > pi, B > b, sensor
management constraints (Sect. 5), and n* € N =
{n|nm, >0,Ym;c'n < §}.

This is a multi-criteria problem over the simplex A/ with
three competing objectives: a utility objective that spends
resources on utility maximizing sensors, a lifetime objec-
tive that spends resources to maximize the number of sen-
sors regardless of their utility, and a coverage objective that
tries to increase the number of sensors covering a certain
point regardless of their utility. The simplex is defined by
design vector n, the cost vector ¢, and the budget $, which
denote the cost of each sensor type and the total resource
available for creating the sensor network. Multi-criteria ob-
jective problems are typically addressed using Pareto opti-
mality. In general, enumeration of all possible parameter
choices that satisfy the constraints is required to explore the
Pareto trade-off surface of U, L, and V' [6]. However, in the
end, some preference must be made to choose an operating
point. In the appendix, we provide a integer programming
solution to determine the Pareto surface. In [7], we discuss
how continuous relaxations can be used to improve the effi-
ciency of the solution and elaborate how to determine 7 .

4 Sensor Characteristics
4.1 Observation Characteristics

We consider two types of sensor models that observe the
bearing 6 or the range r of targets. The range and bearing
of a target at position z = (x,y) is defined in (1). Each
sensor makes an observation o; ( = 1,..., N). The sensor
either collects a bearing or range measurement depending
on its sensor type ¢. If t € © then the observation follows
an additive white Gaussian noise model:

0i = 0; + 0+ (r:)N(0, 1). (12)

In other words, the bearings sensor measure a noisy version
of the true bearing. If ¢ € R, the observations of the range
sensors follow a multiplicative noise model:

0; = riet TN O (13)
The noise of the range measurement grows in concert with
the actual range. In fact, the multiplicative model given by
(13) states that the observations follow a log-normal distri-
bution. Such a measurement model is appropriate for video
camera system and other sensor types. It is assumed that the
sensors are spaced sufficiently far from each other so that
their measurements are independent. Overall, the measure-
ment modes lead to the following distribution of the mea-
surements made by the active sensor set \,, which has ¢
sensors selected by a management strategy (see Sect. 5):

H 71 € Li — 0i)2 X
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For both the bearing and range measurement models, we
consider the fact that the measurement error o2 can grow
with increasing range: o7 (r) = og ,r®, where oyt is the
error associated to a reference distance of » = 1. One
would expect that the measurement error grows with dis-
tance due to an P propagation loss in the signal to noise
ratio, which occurs in free space. In fact, the analysis of
DOA estimation of arrays indicates that a = 2 near the tar-
get [2, 7]. However, in the real world the signal is propagat-
ing though a non-uniform medium. For acoustical arrays,
the atmospheric effects of propagation to the Cramer-Rao
lower bound (CRLB) of bearing estimation has been studied
in [22]. It is shown that for a simple two element array, the
performance of bearing estimation is constant within a criti-
cal range to the target because the performance is limited by
the atmospheric turbulence (not measurement noise). Nu-
merical calculations using tools developed in [23] reveals
the same observation for more complex arrays. Analysis of
calibration errors can also show that within a critical range,
the performance of any array (not necessarily an acoustic ar-
ray) is constant within a critical range. Therefore, for some
cases, it is also reasonable to assume that within the sens-
ing range of the sensor’s modality, the measurement error
may be constant a = 0. We develop the analysis for general
values of a, but place close attention to the a = 0 case.

4.2 Localization Performance

Once deployed, the sensors are able to use the knowl-
edge of their location (¢; for7 = 1,..., N) to estimate the
target’s location. However, the target is localized using the
range and bearing measurements from only the active set
of sensors V,, at any given time. Using the problem geom-
etry and the sensor measurement models, the localization



information can be quantified using the Fisher information
matrix F', which is defined as follows [16]:

Fa— /p(0|z) |:310gp(0|z)] [Blogg(og)]TdO’ 5)

0z z

where p(O|z) is given by (14). It has been demonstrated
that a network of bearing sensors implementing the max-
imum likelihood (ML) position estimator can achieve the
CRLB [14]. Hence, it is reasonable to approximate the MSE
estimate over all possible measurement realizations as

e(Ny,r,0) = trace{ F;'}. (16)
Given (14) and (15), it can be shown that
Fz= Y Foit > Foit > Fou where (17)
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The matrix F,.; (or Fg ;) represents the information
available from the range (or bearing) measurement of the
ith sensor. The matrix F',, ; represents the extra information
gained when exploiting the fact that the measurement error
is a function of range. For a = 0, the measurement error is
independent of range, and the F',, ; term disappears. When
a # 0 the F,; matrix is dominated by the F',.; or Fy ;
matrix as r; approaches zero. In fact, it is reasonable to as-
sume that the F', ; matrix is insignificant when ; is within
the sensing radius as further discussed in Section 4.1.

