
Individualizing Head-Related Transfer Functions for Binaural
Acoustic Applications

Navid H. Zandi
McMaster University
Hamilton, Canada

hossen6@mcmaster.ca

Awny M. El-Mohandes∗
Mansoura University
Mansoura, Egypt

awny.elmohandes@mans.edu.eg

Rong Zheng
McMaster University
Hamilton, Canada

rzheng@mcmaster.ca

ABSTRACT
A Head Related Transfer Function (HRTF) characterizes how a hu-
man ear receives sounds from a point in space, and depends on
the shapes of one’s head, pinna, and torso. Accurate estimations of
HRTFs for human subjects are crucial in enabling binaural acoustic
applications such as sound localization and 3D sound spatializa-
tion. Unfortunately, conventional approaches for HRTF estimation
rely on specialized devices or lengthy measurement processes. This
work proposes a novel lightweight method for HRTF individual-
ization that can be implemented using commercial-off-the-shelf
components and performed by average users in home settings. The
proposed method has two key components: a generative neural
network model that can be individualized to predict HRTFs of new
subjects from sparsemeasurements, and a lightweightmeasurement
procedure that collects HRTF data from spatial locations. Exten-
sive experiments using a public dataset and in house measurement
data from 10 subjects of different ages and genders, show that the
individualized models significantly outperform a baseline model
in the accuracy of predicted HRTFs. To further demonstrate the
advantages of individualized HRTFs, we implement two prototype
applications for binaural localization and acoustic spatialization.We
find that the performance of a localization model is improved by 15◦
after trained with individualized HRTFs. Furthermore, in hearing
tests, the success rate of correctly identifying the azimuth direction
of incoming sounds increases by 183% after individualization.

KEYWORDS
Head-Related Transfer Function (HRTF), Conditional Variational
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1 INTRODUCTION
With their explosive adoption and rich functionalities, earable de-
vices (or earables) are becoming the new frontier of mobile comput-
ing. Researchers have explored in recent years the use of embedded
sensors on such devices for biosensing such as body temperature
monitoring[37], heart rate monitoring [12], and biometric-based
user authentication [12, 13], or as an extra input for gesture-based
control [50]. Additionally, earables can also bring better environ-
mental awareness and immersive acoustic experiences to users in
augmented reality (AR) and virtual reality (VR) applications. For
example, with binaural sound localization and recognition, a user
can be alerted of imminent dangers in one’s surroundings (e.g., an
approaching vehicle) while on a call or listening to loud music;
with 3D acoustic spatialization, playbacks of sounds through in-ear
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speakers are customized to make users feel that they are actually in
a 3D environment. To enable these binaural acoustic applications
on earables, an in-depth understanding of how human auditory
systems perceive and process acoustic events spatially is essential.

Humans can perceive the direction of incoming sounds. Even
in a cluttered environment, like in a restaurant or a stadium, one
is capable of separating and attending to individual sound sources
selectively [45]. Our ability to localize sound is attributed to the
filtering effects of the ear, head and torso, which are direction and
frequency dependent, and are described by Head-Related Transfer
Function (HRTF) [23]. HRTF characterizes the way sounds from
different points in space are perceived by the ears, or in other
words, a transfer function of the channel between a sound source
and the ears. Consequently, HRTF is a function of the angles of an
incoming sound (e.g., azimuth and elevation angles in 3D interaural
coordinates) and frequency, and is defined separately for each ear.

An example of HRTF and its counterpart in the time domain
(HRIR) is given in Figure 1, for left and right ears. As shown in
Figure 1b, many peaks and notches can be observed. As the position
of the sound source goes toward the top of the head, the frequencies
of spectral notches become higher (Figure 1c). The perception of
the elevation angle of a sound is related to the spectral notches
and peaks above 5kHz [18]. These spectral cues depend on the
direction of the incoming signal as well as human physical features,
such as the shapes and sizes of one’s pinna, head, and torso. On
the other hand, time difference (ITD) and level difference (ILD)
between the sounds received by the left and right ears are the two
main cues for lateral localization, and they are directly affected by
human’s HRTF [23]. Since HRTFs are highly specific to each person,
using another person’s HRTF or a generic one will lead to errors in
acoustic localization and unpleasant experiences in audio playbacks
for humans. However, since HRTFs depend on the location of the
sound, direct measurements are time-consuming and generally
require special equipment. Developing efficient mechanisms to
estimate subject-specific HRTFs, also called HRTF individualization,
to enable biaural acoustic applications has been an active area of
research in recent years.

In this work, we propose a novel lightweight algorithm for
HRTFs individualization, which with the help of a simple mea-
surement procedure, makes it possible to individualize HRTFs at
home using mobile devices. This measurement procedure is fast,
lightweight and easy to conduct using commercial-off-the-shelf
(COTS) components, and can result in accurate HRTFs for target
users to facilitate the aforementioned applications. Our algorithm
is based on a conditional variational autoencoder (CVAE) to learn
the latent space representation of input data. Given measurement
data from sparse positions, the model can be adapted to generate
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(a) (b) (c)

Figure 1: Examples of HRIRs and HRTFs. (a) HRIR at azimuth = −45◦ and elevation = −5.76◦. (b) HRTF at azimuth = −45◦ and
elevation = −5.7◦, and (c) HRTF at azimuth = 45◦ and elevation = 54.72◦ (some notches are marked with arrows). The notches
appear at higher frequencies as the position of the sound moves toward the top of one’s head.

individualized HRTFs for all directions. Compared to a state-of-
the-art model in [51], the proposed CVAE model has 470 times
fewer parameters, making it attractive for implementation on em-
bedded devices. Moreover, it has higher accuracy in representing
the characteristics of both training and test subjects. After training
the model on a public HRTF dataset, the HRTFs of a new user can
be accurately estimated using measurements from as low as 60
locations from the user. The proposed lightweight measurement
procedure uses two microphones to record sounds emitted from a
mobile phone. Positions of the phone are estimated from on-board
inertial measurement units (IMUs) in a global coordinate frame
and transformed to a subject-specific frame. No anthropometric
information is required from users. The total measurement time
is less than 5 minutes according to our user study, significantly
shorter than the procedure reported in [51].

Extensive evaluations have been conducted using both the public
dataset and real measurement data. We find that the adapted model
improves HRTF prediction accuracy by 31% and 39% on average
in leave-one-subject-one experiments compared to non-adapted
model. Interestingly, we find that by using only sparse measure-
ments from the half sphere in front of one’s body, the errors only
increase by 8%. The proposed measurement procedure has a mean
angle of arrival estimation error of 4.7◦. To further demonstrate the
advantage of individualized HRTFs, we have implemented two ap-
plications: binaural localization and acoustic spatialization. We find
that the average error of a subject-independent localization model
is reduced by 15.73◦ after adaptation. For sound spatialization, au-
dio signals at 24 different positions are generated by convoluting a
mono sound with HRTFs with and without individualization for
10 volunteers separately. We find that the users can detect azimuth
angles correctly 82.55% of the time compared to 29.17% of the
time without individualization.