4.3 Other Sensor Characteristics

4.3.1 Field-of-View

Most sensors do not exhibit an omnidirectional FOV, and
a sensor can only make a measurement of a target that is
within its FOV. In this paper, we only consider the azimuthal
FOV, which is the horizontal angular extent around the line
of sight for which the sensor can make measurements. We
use «; to represent the normalized FOV for type-t sensors,
i.e., the angular extent of the FOV in radians divided by 27
radians. When «; = 1, the sensor type is omnidirectional,
e.g., microphones. Otherwise, a; < 1.

4.3.2 Sensing Range

Sensors can detect a target and make range or bearing mea-
surements as long as the signal to noise ratio (SNR) is suf-
ficiently high. Clearly, the SNR degrades as the range be-
tween the sensor and target increases. Many sensors exhibit
consistent performance until the SNR fall below a critical
value. When the SNR is above the critical value, the mea-
surement error o, is fairly constant. On the other hand,
when the target range is far enough so that the SNR falls
below the critical value, then o; blows up and the detec-
tion probability goes to zero. Data in [14] indicates that

o+ =~ 3 — 5° when the range is less than 500 meters for the
tested acoustic arrays. We denote R, as the sensing range
of the type-t sensors. Such sensors can only make a mea-
surement if r < R;.

433 Réiability

The reliability of a sensor is given by the parameter 0 <
B¢ < 1. This parameter represents the probability that a
sensor can make a measurement and communicate it to its
neighbors. This parameter models both the ability of the
sensor to make a measurement and the ability of the radio
on the sensor to transport the measurement to other sensors.
When 3; = 1, the sensor is completely reliable.

434 Cost

Each sensor type has a monetary cost. Given a fixed finan-
cial budget, one can clearly afford to procure and deploy
more cheaper sensors than more expensive sensors. The
unit cost of type-t sensors is labeled as c;.

435 Mobility

The mobility parameter 11, € {0,1} is a binary value that
states whether or not the sensor can move. When p; = 1
the sensor type is mobile, and when ., = 0, the sensor type
is stationary. In this work, we consider mobile sensors that
operate in a random search mode. Both the stationary and
mobile sensors are initially distributed uniformly over the
surveillance region. As a result, the distribution of the sen-
sors within the surveillance region are well modeled as a
PPP. The mobile sensors follow a random walk so that the
location of the sensors from one snapshot to the next con-
tinue to follow the PPP model. The average speed of the
sensors is large enough so that the configuration of mobile
sensors from one snapshot to the next can be viewed as sta-
tistically independent of each other.

5 Effectsof Sensor Management

The statistics of the network geometry and the FIM allow
for characterization of the typical values of the localization
performance of the sensor network. This section provides a
theory to explain the typical localization performance when
employing sensor management. First, it is demonstrated
that the network design strategy is agnostic to the measure-
ment type (range or bearing). Then, the typical performance
is derived when the network incorporates a node selection
strategy that activates ¢ nodes per snapshot in order to con-
serve energy. Finally, the typical performance is extended
to include mobile nodes that enhance the spatial diversity of
the network.

5.1 Duality of Range and Bearing Sensors

Range and bearing sensors provide different measure-
ments that both can be used to localize a target. Once the
nodes are emplaced and the network is operating, the se-
lection of active sensors does depend on the measurement



type. Each measurement type provides good localization in
one direction and infinitely poor localization in the other.
For instance, a bearing sensor provides good localization in
azimuth but no localization in range. The opposite is true
for range sensors. As a result, for two bearing sensors to
provide good localization of a target, they should be located
so that their line of sights to the target are nearly perpen-
dicular. On the other hand, if the line of sights are nearly
parallel, there will be no localization in range. A similar
situation occurs for two range sensors. However, given one
range and one bearing sensors, the two sensors should be lo-
cated so that their line of sights are parallel w.r.t the target.
Once the network is operating, the sensor manager must un-
derstand which type of measurement (range or bearing) the
node can collect.

For the uniformly random deployment of nodes, two sen-
sors are equally likely to have nearly perpendicular line of
sights to the target (at an arbitrary point) as they are to
have nearly parallel line of sights. In fact, when consid-
ering which nodes to deploy, the measurement type does
not matter. For any random configuration, any bearing node
could be replaced by a range node in a different location
to form another equally likely configuration that provides
equivalent localization to a specific point. In other words,
when considering random node deployments, the range and
bearing sensors exhibit a duality.

Let us consider a modality ¢ that consists of n, bearing
sensors with o;(r) = o /2. Furthermore the FOV, reli-
ability, sensing range, and mobility are ¢, 3¢, pe, and g,
respectively. A random configuration of the sensors can be
given by ¢; = (r;,0;) fori = 1,...,n.. The FIM associ-
ated to each node is given by F'y ; in (17). Let us rotate the
configuration /2 about the target location and exchange
the bearing sensors for range sensors with the same values
for o(r) , au, Bt, pt, and p;. Now, the geometry of the
sensors is given by ¢; = (r4,0; + 7). The FIM associated
to the range sensors is given by F',. ; in (17) where 6; + 3 is
substituted for #;. After this substitution, the FIM contribu-
tion for each range sensor is equivalent to the corresponding
bearing sensor’s FIM contribution F',. ; before the rotation.
As aresult, the MSE given by (16) for the target localization
is the same for these two configurations. Because the polar
angles are uniformly distributed over [0, 27), the original
configuration is as equally likely to be realized as the rotated
configuration. As a result, the MSE error distributions due
to random configurations of range or bearing sensors will
be equivalent. As a corollary, the typical values of a net-
work design does not change if the bearing modalities are
exchanged for range modalities of equivalent density, mea-
surement error, FOV, reliability and mobility. Likewise, the
same is true if the range modalities are exchanged for bear-
ing modalities.

The duality between the bearing and range sensors is ex-

act when the measurement errors are constant over range,
i.e., a = 0. When a # 0, the duality is approximate be-
cause it ignores the F',, ; contribution. As stated earlier, this
matrix can be ignored when the node is within the sensing
range of the target.

Finally, the FIM does not account for measurement am-
biguities. It only considers the spread of possible values
around the modes of the likelihood. In two dimensions, it
takes three range (or bearing) sensors to localize a target
without ambiguity. Therefore, for pure target localization
without incorporating measurements from prior snapshots,
the sensor manager must set ¢ > 3 for the duality to be
meaningful. In practice, a track filter provides a predicted
target location that removes the ambiguity and allows the
duality to exist for g < 3.

5.2 A Sensor Management Strategy based
on Selecting ¢-Sensors

A reasonable sensor management approach searches for
the best ¢ sensors to actively collect and share measure-
ments over one snapshot. The management strategy at-
tempts to determine an active set \V,, of cardinality ¢ (i.e.,
|V | = ¢) that minimizes the expected MSE given by (16)
over all possible sensors. When the sensor manager is oper-
ating, it does have knowledge of the sensor locations. How-
ever, it does not have knowledge of the exact target location
to place the origin of the coordinate system to determine the
values ¢, used in (16)—(17). In practice, the sensor manage-
ment centers the coordinate system around an estimate of
the predicted target location from a track filter.

One sensor management approach simply selects the
closest sensors after the distances are normalized by the
measurement error o. Let the normalized distance be

F»; = O’&?T‘i, (18)
and let m(i) be the mapping m {1,...,Ns} —
{1,..., N} that rank orders the normalized distances, i.e.,

Fn(1) < P2y < o0 < (i) (19)

The closest approach simply selects the ¢ closest nodes
Ny(r,t) ={m@G):i=1,...,q}. (20)

The active set is a function of the node ranges and modali-
ties. The closest approach ignores the bearing information
and only focuses on reducing the trace of the FIM in (17).
As shown in [12], as ¢ grows, the closest approach is effec-
tive in reducing the MSE.

The global node selection method accounts for the com-
plete target-node geometry. It selects the active set to mini-
mize the MSE, i.e.,

Ny(r,0,t) = argmin (N, (21)
N:|N|=¢q



where the complete expression for the MSE is given by
(16)-(17). The GNS method is a function of the complete
node-target geometry as well as the modality of each node.
Implementation of (21) via exhaustive search can be very
cumbersome due to the combinatorial explosion as N be-
comes large. A suboptimal Greedy search is provided in
[12], and it is demonstrated in [12] that the search deter-
mines an active set whose MSE is close to the optimal.
It should also be noted that the active set selected by the
Greedy search is still a function of the complete target/node
geometry as well as the modality of each node.

The MSE as expressed in (16)-(17) is explicitly a func-
tion of the geometry and modality of the network configu-
ration as well as the active set selected by the sensor man-
agement strategy. Any sensor management strategy can
be viewed as a function whose input is the geometry and
modality of the network configuration, i.e., A/(r, 8, t). The
output is a set of active sensors. For the closest and GNS
approaches, this function is given by (20) and (21), respec-
tively. As a result, the MSE is a function that only depends
on the geometry and modality of the network. Furthermore,
the distribution describing the closest & sensors is given by
(4). Given that ¢ < k, it is expected that all sensors se-
lected by the closest and GNS approaches are encompassed
by the & closest nodes. Then, one can theoretically de-
termine the distribution of the MSE resulting over all net-
work configurations. However, the development of a closed
form expression of the distribution is difficult (if not im-
possible). One could theoretically calculate the mean MSE
by calculating the indefinite integral of (16) multiplied by
(4). Again, this integral is not trivial, and for the closest
approach with ¢ = 2 and ¢ = 0, we have shown that it
is divergent [13]. Because of this divergence, we consider
looking at the broader class of typical values.