The rest of this paper is organized as follows. The state-of-the-
art methods for HRTF individualization are discussed in Section
2. In Section 3 and 4, the algorithm overview and the neural net-
work architecture of the proposed CVAE model are described. In
Section 5, we present the details of the measurement procedure.
The performance of the proposed model is evaluated using a public
dataset and data collected through our measurement procedure in
Section 6. Finally, in Section 7, we present the implementation and
evaluation results of two main applications of HRTF, localization
and sound spatialization, followed by a discussion of limitations of
the work and conclusion in Section 8.

2 RELATEDWORKS
2.1 HRTF Individualization
Using generic HRTFs is the main source of errors in many applica-
tions. Existing approaches to individualize HRTFs can be grouped
into four main categories [15], as discussed in this section.

2.1.1 Direct Methods. The most obvious solution to obtaining in-
dividualized HRTFs of a subject is to conduct dense acoustic mea-
surements in an anechoic chamber [9]. Several loud speakers are
positioned surrounding the subject in all directions of interest with
microphones placed at the entrance of ear canals recording the
impulse responses. The number of required speakers can be re-
duced by installing them at different elevations on an arc, and
rotating the arc to measure at different azimuths. This approach
requires special devices and setups. The measurement procedure
can be overwhelming to test subjects (often having to sit still for
a long time). To accelerate the process, the Multiple Exponential
SweepMethod (MESM) is employed in [31], where reference signals
are overlapped in time. However, this method requires a careful
selection of timing to prevent superposition of different impulse
responses. An alternative way is the so-called reciprocal method
[55], in which two small speakers are placed inside the subject’s
ears, and microphones are installed on an arc. This accelerates the
measurement time, but has its own limitations, as the speakers in
the ears can not produce too loud sounds as it may damage the
person’s ears (low SNR on the final measurements). Recently, some
researchers investigate the use of continuous measurements. In
[40], using measurement in an anechoic room, it is reported that at
a rotation speed of 3.8◦/𝑠 , no audible differences are experienced
by subjects compared to step-wise measurement. In [39], instead
of moving her whole body, a subject is asked to move her head in
different directions, with the head movements tracked by a motion
tracker system. Long measurement time often leads to motion ar-
tifacts due to subject movements during the measurements [19].
Some have attempted to alleviate this problem by providing vi-
sual feedback to subjects [11], or constraining their movements by
mechanical supports. Another approach to ease the need for spe-
cial measurement setups is proposed in [52]. A user measures her
HRTFs at 2D sparse positions in a horizontal plane using a mobile
phone. HRTF estimates are done by modeling sound diffraction on
the head, with the help of the physics of sound propagation fused
with mobile IMU data to locate the mobile phone’s position. To
obtain HRTF estimations at unobserved locations, linear interpola-
tion is used. Liner interpolation using neighboring measurements
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does not work well when the measurement locations are far apart.
Furthermore, since it is difficult to take measurements behind one’s
back, extrapolation based on frontal measurements leads to large
errors. For example, as reported in [52], two out of 5 volunteers
had difficulty to correctly measure HRFTs in their back due to arm
movement constraints. The estimation is limited to HRTFs in a
horizontal plane for users, and the effect of HRTF individualization
is not tested on sound spatialization experience. In contrast, our
method targets 3D HRTF estimation in both azimuth and elevation.
The proposed model learns representations of the full sphere from
the ITA datasets. Even in the absence of measurement data in the
back during adaptation, the model can still leverage the learned
representation to generate HRTFs in those positions.

2.1.2 Simulation-based Methods. The second categories of HRTF
individualization methods utilize numerical simulations of acoustic
propagation around target subjects. To do so, a 3D geometric model
of a listener’s ears, head, and torso is needed either through 3D
scans or 3D reconstruction from 2D images [24]. Methods like finite
difference time domain [36], boundary element [16], finite element
[22], and raytracing [41] are employed in numerical simulations
of HRTFs. The accuracy of the 3D geometric model as inputs to
these simulations is key to the accuracy of the resulting HRTFs. In
particular, ears should be modeled more accurately than the rest of
the body. Objective studies have reported good agreement between
the computed HRTFs in simulation-based methods, and those from
fine-grained acoustic measurements [16]. Numerical simulations
tend to be compute intensive, but thanks to the ever-growing com-
putation power, and improved algorithms, such simulations can
be completed under an hour for one subject [33]. However, most
methods still require special equipment such as MRI or CT for 3D
scan, and are thus not accessible to everyone. 3D reconstruction
from 2D images eliminate the need for specialize equipment but at
the expense of lower accuracy.

2.1.3 IndirectMethods Using AnthropometricMeasurements. HRTFs
rely on the morphology of the listener. Therefore, many works
have tried to indirectly estimate HRTFs from anthropometric mea-
surements. Existing methods can be further classified into three
subcategories.
Adaptation: Starting from a non-individualized HRTF, scaling in
the frequency domain can be applied for individualization [34],
where the scaling factors can be estimated from head and pinnamea-
surements [35]. Subjective evaluations on 9 to 11 subjects showed
improved localization performance over non-individualized HRTFs.
Further improvement can be achieved by combining frequency
scaling with rotation in space to compensate for head tilt [32].
Nearest neighbor selection: In these approaches, the nearest
HRTF set in a dataset is first selected based on the anthropometric
measurements. The distances between two subjects can be com-
puted either directly from morphological parameters [54], or fea-
tures output from a neural network [53]. Adaption can be further
applied using methods in the previous category.
Regression: The third category of approaches try to establish a
functional or stochastic relation between anthropometric parame-
ters and characteristics parameters of HRTFs. Principle component
analysis (PCA) are often used to reduce the dimensionality of input
and/or output parameters [21]. In [21], a linear model is assumed

and the HRTFs for a new subject is predicted using the subject’s
anthropometric parameters through the model. Good agreements
are reported at different azimuth angles in subjective evaluation,
but elevation angles performance is not studied. [27] and [10] ex-
tend the above work by modeling the two set of parameters using
a deep neural network and an autoencoder network, respectively.

All methods in this category suffer the same problem as simulation-
based methods in their needs for accurate anthropometric measure-
ments, which are often difficult to obtain.

2.1.4 Indirect Methods based on Perceptual Feedback. Beside using
anthropometric parameters to identify closely matched subjects
in a dataset, a fourth category of approaches utilizes perceptual
feedback from target listeners. A reference sound which contains
all the frequency ranges (Gaussian noise, or parts of a music) is
convoluted with selected HRTFs in a dataset and played through a
headphone to create 3D audio effects. The listener then rates among
these playbacks how close the perceived location of the sound is
to the ground truth locations. Once the closest 𝐾-subjects in the
dataset are found, the final HRTF of the listener can be determined
through selection or adaptation.

In selection methods, the closest non-individualized HRTFs from
the dataset are used [25]. The reported tuning time ranges from
15 minutes to more than 35 minutes. In contrast, adaptation uses
frequency scaling with scaling factors tuned by the listener’s percep-
tual feedback [20, 51]. In [51], the authors first train a conditional
variational autoencoder to generate HRTFs using a public dataset.
During adaption, user feedback is collected and is used to optimize
personalized weights of HRTFs from known subjects in the dataset.
It reports significant improvement over the non-individualized
HRTF for 18 out of 20 subjects. However, collecting user feedback
requires minimally 30 minutes.

Methods using perceptual feedback generally suffer from long
calibration time and imperfection of human hearing (e.g, low res-
olutions in elevation angles, difficulty to discriminate sounds in
front or behind one’s body). Our proposed method is a combination
of the direct and indirect methods. It uses HRTF estimations at
sparse locations from a target subject (direct measurements), and
estimates the full HRTFs with the help of a latent representation of
HRTFs using a deep generative model (indirect adaptation). To the
best of our knowledge, this is the first work to combine both lines
of approaches.

2.2 HRTF Datasets
Several datasets are available for HRTF measurements using ane-
choic chambers. They differ in the number of subjects in the dataset,
the spatial resolution of measurements, and sampling rates. The
CIPIC dataset [7] contains data from 45 subjects. With a spacing of
5.625◦ × 5◦, measurements were taken at 1250 positions for each
subject. A set of 27 anthropometric measurements of head, torso
and pinna are included for only 43 subjects. The LISTEN dataset
[47] measured HRTFs of 51 subjects at 187 positions recorded with
a resolution of 15◦ ×15◦. The anthropometric measurements of the
subjects are also included. A larger dataset, RIEC [48, 49], contains
HRTFs of 105 subjects with a spatial resolution of 5◦ ×10◦, totaling
865 positions. A 3D model of head and shoulders is provided for 37
subjects. ARI [1] is the largest HRTF dataset with over 120 subjects.



Navid H. Zandi, Awny M. El-Mohandes, and Rong Zheng

Decoder

Database 

Data

Encoder

In
d

iv
id

u
a
li

za
ti

o
n

 
T

ra
in

in
g

Left & Right HRTFs

Individualized HRTFsSparse Measured Data Decoder

Acoustic 

Measurements

Figure 2: System diagram of the proposed approach
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Figure 3: The input and output of the proposed CVAEmodel

It has a resolution of 5◦ × 5◦, with 2.5◦ horizontal steps in the
frontal space. For 50 of the subjects, a total of 54 anthropometric
measurements are available, out of which 27 measures are the same
as those in the CIPIC dataset. The ITA dataset [9] has a high resolu-
tion of 5◦ ×5◦, with a total of 2304 HRTFs measured for 48 subjects.
Using Magnetic Resonance Imaging (MRI), detailed pinna models
of all the subjects are available.

3 SOLUTION OVERVIEW
As shown in Figure 2, the proposed HRTF individualization ap-
proach consists of three main components: 1) training a conditional
variational autoencoder (CVAE) using HTRF data from existing
datasets, 2) collecting sparse measurements from a target subject
using COTS devices, and 3) individualization for the new subject
based on sparse measurements. Specifically, we first train a CVAE
network using data from 48 subjects in the ITA HRTF dataset, to
learn the latent space representation for HRTFs at different posi-
tions in the space. The network takes as inputs HRTFs from the left
and right ears, the direction of the HRTFs, and a one-hot encoded
subject vector. After training, the decoder in the CVAE model can
generate HRTFs for any subject in the dataset at arbitrary direc-
tions by specifying the subject index and direction vectors as inputs.
However, it cannot be used to generate HRTFs for a specific subject
not part of the training dataset. To obtain individualized HRTFs,
we need to first collect some measurement data from the target
subject.

This is accomplished by the data collection component, where a
subject puts on a headset and records the sounds impinging upon
the in-ear microphones from a reference signal emitted from a mo-
bile phone. The subject freely moves the mobile phone with her
right and left hands in the space. To tag estimated HRFTs with ap-
propriate location labels, we need to determine the relative position
of the mobile device to the subject. This is non-trivial without the
knowledge of anthropometric parameters of the subject. However,
we devise a sensor fusion mechanism to transform device poses
from the device frame to the body frame of the subject. Finally,
the positionally labeled data will be used in adapting the decoder
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Figure 4: Architecture of the CVAE model: (a) the encoder
encodes an input HRTF into a latent space representation
and (b) the decoder reconstructs the input HRTF based on
its direction and subject vector.

of the CVAE to generate individualized HRTFs for the subject at
arbitrary directions. In subsequent sections, we will present the
three components in details.

4 A GENERATIVE MODEL FOR HRTFS
Recently, deep generative models have beenwidely used to generate
highly realistic data such as images and music. In this paper, we
utilize a CVAE to propose a lightweight generative model, that is
suitable for mobile devices and embedded systems computational
resources. The proposedmodel estimates the subject-specificHRTFs
using a sparse measured data from this subject.

4.1 Network Architecture
The proposed CVAE model consists of an encoder network and a
decoder network (Figure 3). The encoder network (Figure 4a) takes
three inputs: the HRTFs magnitude of a subject, a one-hot vector
for the subject, and a direction vector. First, for each subject and
each direction in the dataset, we take the subject’s HRTFs from
5 × 5 grid points centred at the desired direction. The grid points
are evenly spaced according to Spherical Harmonics representation
[42] with ±0.08𝜋 step size in azimuth and elevation angles. The
magnitude of the HRTF is computed at each grid point over 128
frequency bins, resulting a 5× 5× 128 tensor for each ear. The two
tensors will separately go through two 3D Convolutional layers
with kernel size 3x3x3, stride 1 for all directions, and zero padding
only on the last dimension, to form the HRTF’s features.

The subject ID is encoded as a one-hot vector. If we have an
𝑁 subjects in the training set, the vector will be of length 𝑁 + 1.
The (𝑁 + 1)th element is reserved for the individualization process,
discussed next, that is set to zero during the training process. Each
subject vector goes through a fully-connected layer, and then con-
catenated with the output of the CNN layers from the previous step.
This concatenated tensor goes through another fully-connected
layer and then summed with the output of the fully-connected layer
that processes the direction vector of the corresponding HRTF. This
vector represents the direction inR26 instead ofR3, where the basis
vectors correspond to 26 evenly distributed points on the sphere.