While closed form expressions of typical values for the
MSE might be elusive, one can compute typical statistics
using Monte Carlo realizations for one special case of each
sensor management approach with a given value of ¢ and
known measurement decay a. The special case is a homoge-
nous network where A = 1, and the sensor characteristics
arec =1, =1,08 = 1,and u = 0. The main result of the
paper is that an expression for the localization performance
of a general heterogeneous sensor network is simply scaled
by a constant determined by a typical value derived from
Monte Carlo realizations of the special case. The remainder
of the section is devoted to deriving this expression. First,
we show how to derive the performance of a general homo-
geneous network from the special case. Then, results are
extended for the heterogeneous network.

Characterization of Homogeneous Networks The
derivation starts with a homogeneous network con-
sisting only of sensors of type-t so that A = \; and
oy, (r:) = o¢(r;). Furthermore, the other sensor parameters

such as the FOV and reliability are constant over the node
index 7. While the node density is \;, not every node
will be functional. Due to the random deployment of the
sensors, the orientation of the sensor is a random value
whose distribution is uniform over [0,27). Because the
normalized FOV is oy, each node has an «; probability of
having line of sight to an arbitrary point. Therefore, the
probability that a node can make a useful measurement is
ay. Furthermore, the node is reliable with a probability of
(B;. Overall, the probability that the node is able to make a
useful measurement and communicate it to other sensors
in the network is a;3;. It is well known that when a 2-D
PPP of density \; provides useful nodes with a probability
of a3, the distribution of effective sensors is also a 2-D
PPP with a density of Aty = auB:A [21]. The joint
distribution of the location of the effective sensors is given
by (4) where Aefr,; replaces A;. The effective sensors can
be viewed as having omnidirectional FOV (o« = 1) and
complete reliability (3 = 1).

For the homogeneous network, the normalized distance
is simply a scaled version of the actual distance where the
scale factor is af{f”m (see (18)). The joint distribution of
the geometry with respect to the normalized distances can
be obtained from (4) via a change of variable so that

k T
p(F1,01, ..., 7k, 05) = AF (Ha) eV (22)
i=1

where
>\eff Qy ﬁt

oI/t T A/t

A=

At (23)

In other words, the distribution of normalized node loca-
tions (7;,0;) can be viewed as being drawn from a 2-D
PPP with rate \. Furthermore, the normalized configuration
does not depend on the measurement accuracy o ; So that
the MSE expression given by (16) is independent of sensor
type when considering the normalized density .

By performing a change of variables with 7; = \/iﬁ
the joint distribution of (7, 6;) exhibits a unit density,

k
[, 00, Th, O) = (Hm) e "%, (24)
i=1

and the location of sensors given by (7;, 6;) are drawn from
a 2-D PPP of unit density. In other words, the sensor loca-
tions represent the special case of unit density, measurement
error, FOV, and reliability. The overall MSE is a scaled ver-
sion of the MSE for the reference 2-D PPP, i.e.,
1

€WNg,r,0) = Y@tz
where &(N,) is the MSE for the special case of unit error
(o = 1) ie.,

éN,,F,0) = trace{ (Z %M(Gi)) } . (26)

S

€(Ng,T,0) (25)



The distribution of €(\,, T, @) can be used to determine ref-
erence typical values for which the typical MSE values of
other homogeneous networks can be calculated by exploit-
ing (25) and the scaling property (6).

1.

——Mean GNS

- = =Mean Closest
——Median GNS
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0.5

Normalized MSE Statistic

10
Number of Active Nodes

Figure 1. The MSE localization performance

The reference network helps avoid the calculation of a
closed from expression for the distribution of the MSE of
the arbitrary homogeneous network, which is difficult (if
not impossible) to obtain. For the special case of the clos-
est sensor selection method with ¢ = 2, a closed form
expression for the MSE distribution appears in [13]. For
other cases, where the distribution is elusive, one can calcu-
late typical values associated to the distribution from Monte
Carlo realizations of random sensor network configurations.
The typical values are functions of the sensor management
strategy including the value of ¢q. Therefore, each sensor
management strategy requires another Monte Carlo simula-
tion. Let £, represent the reference MSE for typical value
stat {mean median} and sensor management method s
(s="c” or s=**g”for the closest and GNS approaches, respec-
tively), when ¢ sensors are active per snapshot. Given the
sensor management method, the typical MSE for the gen-
eral homogeneous sensor network is