For each desired direction 𝑢, four enclosing neighboring points
(B1, B2, B3, B4) are identified, and the weights for the basis vectors
(𝑤1,𝑤2,𝑤3,𝑤4) are calculated accordingly [51]:

(𝑤1,𝑤2,𝑤3,𝑤4) = (𝑠𝑡, (1 − 𝑠)𝑡, 𝑠 (1 − 𝑡), (1 − 𝑠) (1 − 𝑡)),
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where 𝑠 = (𝜙𝑢 −𝜙𝐵2)/(𝜙𝐵1−𝜙𝐵2), 𝑡 = (𝜃𝑢 −𝜃𝐵3)/(𝜃𝐵1−𝜃𝐵3), and
𝜙 and 𝜃 are the azimuth and elevation angles of the corresponding
points. The weights for directions other than the four surrounding
basis vectors are set to zero. Compared to representations in R3,
such a representation is more suitable for processing by neural
networks as they are sensitive to binary like activation. Finally, the
output of the summation is mapped into a latent variable 𝑧, a 1-D
vector of size 32.

On the decoder side (Figure 4b), the latent variable is concate-
nated with the subject and the direction vectors. The resulted tensor
goes through 5 fully-connected layers of the same size (e.g., 128),
appended with an output layer to estimate the HRTFs of the speci-
fied subject, in the desired direction. Exponential-linear activation
functions are used after each layer in the encoder and the decoder,
except for the final output layer that uses a sigmoid function. The
proposed network architecture, though inspired by the CVAEmodel
in [51], has two marked differences. First, we view HRTF genera-
tion as a regression problem. The outputs of the decoder are thus
floating point vectors of size 256 (128 for each ear). In contrast, the
model in [51] quantizes the values in each of the 128 frequency
bins into 256 levels and outputs a one-hot vector of dimensions
256 × 256. Doing so drastically increases the number of parame-
ters in the network due to a large number of units in the output
layer. Second, no adaption layers are included in our model, which
further reduces the number of learning parameters. As a result, the
total number of parameters in our model and the one in [51] are
133,390 and 637,100,032, respectively. A lower number of training
parameters generally implies shorter training time and higher data
and computation efficiency.

4.2 Individualization
After training, the decoder can be used to generate HRTFs at an
arbitrary direction for any subject in the training dataset. However,
we need to fine-tune and adapt its hyperparameters to generating
HRTFs for a new subject. Therefore, we need to measure the new
subject’s HRTFs at sparse locations, a procedure detailed in Section
5, and use this data to adapt the decoder. The decoder model can be
adapted using sparse data because of the underlying (sparse) struc-
ture of the HRTFs. The locations of peaks and notches in HRTFs
depend on the azimuth and elevation angles, and are highly cor-
related among neighboring angles. Our network learns the sparse
representations of HRTFs during the training stage. In this way,
with HRTFs at a small number of locations as inputs to the network,
the decoder can estimate the remaining HRTFs. For adaptation,
we re-train the decoder with the new user’s measured data and a
random batch of data from existing subjects in the dataset to avoid
any over-fitting. In the implementation, we utilize 5% of the data
in the ITA dataset or equivalently, 5000 data entries.

Specially, for both the new subject and existing subjects, a latent
variable, 𝑧, is sampled from a normal Gaussian distribution, and
together with subject and direction vectors are used to re-train
the decoder. As mentioned in Section 4.1, in the subject vector, all
elements are zero, except the last one. The outputs of the decoder,
before individualization, can be seen as a set that blends different
features from all subjects in the training stage, or roughly HRTFs
of an average subject. By fine-tuning the decoder parameters using

data from the new subject at sparse directions, the locations and am-
plitudes of the peaks and notches in HRTFs will be adapted for the
new subject, leveraging the structure information that the network
has learned from existing subjects. We need the phase information
to reconstruct the time domain signals from the adapted frequency
domain response. Minimum-Phase reconstruction is used, and then
the appropriate time delay (ITD) is added to the reconstructed sig-
nals based on the direction [20]. The ITD is estimated using the
average of all users in the dataset, and then scaling it relatively to
the new subject based on the new measurements.

5 LIGHTWEIGHT DATA COLLECTION FROM
NEW SUBJECTS

In this section, we present the procedure to collect data from new
subjects for HRTF individualization. Compared to the direct mea-
surement methods discussed in Section 2, the procedure is fast
and easy to perform by average users at home. It does not require
specialized devices or anthropometric measurements from users.

5.1 Measurement Setup and Procedure
5.1.1 Devices. The two required devices in our setup are: 1) two
in-ear microphones to record the sounds impinging on the subject’s
ears. Sounds captured will be transmitted and stored on a com-
puter for post-processing. 2) a mobile phone to play back sounds
on-demand. The mobile phone is equipped with IMU sensors to
estimate the location of emitted sounds.

5.1.2 Procedure. During measurements, a user needs to put the
two microphones in her ears, hold the mobile phone in her hand,
and stretch out her arm as far as possible from her body. We require
the long edge of the mobile phone to be parallel to the extension
of the user’s arm. During the entire process, the user remains sta-
tionary with only upper limb movements. As the user moves her
arm around, she can pause at arbitrary locations and play back
a pre-recorded sound using the mobile phone. The pre-recorded
sound is chosen to be an exponential sine sweep signal, which
allows better separation of nonlinear artifacts caused by acoustic
transceivers from useful signals compared to white noise or linear
sweep waves [31]. Once the sound finishes playing, the user can
proceed to another location, repeating the steps multiple times.
There is no special motion pattern for the arm required, but the
user should try to cover as much range as possible while keeping
her shoulder at the same location. The procedure is repeated for
both hands to have the maximum coverage. At each position that
the hand stops, two sources of information are obtained: 1) the
recorded sounds in the two microphones, and 2) the position that
the reference sound is played from. Using these two information,
we then calculate the HRTFs at a specific location, by deconvolving
the reference sound from the recorded sounds in both ears. Next,
we discuss how to determine the directions of sound sources in the
procedure without user anthropometric parameters and specialized
equipment.

5.2 Estimating Sound Source Directions
At each position, IMU sensor data of the mobile phone is logged to
calculate the orientation of the phone in space. Many sensor fusion
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Figure 5: The notations used in the sound direction finding
algorithm.

algorithms can be utilized for this purpose such as the Mahony filter
[30] and the Madgwick filter[29], both with the ability to mitigate
magnetic interference from surrounding environments. However,
the resulting phone orientation is with respect to a global coor-
dinate frame (GCF). To determine the direction of sound sources,
further transformations are needed to find the phone’s azimuth and
elevation angles in a head centered coordinate frame (HCF). Next,
we describe the algorithm to do so.

5.2.1 Notations. Wefirst define the notations used in the algorithm
as illustrated in Figure 5.

• Head-centered coordinate frame (HCF): a coordinate frame
whose origin is at the centre of the head between a subject’s
two ears. Its 𝑦- and 𝑥-axes are both in a horizontal plane
pointing to the front and right sides of the subject’s body,
respectively. The 𝑧-axis is vertical pointing upward,

• Global coordinate frames (GCF): a coordinate frame centered
on the shoulder joint of the phone holding hand with 𝑦- and
𝑥-axes pointing the geographical North and East, respec-
tively. Its 𝑧-axis is vertical pointing away from the center of
the earth. By default, we consider the GCF centered on the
right shoulder joint unless otherwise specified.

• 𝛼 : the rotation angle around 𝑧-axis from GCF to HCF clock-
wise.

• 𝜙𝑚 and 𝜃𝑚 are respectively, the azimuth (with respect to
the geographical North) and elevation angles of the phone’s
long edge (aligned with the subject’s arm) in the GCF.

• 𝜙 ′𝑚 and 𝜃 ′𝑚 are respectively, the azimuth and elevation angles
of the phone’s long edge (or equivalent the sound source) in
the HCF.

and the anthropometric parameters of the subject are

• 𝑙𝑠ℎ , the shoulder length of the subject from her left or right
shoulder joint to the centre of her head,

• 𝑙𝑠 , the distance from the subject’s left and right shoulder
joint to the phone speaker,

• 𝑙𝑧 , the vertical distance between the centre of shoulders, and
the centre of the head.

Consider a point 𝑃 in space, whose coordinates in HCF and GCF
are respectively, (𝑥 ′, 𝑦′, 𝑧′) and (𝑥,𝑦, 𝑧). From the above definitions,
we note that GCF and HCF can be related by translations on 𝑥- and
𝑧-axes by 𝑙𝑠ℎ and 𝑙𝑧 and a rotation around the 𝑧-axis clockwise of
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Figure 6: Geometrical relations in the horizontal and frontal
planes. Measurements are done using both right and left
hands. Reference angles can be found when ITD = 0 and
|ITD| reaches its maximum.

an angle 𝛼 . Specifically,
𝑥 ′

𝑦′

𝑧′

 =

cos𝛼 − sin𝛼 0
sin𝛼 cos𝛼 0
0 0 1

︸                         ︷︷                         ︸
𝑅𝑧 (𝛼)


𝑥

𝑦

𝑧

 +

𝑙𝑠ℎ
0
−𝑙𝑧

 , (1)

where 𝑅𝑧 (𝛼) is a rotation matrix around 𝑧-axis.

5.2.2 Algorithm. When the phone is at azimuth 𝜙𝑚 and elevation
angle 𝜃𝑚 in the GCF, its Cartesian coordinates are (𝑙𝑠 cos𝜃𝑚 sin𝜙𝑚,
𝑙𝑠 cos𝜃𝑚 cos𝜙𝑚, 𝑙𝑠 sin𝜃𝑚). From (1), its Cartesian coordinates in
the HCF are expressed by (2). The azimuth and elevation angles of
the sound source in the HCF are given by (3) and (4), respectively.
In (3) and (4), the unknown parameters are 𝛼 , 𝑙𝑠ℎ

𝑙𝑠
, and 𝑙𝑧

𝑙𝑠
. Note

that there is no need to know the exact values of 𝑙𝑠ℎ , 𝑙𝑠 and 𝑙𝑧 ,
instead, the ratios suffice. Next, we detail the steps to determine
these parameters without knowledge of anthropometric parameters.

Estimating 𝑙𝑠ℎ
𝑙𝑠
. The key insight is, there are locations of the

mobile phone associated with known azimuth or elevation angles in
the GCF based on ITD measurements. Consider the positions of the
phone in Figure 6a. When the phone is on the sagittal plane that
bisects the subject’s body, the ITD to the left and right ears shall
be zero. Let the corresponding azimuth angles of the phone held
in the left and right hand be 𝜙𝐿𝑚 and 𝜙𝑅𝑚 . From simple geometric
relationships, we have 𝑙𝑠ℎ

𝑙𝑠
= sin

(
𝜙𝐿
𝑚−𝜙𝑅

𝑚

2

)
cos𝜃𝑚 as illustrated in

Figure 6b. In practice, it is difficult for a subject to precisely place the
phone in the sagittal plane. We can approximate such locations by
interpolating locations with small ITDs when the phone is moved
by both hands.

Estimating 𝛼 . When the phone is on the line connecting the
subject’s ears, the absolute value of ITD is maximized. Once such a
position is identified (directly or via interpolation), we can estimate
𝛼 as 𝜋/2 − 𝜙𝑚 , as illustrated in Figure 6c.
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(a) (−5◦, 24.48◦) (b) (50◦, −30.96◦) (c) (−105◦, 14.40◦) (d) (−160◦, −25.92◦)

Figure 7: Comparisons of ground truth HRTFs and HRTFs with and without individualization for Subject 1 from the ITA
dataset at 4 different positions. Each curve concatenates the left and right HRTFs. The LSDs before individualization are: (a)
8.08, (b) 8.07, (c) 5.42, (d) 6.21, and after individualization (a) 4.62, (b) 4.25, (c) 3.47, (d) 4.14. Note, angles are *(Azimuth, Elevation).

Estimating 𝑙𝑧
𝑙𝑠
. Similarly, when the absolute value of ITD is maxi-

mized, we have 𝑙𝑧
𝑙𝑠

= sin𝜃
𝑟𝑒 𝑓
𝑚 (Figure 6c).

To this end, we can estimate the three unknown parameters
using only azimuth and elevation angles of the mobile device in
the GCF and ITD measurements. At any position, given 𝜙𝑚 and
𝜃𝑚 , we can then determine 𝜙 ′𝑚 and 𝜃 ′𝑚 using (3) and (4).

5.3 Discussion
A key design consideration of the measurement procedure is to
ease user efforts and be tolerant to human errors. During measure-
ments, deviations from the data collection protocol may impact the
quality of data collected: 1) staying less than the required time in
each location, and not capturing the full period of a chirp signal,
2) missing some required reference locations, and 3) performing
measurements on one side of the body (e.g, using left or right hand
only).

The system is by design robust to these deviations. First, since
phone position are tracked automatically all the time, movements
during reference sound playback can be detected. Data from loca-
tions with insufficient measurements are discarded. Second, using
ITD and tracked phone orientations, we can determine whether
measurements have been taken at all required reference locations.
Otherwise, users will be alerted to move their phones to the miss-
ing locations. Third, in the same vein, the same procedure can tell
whether measurements have been performed on both sides of a
user’s body. If not, users will be promoted to conduct additional
measurements.

6 PERFORMANCE EVALUATION
In this section, we evaluate the performance of the proposed HRTFs
individualization procedure.

6.1 Implementation
We implemented the proposed algorithm using Python and Py-
Torch. The system used for training and testing is equipped with
Intel Xeon CPU @ 2.20GHz and 12GB RAM. Mini-batch Adam
optimization with mini-batch size 128 and learning rate 10−4 are
used during training. It takes approximately 3 hours on CPU for
100 iterations, and 11.4GB RAM to train the model on ITA dataset.
Decoder adaptation for a new subject consumes 1.6GB RAM, and
takes 1 minute to run for 50 iterations.