=stat

stat{e} = S5 . 27

s (a+2)/2
«
4/(f2+fa> >‘t>

rft

Figure 1 plots the values of &%, as a function of ¢ for var-
ious sensor management strategles and typical values when
a = 0. These scale constants were obtained by generat-
ing 10000 random configurations of 1000 sensors uniformly
distributed over a circular region of radius R ~ 17.84m so
that the density is A = 1. Because of (25), the trends seen in
the figure extend to any heterogeneous sensor network. The
figure shows that the mean MSE always exceed the corre-
sponding median MSE. Furthermore, GNS leads to a lower
MSE than the closest strategy for the same k. However, the
gap between the GNS and closest approaches decreases as ¢
becomes large, and the implementation of the GNS is only
necessary for small ¢
Characterization of Heterogeneous Networks The
transition from a homogeneous network to a heterogeneous

network is now relatively straightforward when considering
the normalized positions of the sensors (7;,6;) in the sen-
sor network. The set of sensors representing sensor type-t
represent a PPP of effective rate A\ = Aeﬁ,t/af/ . The
aggregation of all sensor types actually means that the nor-
malized positions are drawn from a PPP with a rate that is
the sum of the aggregates, [21]

T
A=A (28)

Then because of (24) and (25), the typical MSE of the het-
erogeneous network is

=stat

stat{e} = S5 . (29)

+2)/2
<Z _ofBy A > a2/
t=1 4/(2+a>

Equation (29) is one of the main results of this paper.
By (5) and the fact that Ay = n;/A, the utility (5) of the
network design is

1 T 3 (a+2)/
Pt
U= Ala+2)/2z% (Z (ota) m) . (30)

t=1 “rf ¢

No matter the value of a, the sensor management strat-
egy, or the chosen typical value, the maximization of the
utility in (30) is equivalent to the maximization of

N
=" fin:, where (31)

t=1

atﬁt
fo = —aray
/(2+a)
Urf,t

Most importantly, the calculation of the localization utility
given by (31)-(32) does not depend on the chosen typical
value or how the implemented sensor management strategy
chooses the g-active sensors.

5.3 Mobility

The utility given by (31)-(32) only considers stationary
sensors, i.e., ¢y = 0. When collecting measurements over
multiple snapshots, mobile sensors can provide better spa-
tial diversity to improve localization performance. As dis-
cussed earlier, this paper considers mobile sensors that fol-
low a random walk. The velocity of these sensors is such
that at each snapshot, they form a configuration that is sta-
tistically independent of the previous configuration. To sim-
plify the analysis, the target is assumed to be moving slow
enough that it can be considered stationary over N, shap-
shots. This means that over the N, snapshots, the covari-
ance update of the track filter is simply the inverse of the
sum of the FIMs over the N,, snapshots.

Let us first consider a network of stationary sensors.
Each snapshot selects the same active set for a stationary

(32



target. The aggregate FIM is simply F' » scaled by N,, and
the contribution of each node to the FIM is F'y ; in (17)
scaled by N,. Recall that due to the duality of range and
bearing sensors, F'y ; and F', ; are equivalent after averag-
ing over the ensemble of configuration realizations. The
value of N, can be absorbed by the measurement error so
that aggregating of N, snapshots is equivalent to the ith
node measurement error reducing to o+, /v/N,. Overall,
the weighting factor in the utility objective of (31) is now

fl= N2 g (33)

where f; is given by (32).

When the sensors are mobile, the aggregate FIM is still
the sum of NV, FIMs. However, each FIM associated to a
snapshot is due to an independent random configuration.
Each snapshot selects ¢ sensors. Over the N, snapshots,
qN, sensors are selected to be active. The aggregate of the
N, random configurations can be view as being drawn from
a 2D PPP whose density is NV, times the effective density of
the network. The localization utility of the network can be
computed by interpreting that the sensor management ap-
plied over each snapshot to select ¢ sensors is equivalent to
sensor management applied over the aggregation of the NV,
configurations to select ¢V, sensors. As a result, the utility

in (30) can be expressed as
at2

2 P
%tat a+2
U= A((l+2)/26stat (Z No ( Zstat ) ft%&) - (34)

s,qNo

Overall, the weighting factor in the utility objective N,

snapshots is
&ﬂtat OL-%-Z
fi="No gﬁa‘f’q Je. (35)

s,qNo
Actually, the localization utility formed by this interpre-

tation is an upper bound because the “best” sensors selected
over the aggregate configuration may not distribute uni-
formly over the N, random configurations. In other words,
the ¢\, sensors formed by applying sensor management
over each configuration separately can lead to a different set
of sensors than applying the sensor management over the
aggregate configuration. While the interpretation actually
provides an upper bound on the utility, simulations indicate
that the bound is tight (see Section 6).