6.2 Validation on the ITA dataset
During this step, we use the ITA dataset to evaluate the ability of the
proposed CVAEmodel to generate HRTFs for subjects. Additionally,
we study the effects of the number of measured directions and their
spatial distribution on individualizing HRTFs for new users. Out
of 48 subjects in the dataset, one subject is randomly chosen for
adaptation and testing, while the remaining subjects are used for
training. A small subset of the new user’s data is used for adaption
and the rest is used in testing. To quantify the accuracy of the
predicted HRTFs, we utilize a metric called Log-Spectral Distortion
(LSD) defined as follows [38]:

𝐿𝑆𝐷 (𝐻,𝐻 ) =

√√√
1

𝐾

𝐾∑︁
𝑘=1

(
20𝑙𝑜𝑔10

����𝐻 (𝑘)
𝐻 (𝑘)

���� )2
where 𝐻 (𝑘) and 𝐻 (𝑘) are the ground truth and estimated HRTFs
in the frequency domain, respectively, and 𝐾 is the number of fre-
quency bins. Clearly, if 𝐻 (𝑘) and 𝐻 (𝑘) are identical, 𝐿𝑆𝐷 (𝐻,𝐻 ) =
0.

Fidelity of HRTF predictions. Figure 7 shows the generated HRTF
for Subject 1 in the ITA dataset before and after adaptation in four
different locations. In Figure 8a, the LSDs for 11 subjects in the
ITA dataset are shown before and after adaptation. The lower LSDs
after adaptation indicate that the proposed individualization model
can successfully generate HRTFs for new users.

(𝑙𝑠 cos𝜃𝑚 sin𝜙𝑚 cos𝛼 − 𝑙𝑠 cos𝜃𝑚 cos𝜙𝑚 sin𝛼 + 𝑙𝑠ℎ, 𝑙𝑠 cos𝜃𝑚 sin𝜙𝑚 sin𝛼 + 𝑙𝑠 cos𝜃𝑚 cos𝜙𝑚 cos𝛼, 𝑙𝑠 sin𝜃𝑚 − 𝑙𝑧 ) (2)

𝜙′
𝑚 = tan−1

(
𝑙𝑠 cos𝜃𝑚 sin𝜙𝑚 cos𝛼 − 𝑙𝑠 cos𝜃𝑚 cos𝜙𝑚 sin𝛼 + 𝑙𝑠ℎ
𝑙𝑠 cos𝜃𝑚 sin𝜙𝑚 sin𝛼 + 𝑙𝑠 cos𝜃𝑚 cos𝜙𝑚 cos𝛼

)
= tan−1 ©­«

cos𝜃𝑚 sin𝜙𝑚 cos𝛼 − cos𝜃𝑚 cos𝜙𝑚 sin𝛼 + 𝑙𝑠ℎ
𝑙𝑠

cos𝜃𝑚 sin𝜙𝑚 sin𝛼 + cos𝜃𝑚 cos𝜙𝑚 cos𝛼

ª®¬ (3)

𝜃 ′𝑚 = tan−1 ©­­«
sin𝜃𝑚 − 𝑙𝑧

𝑙𝑠√︃
(cos𝜃𝑚 sin𝜙𝑚 cos𝛼 − cos𝜃𝑚 cos𝜙𝑚 sin𝛼 + 𝑙𝑠ℎ

𝑙𝑠
)2 + (cos𝜃𝑚 sin𝜙𝑚 sin𝛼 + cos𝜃𝑚 cos𝜙𝑚 cos𝛼)2

ª®®¬ (4)
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(a) LSDs for 11 subjects (b) Effects of measurements number (c) Effects of the azimuth coverage range

Figure 8: LSD errors for different subjects, from the ITA dataset, and with different measurement locations. In (a) and (b), indi-
vidualization performance are shown in two cases: when the decoder is retrained using data only from the frontal semi-sphere
(Blue) and using data from the full sphere (Red). (c) LSD errors for three subjects when the data used for individualization are
chosen from a constrained azimuth angle range.

(a) (−5◦, 24.48◦) (b) (50◦, −30.96◦) (c) (−105◦, 14.40◦) (d) (−160◦, −25.92◦)

Figure 9: Results of individualization using only HRTFs from locations in one’s frontal semisphere. Each curve concatenates
HRTFs from the left and right ears. The LSD errors before individualization are: (a) 4.62, (b) 6.64, (c) 7.41, (d) 7.37, and after
individualization are: (a) 4.03, (b) 4.66, (c) 6.9, (d) 6.54. Note, angles are *(Azimuth, Elevation).

Effects of using measurements from frontal semi-spheres. Recall
in the procedure explained in Section 5, a subject moves her right
and left hands holding a mobile phone to obtain sparse HRTF mea-
surements. In absence of any measurement behind one’s head, it
is interesting to understand if our algorithm can fairly estimate
HRTFs at back plane positions. To do this, we repeated the individu-
alization step as before, but this time using the data from the frontal
semi-sphere only. Figures 8a and 8b compare the individualization
accuracy when data is chosen from the full sphere and the frontal
semi-sphere. We observe that though LSDs increase compared to
the case using the full-sphere data for individualization, significant
improvement is still observed over non-individualization. Figure
9 shows the estimated HRTFs with and without individualization,
using data from the frontal semi-sphere. It is noticeable that the
individualized HRTFS are more accurate than the case without indi-
vidualization. However, we can observe less errors in the prdicted
HRTFs in the frontal (Figure 9a-9b) compared to those in the back
(Figure 9c-9d) semi-spheres.

Effects of the sparsity of measurement locations on individualiza-
tion. We have performed this test to define the minimum required
number of measurements. As shown in Figure 8b, fewmeasurement
locations degrade the performance of individualization whether
they are in the frontal semi-sphere or in the full sphere. However,
with as little as 70-measurement locations, 20.7% and 23.3% re-
ductions in LSDs can be achieved in the two cases, respectively.

Effects of the azimuth coverage on individualization. We need to
study these effects because the shoulder joints of different people

may have different range of motion. Specifically, we take measure-
ments only from locationswhose azimuth angles fall in [−𝜙/2, +𝜙/2],
and vary 𝜙 from 60◦ to 240◦. Figure 8c shows the individualization
results for three subjects. As expected, LSDs will drop when the
azimuth coverage increases. However, even with measurements
from only 𝜙 = 60◦, LSDs are much less than those without individ-
ualization.

Comparison with a state-of-the-art model. We have implemented
the algorithm in [51], a state-of-the-art model for HRTF estimation.
The architecture of the model in the work contains an Adaptive
layer, which replaces ordinary Linear layers, and separates com-
mon factors and individuality of different subjects into two different
tensors. We have followed the procedure described in the text in
Appendix B in [51] to reproduce the architecture, and only com-
pared the power spectrum output of their model with ours. To do
so, we take the first 45 subjects in the ITA dataset, and train both
the proposed CVAE model, and the model by Yamamoto et al. as the
base model, on these subjects. Next, the models are individualized
separately for each of the 3 remaining subjects, using data from
all 2304 directions in the ITA dataset. To individualize the baseline
model for new subjects, Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) optimization is applied to the subject vector, as
mentioned in [51]. The results are shown in Figure 10. It can be seen
that both during training and in individualization, our proposed
model outperforms the base model with smaller LSD. In Figure
11, the result of individualization for subject 45 at two different
directions are shown. Clearly, the proposed model results in HRTFs
closer to the ground truth.
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(a) Train Error (b) Individualization Error

Figure 10: Train and individualization errors of the base
model and the proposed model on different subjects. 45 sub-
jects from ITA dataset are chosen. Both models are adapted
for subjects 46 to 48 using data from all 2304 directions.

(a) (−5◦, 24.48◦) (b) (50◦, −30.96◦)

Figure 11: Result of individualization at two different (Az-
imuth, Elevation) directions for Subject 45 in the ITAdataset.
Each curve concatenates the left and right HRTFs. The LSD
errors for the proposed CVAE model are: (a) 3.22, (b) 2.79,
and for Yamamoto’s model are: (a) 7.01, (b) 5.39.

6.3 Experimental Validation
In the experiments, we evaluate the performance of the proposed
algorithm with the real data using the setup described in Section
51. The purpose of the experiments is two-fold: 1) to evaluate the
accuracy of the direction finding algorithm in Section 5, and 2) to
evaluate the precision of the HRTF prediction model using real-
world data.

6.3.1 Implementation. Data Capture and Post-Processing. An An-
droid application has been developed (Figure 12a), with two main
functions: 1) emitting reference sounds, and 2) logging the pose of
the phone in its body frame (in yaw, roll, and pitch). The sweep
time of the reference exponential sweep signal is 1.2 second, with
frequencies range from 20Hz to 22kHz. With 1 extra second be-
tween consecutive measurements to let reverberations settle down,
measuring 100 locations takes about 220 seconds, a little less than
4 minutes. Two electret microphones, soldered into a headphone
audio jack (Figure 12b), are connected to a PC sound card for audio
recording. The microphones are chosen to have good responses
in human hearing ranges 20Hz∼20kHz. Audacity [2] is used on
the PC for recording, which is an open-source audio software and
has some preliminary editing features like noise reduction and
normalization. We extract the HRIRs on MATLAB using the ITA
Toolbox [8]. Note that with a suitable programming interface, the
proposed system can be implemented on Bluetooth earphones that
can stream recorded audio to a phone. Therefore, we can extract
the HRIRs on the same sound emitting mobile phone.

1Research ethics approval has been obtained for user data collection.

(a) Mobile App (b) In-ear electret microphones.

Figure 12: Software and hardware setup for data acquisition.

𝒙′

𝒚′𝒛′ 𝝓𝒎
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Figure 13: Ground Truth for directions. Themeasurement is
done multiple times in different azimuths and elevations.

(a) Azimuth angle estimation (b) Elevation angle estimation

Figure 14: Direction finding estimations for different sub-
jects. Labels from 1 to 10 are for the human subjects, while
Label 11 is for the manikin. For each box, the red line is the
median, and the bottom and top edges indicate the 25th and
75th percentiles, respectively.

Ground Truth for Sound Source Directions. To evaluate the di-
rection finding algorithm of sound sources, subjects are asked to
stand on a marker on the ground, hold the mobile phone in their
hand and point in different directions. At each position, we use
a measurement tape to determine the vertical distance (𝑧′) of the
mobile phone to the centre of the subject’s head, and its 𝑥 ′ and 𝑦′
coordinates in the horizontal plane, as shown in Figure 13, with
origin at the body center and 𝑥-axis in the lateral direction and
away from the body. Finally, we calculate the ground truth values
of the azimuth and elevation angles as:

𝜙 ′𝑚 = tan−1
(
𝑥 ′/𝑦′

)
and 𝜃 ′𝑚 = tan−1

(
𝑧′/

√︃
𝑥 ′2 + 𝑦′2

)
The measurements are done for 10 different subjects, and one
manikin, which is used to eliminate human errors such as undesired
shoulder or elbow movements during measurements. The subjects
were 5 male and 5 female with ages from 29 to 70, and heights
from 158𝑐𝑚 to 180𝑐𝑚.

6.3.2 Results for direction finding. Figure 14 show the median, 25th
and 75th percentiles of azimuth and elevation angles estimations
using the algorithm in Section 5. Generally, we observe larger errors
in azimuth than in elevation. This may be attributed to a larger
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Table 1: Estimated azimuth and elevation angles of sound
sources for one subject. ’Height’ is the vertical difference be-
tween the subject’s head center and the sound source.

Height Azimuth Error Elevation Error

50.5𝑐𝑚

26.98◦ −3.49◦ 48.71◦ −2.17◦
49.81◦ −5.64◦ 51.64◦ −1.00◦
73.87◦ −1.86◦ 54.29◦ −3.60◦
100.48◦ 0.18◦ 57.9◦ −2.14◦

33.0𝑐𝑚

4.04◦ −5.42◦ 30.64◦ −0.44◦
55.02◦ −0.94◦ 33.46◦ −1.92◦
80.47◦ 3.63◦ 36.65◦ −3.19◦
111.49◦ 6.24◦ 39.99◦ −3.97◦

21.0𝑐𝑚
2.98◦ −5.98◦ 19.63◦ −0.36◦
51.23◦ −1.89◦ 20.95◦ −1.83◦
101.18◦ −4.66◦ 25.14◦ −3.49◦

range of motions horizontally (with both hands). By eliminating
shoulder and elbow movements, the use of a manikin leads to
the least angle estimation errors as expected, demonstrating the
correctness of the proposed algorithm. More detailed results for one
subject for estimations at different sound source locations are given
in Table 1. Note even when the phone is at the same height, due to
distance between the subject’s shoulder joint and head center, the
elevation angles can differ.

6.3.3 HRTF predictions. The results of individualization for one
test subject are shown in Figure 15. For this subject, measurements
at 83 locations were collected during the experiment, 60 of which
were used for individualization, and the remaining 23 locations
were used for testing. The individualized HRTFs clearly resemble
the measured one more closely than without individualization in
all cases. Moreover, we have performed the measurements in two
different places, one of the team members home and our lab. For
the home, we have taken the measurements for four participants, 2
females and 2 males, and the rest of the measurements have been
taken in our lab. The used microphones, mobile phone and PC in
the home were different than the used ones in our lab. We observe
that the accuracy of the measurements, for HRIRs and directions,
are the same from these different setup conditions.

It is worth mentioning that since measurements are done in an
indoor environment, the calculated HRTF is a combination of room
effects, HRTFs of the test subjects and distortions of the speaker and
the microphones. Despite so, the results are still meaningful since
applications of HRTFs such as binaural localization need to account
for environment effects. Since the data acquisition procedure for
individualization is fast and simple, one can reasonably do so for
each new environment. As part of our future work, we will develop
procedures to remove distortions from measurement devices and
room impulse responses.

7 APPLICATIONS OF INDIVIDUALIZED
HRTFS

In this section, we implement two applications and demonstrate
the advantage of HRTFs individualization.