When the network consists of a mixture of mobile and
stationary sensors, it is not clear how to interpret the selec-
tion of the sensors over the aggregate. Without any theo-
retical justification, we simply use f/ in (33) or (35) when
the sensor node is stationary (u; = 0) or mobile (u; = 1),
respectively. This approximation leads to the proper results
when all sensors are stationary or mobile, and it provides an
interpolation when the network is mixed.

The general expression for the typical value using sen-
sors that integrate over N,, snapshots is now

stat{e} = ~

T
A
Zt:l D_;L/(Q-%—a,) t

(36)
When the measurement errors are not range dependent, i.e,
a = 0, the utility of the stationary sensors grows linearly
with N,, and the utility of the rnobile sensors grows faster
than linear due to the ratio ﬁf - Therefore, the advan-
tage of mobile sensors over stllﬁloonary ones becomes more
pronounced as the value N, becomes larger. Note that the
limiting factor for N, is the number of snapshots that it is
reasonable to assume the target is stationary. The faster the
target, the smaller the achievable N,. When a > 0, the
utility of the stationary nodes increases sublinearly with re-
spect to IV, and the utility of the mobile nodes still grows
faster than linear. Overall, for a given ¢, the localization
advantage of the mobile sensor over the stationary sensor
become larger for larger values of a. Nevertheless, mo-
bile sensors provide better localization than stationary ones
when N, > 1 for the a = 0 case.

6 Simulations

L ocalization Performance We provide Monte Carlo sim-
ulations to establish the correctness of the localization for-
mulaes. In all simulations, the sensors have omnidirectional
FOVs, ie., oy, = 1, and complete reliability 5;, = 1 and
we have a = 0. The results are either presented as root
mean squared (RMS) position error, i.e., the square root of
(36), or as the utility, i.e., the reciprocal of (36). For the
Monte Carlo simulations, 1000 random realizations are cre-
ated per each free parameter, and the RMS position error
and the utility are calculated as the square root and recipro-
cal, respectively, of the typical MSE value over the 1000 re-
alizations using various sensor management strategies with
q = 4. Each realization of the sensor network configuration
distributes the nodes via random uniform distribution over
a circle of radius 100 meters, and the target location is the
center of the circle.

We first demonstrate the ability to predict the localization
accuracy for a heterogeneous network of stationary nodes,
i.e., us, = 0. The network consists of two types of bearing
nodes: Type 1 provides a bearing error of 07, = 5° at a
cost of ¢; = 1 unit, and Type 2 provides a bearing error of
oo = 1° ata cost of ¢co = 5 units. The budget is 1000 units.

Figure 2 plots the RMS position error for various net-
work designs when using the two sensor management ap-
proaches discussed in Section 5. Clearly, the Monte Carlo
simulations results matches the theoretical performance
rather well. The curves indicate a monotonic trend between
the homogeneous cases, which is due to the linearity of the
utility. Despite the higher cost of the type-2 sensors, one



would incorporate only these sensors if localization is the
only performance objective.
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Figure 2. Comparison of theory and Monte
Carlo simulations

The next simulation investigates the processing gains
when N, > 1 for both stationary and mobile sensors. In
these simulations, both sensor types achieve a measurement
error of o, = 5°. Figures 3(a)-(b) plot the utility versus N,
for the closest and GNS sensor management approaches,
respectively, and Figure 3(c) compares the sensor manage-
ment approaches. In these plots, the typical value is the
mean. The curves clearly demonstrate that the mobile nodes
become more advantageous as N, grows. The predicted
performance is well matched to the simulated results for the
“closest” node selection approach. The predicted utility for
mobile nodes implementing GNS are larger than the simu-
lated results. As stated earlier, the predicted utility for mo-
bile sensors is an upper bound of the performance. Further-
more, for large N,, the GNS performs worse than the clos-
est approach for the mobile nodes as seen in Figure 3(c).
Certainly, over one configuration, the GNS demonstrates
better utility than the closest approach. However, GNS is
myopic, and it can forgo potentially good nodes for a given
snapshot due to a poor geometry without considering the
aggregate node geometry over the integration time. On the
other hand, the closest approach is able to reduce the trace
of the FIM in (17) as it relies on spatial diversity of the mov-
ing nodes to ensure that the FIM determinant is large so that
(16) can be small.

The third simulation assesses the performance of a mixed
network of mobile and stationary sensors. The mobile
nodes cost 5 units, the stationary nodes cost 1 unit, and the
total budget is 1000 units. Beyond mobility, the two sen-
sor types are identical. Both sensor types produce bearing
estimates with ¢ = 5°. Figure 4 plots the RMS position
error against possible network designs. For the closest ap-
proach, the predicted performance matches the simulations
very well at the end points, i.e., homogeneous networks.
For the median value, the match is still good for mixed net-
works. The mean value is slightly better than predicted by
the interpolation used for mixed networks. For the GNS
management approach, the predicted mean and median val-
ues are well matched to the simulations except as the net-

10

work consists of exclusively mobile sensors. As in the pre-
vious simulation, the myopic strategy degrades the perfor-
mance of GNS for mobile nodes more so than the closest
approach, and the actual localization performance is slightly
worse than predicted.
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Figure 3. Utility vs. N,

Multi-Objective Pareto Frontier  Using a synthetic ex-
ample, we demonstrate the dynamic programming solu-
tions of the design problem. We consider a toy example
including 7" = 6 sensor types. The nodes are stationary
and their sensor characteristics lead to an effective den-
sity (see (32)) of f, = t>. Furthermore, ¢, = 1 + ¢,
§=12,a=29$=500R=1[1,2, 2, 2, 3, 3],and
B =10.95, 0.9, 0.8, 0.85, 0.7, 0.8]. For ease of visual-
ization, we simultaneously maximize only U, L, and V.
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Figure 4. Localization performance of a
mixed network

Figure 5(a) shows the 3D Pareto frontier surface. In
the solution, U is maximized at n 72 where n
[0, 1, 0, 0, 0, 71] V is maximized at n = 84 where
n =11, 0, 0,0, 83, 0]. Figures 5(b) illustrates the constant
average reliability B support contours of the 3D Pareto sur-
face as a fourth dimension, which can be calculated using
the dynamic programming solution. Figure 5(c) demon-
strates the distribution of the resources (top) at a constant
coverage V' while trading lifetime L for utility U starting
from maximum utility, (middle) at a constant lifetime while
trading coverage V for utility U starting from the maximum
coverage, and (bottom) at the boundary of the Q(n, I, v) so-
lutions (see the Appendix) where the lifetime L is traded for
coverage V. In [7], we show other examples where the dy-
namic programming solutions are compared with efficient
solution algorithms based on continuous relaxations. More-
over, conditions are given to reduce the feasibility set of the



sensors to improve the computational demand of the dy-
namic programming solution.
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Figure 5. (a) Pareto efficient frontier (b) Con-
stant reliability contours (c) Resource distri-
bution for various paths on (a). Darker colors
imply more resources.

Cost and Effectsof Mobility To have a basic understand-
ing of how mobility improves the Pareto frontier of a sensor
network, let us consider a three sensor type pool with the
GNS strategy with ¢ = 4 where the sensors characteristics
lead to f, = m?. Furthermore,c=[ 3, 4, 7], N, =2,
0 = 1.2,and a = 0. Let us assume that we can buy a plat-
form that can mobilize the sensors at a fixed cost of ¢mopility-
For the sake of simplicity, we assume that the lifetime of the
mobile sensors is also communication limited.

For this simulation, the relevant typical numbers in (36)
are s”‘ed'a” and eg‘ed'a” which have an approximate ratio of
1.5. Hence we can extend the sensor network to 7" = 6
types with fi56 = q¢ X No X fi23 = 3 X f123 With
the respective costs of c456 = cmonility + ¢1,2,3. Figure 6
shows the Pareto frontier of U and L for stationary sen-
sors alone (dotted line), mobile sensors alone (dashed line),
and their combination when cmobiliy = 10. As seen in the
figure, by spending money on mobility, it is possible to si-
multaneously improve both U and L. In this case, it can
be shown that the mobile sensors become infeasible when
cmobility > 20 using the dominating sensor pairs concept in-
troduced in [7].

7 Conclusions
This paper develops a theory to predict the localization

performance of a heterogeneous sensor network where the
operation of the network exploits sensor management to
conserve energy. The theory also accommodates mobile
nodes operating in a search mode and leads to a maximiza-
tion of a localization utility that is equivalent to the maxi-
mization of a weighted sum of the number of nodes of each
sensor type in the network. This utility fits nicely into our
previous work to determine the Pareto frontier of the sen-
sor choices when determining the number of different types
of sensors to deploy. It is demonstrated that the network
design for stationary nodes need not have advanced knowl-
edge of the class of sensor management techniques that pro-
vide optimal choices of a constant number of active nodes
per snapshot. Furthermore, the sensor network design need
not worry whether the sensor provides a range or bearing.
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Figure 6. Pareto efficient frontier of U and L.

This paper lays down a theoretical justification of the lo-
calization utility under a number of assumptions. Future
work will investigate whether many of these assumptions
can be relaxed. For instance, is the sensor network design
agnostic of any sensor management strategy that may se-
lect a variable number of active nodes per snapshot? Fur-
thermore, many of the objectives are tightly coupled than
modeled in this paper. For instance, the operation of the
mobile node changes actually changes the lifetime objec-
tive because it needs to account for the energy to be mobile
and the fact that mobile nodes could replenish their energy
reserves easier than stationary nodes.
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A Dynamic Programming Solution

Table 1 summarizes our dynamic programming algo-
rithm that can solve the Design Problem. This solution
provides a framework for decomposing the problem into a
nested family of subproblems, denoted as Q(n, [, v), where
n allows us to enumerate the feasible total number of design
vectors whereby determining the lifetime L, [ explores their
corresponding utility space whereby establishing U, and v
calculates the corresponding coverage space. The nested
structure @ is implemented using a recursive approach for
solving the original problem from the solutions of the sub-
problems. Hence, in Table 1, we determine a sequential
decision process that provides necessary conditions for op-
timality that the remaining decisions in the recursion must
satisfy. As a result, the running time of the algorithm is
pseudo-polynomial.

[20]

[21]

[22]

[23]

[24]
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Table 1. Dynamic Programming Solution

Assume that f,,'s and r,,’s are integers in appropriately chosen
scale, and let f* and r* be the largest of these integers,
respectively. Also, let N* be the largest 3, nn, allowed by the
cost constraint ¢/'n < $. Given integers n, 1 <n < N*, I,
1<I<L=jf*N*andv, 1 <v<T=r*N* consider the
problem

Q(n,1,v) = min {Zcmnm Y o nm o =n, > fmnm =1, Y rmnm = 1)} .
™ ™ ™ ™ @
We build optimal solutions to all feasible problems Q(n, I, v) with
1<n<N*1<I<L,and1<v <7 as follows:

1. Initialization: Start with solving problems Q(1,1,v)’s for [ =
1,...,Land v =1,..., v. Each problem can be solved by
inspecting all T' candidate solutions of one of n;'s is 1,
remaining n;’s are zeros. In fact, to solve all these problems, it
suffices to look at M candidate solutions only once. Indeed, in
the beginning, let us assign all problems Q(1, , v) with empty
feasible solution and guess +oco for the optimal value. Now,
when looking one by one at solutions
(ni=1,n2=...=np=0), (n1 =0,n2 =1,
ng=...=np=0),...,(ni=...=np_1 =0, np =1), we
determine the problems from the family Q(1,,v) for each [ and
v, for which the current solution is feasible. If the value of the
objective at this solution is better than the one that the problem
was equipped with, we replace the previous feasible solution of
the problem, if any, with the current one and update the guess
for problem’s optimal value accordingly. As a result, we solve
problems Q(1,1,v) with O(MLTY).

2. Recursion: Assume that we already have solved all problems
Q(n,l,v) withn < k atl and v, and have assigned these
problems with optimal values and optimal solutions. To solve
problems Q(k + 1,1, v), we look at, one after another, T’
candidate correction directions: (dy =1, da = ... =dr = 0),
(di=0,do=1,d3=...=dp=0),...,(d1=...=dp_,
= 0,dr = 1) and note the following: a feasible solution
n=|[n n2 ny |to Q(k + 1,1, v) is obtained by the
correction in question. Order the correction’s number in m so
that the correction is increasing in n,, by 1 from a collection
n =
[ ni no N —1 N — 1 Nm+1 .. nrt } In
order for 7 to be feasible for Q(k + 1,1, v), n/ should be
feasible for Q(k,l — fm,v — rm), and the cost of n is the cost of
7/ plus c.,,. Then, we first assign all these problems with empty
solutions and guesses +oo for the optimal value. We look at,
one by one, the corrections d,,,, and for every correction, look at
the feasible problems Q(k,1,v), 1 =1,..., L. When looking at
dm and Q(k,1,v), we increase the mth component of the
optimal solution of Q(k, [, v) by 1, whereby getting a feasible
solution to the problem Q(k + 1,1 + fm,v + mm ). If the cost of
this solution 7 is less than the current guess for the optimal
value of the latter problem, we replace the current feasible
solution assigned to Q(k + 1,1 + fm,v + rm ) with 2 and
update the guess for the optimal value accordingly. As a result,
we obtain optimal solutions to all feasible problems
Qk+1,l,v),l=1,...,Landv =1,...,T with O(MLY).

3. Wrap-up: Repeating the above process, we solve all Q(n, 1, v)
forn < N* with O(N*MLY) = O(N*3M f*r*). The optimal
solution to the NDS problem can be found by searching through
the Q(n, [, v)-problems with the optimal value less than or equal
to $ and selecting among their optimal solutions the one with
the largest objective value satisfying the coverage constraint.