7.1 Binaural localization
Many different algorithms have been developed for binaural sound
localization including simple regression models like SVR [14], GPR
[28], and deep neural network models [46]. In this paper, we follow
a state-of-the art neural network-based model in [46], to evaluate
the benefits of accurate HRTF predictions. We believe the same
observations are applicable to other localization algorithms.

Localization model. The model is a fully-connected neural net-
work with four hidden layers. Each hidden layer has 500 units, with
a ReLU activation function, and a dropout layer after. The output is
a classification over 72 discrete azimuth angles. The network takes
as inputs the normalized cross-correlation function (𝑅𝑐 ) and the
ILD of the left and right input signals. Specifically, 𝑅𝑐 is computed
as:

𝑅𝑐 (𝜏) =
∑
𝑚 (𝑥𝑙 (𝑚) − 𝑥𝑙 )

∑
𝑚 (𝑥𝑟 (𝑚 − 𝜏) − 𝑥𝑟 )√︁∑

𝑚 (𝑥𝑙 (𝑚) − 𝑥𝑙 )2
√︁∑

𝑚 (𝑥𝑟 (𝑚 − 𝜏) − 𝑥𝑟 )2
,

where 𝑥𝑙 and 𝑥𝑟 are the acoustic signals at the left and right ears,
𝑥𝑙 and 𝑥𝑟 are average values of the signals over a window of size
2𝜏𝑚𝑎𝑥 , m is the sample index, 𝜏 ∈ [−𝜏𝑚𝑎𝑥 , 𝜏𝑚𝑎𝑥 ] is delay in time,
and 𝜏𝑚𝑎𝑥 is the maximum delay that a normal human can perceive,
about 1ms. For sounds sampled at 44.1kHz, 𝜏𝑚𝑎𝑥 corresponds to 45
samples. Therefore, this feature has a dimension of 91. The ILD of
𝑥𝑙 and 𝑥𝑟 is a scalar defined as:

ILD = 10 log10

∑
𝑚 𝑥

2
𝑙
(𝑚)∑

𝑚 𝑥
2
𝑟 (𝑚)

.

By concatenating the two, a feature vector of length 92 is input
to the neural network. Since the model can only predict azimuth
angles, the location error is defined as:

Error =
∑𝑁
𝑛=1 |𝜃 (𝑛) − 𝜃 (𝑛) |

𝑁
,

which is an average over the errors between the ground truth (𝜃 )
and estimated (𝜃 ) azimuth angles over 𝑛 test locations.

For comparison, we train three types of models, namely, a subject-
independent model, subject-dependent models and adapted models.
These models follow the same architecture as the base model but
differ in model parameters due to different training data used. For
training and testing, we take recordings of different types of sounds
from the Harvard Sentences dataset [4, 5] and convolve them with
selected HRTFs at target directions to generate binaural sounds.
The subject-independent model is trained using data from HRTFs
of all subjects in the ITA dataset. It captures the average model
of different subjects, and thus serves as a baseline. Ten subject-
dependent models are trained using binaural sounds generated
from known HRTFs of the respective subjects in the ITA dataset.
Finally, for each of the 10 subjects, we first obtain its individualized
HRTFs following the algorithm in Section 4.2 using sparse samples
at 80 locations in the frontal semi-sphere. The resulting training
data is then used to update the parameters of the baseline model to
produce the adapted model of each subject.

Results. The average errors of the estimated azimuth of the
subject-independent, subject-dependent, and adapted models are
shown in Figure 16. The results are the averages of 6912 testing
locations for each test subject. From the figure, we observe that
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(a) (69.2◦, 10.92◦) (b) (5.71◦, 10.84◦) (c) (41.69◦, 0.38◦) (d) (12.7◦, −2.71◦)

Figure 15: Individualization using measurements data from one subject. 60 out of 83 measured locations are used for individ-
ualization. Each curve concatenates HRTFs from the left and right ears. The LSD errors before individualization are: (a) 13.79,
(b) 15.48, (c) 15.03, (d) 16.10, and after individualization are (a) 7.61, (b) 7, (c) 6.53, (d) 7.07. Note, angles are *(Azimuth, Elevation).

Figure 16: Angle estimation error of the subject-
independent model, the subject-dependent and the adapted
models for different subjects.
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Figure 17: A questionnaire with 12-azimuth and 2-elevation
candidate locations. A user is asked to select one from each
chart in spatialization tests.

the adapted models have a comparable accuracy to the subject-
dependent models and outperform the subject-independent model.
The classification accuracy of the subject-dependent, adapted, and
subject-independent models is 96%, 92%, and 74%, respectively.
The average errors for the subject-dependent and the adapted mod-
els are 3.41◦ and 6.19◦, respectively, while the average error is
21.92◦ for the subject-independent model.

7.2 Acoustic Spatialization
Acoustic spatialization is another application that can benefit from
individualized HRTFs. Extensive researches have been done in the
area of 3D sound spatialization. Some of its applications include
interactive virtual environments to foster cognitive and learning
skills in blind children [43], or as a portable navigation system
for the blinds [6]. Also it is used in VR and 3D games, as an extra
navigational aid to interact better with complex environments [17],
and to simulate moving sounds [26]. At home children schooling is
another new application that uses binaural hearing [3]. Children
can attend lectures using their tablet, as if they are in the middle of
the classroom. All the mentioned applications are taking advantage

of HRTF for the 3D sound spatialization. However, without an
individualized HRTF, the user will not feel comfortable using them.
Therefore, we perform this experiment to collect data from the
subjects by measuring their HRTFs at sparse locations as detailed
in Section 6.3, and train subject-dependent decoders to generate
their respective HRTFs in different directions.

For each subject, 14 sound files have been prepared by convo-
luting a mono sound (e.g., a short piece of music) with individual-
ized HRTFs at directions chosen randomly from 12 azimuth angles
evenly distributed between 0◦ and 360◦, and two elevation angles
(Figure 17). Additionally, we also prepare 10 sound files by convo-
luting the same sound with HRTFs of an arbitrary subject in the
ITA dataset at different azimuth and elevation angles. The two sets
of sound files are then mixed and shuffled. The subject is then asked
to play back all sounds using a headset and label their perceived
sound locations among the possible azimuth and elevation angles.

The procedure is repeated for all subjects in Section 6.3. We find
that with the individualized HRTFs, subjects can accurately detect
the correct azimuth angles 82.55% of the time on average. The
accuracy drops to a mere 29.17% of the time when the unmatched
HRTFs are used. However, in both cases, all subjects report diffi-
culties in determining elevation angles. This is consistent with the
fact that human auditory systems generally have poor elevation
resolution [44]. Therefore, we conclude that HRTF individualiza-
tion can indeed provide more accurate acoustic spatialization and
thus better 3D immersion experiences to users.

8 CONCLUSION
A new approach to HRTF individualization was introduced in this
paper, which with the help of a Generative Neural Network, can
estimate the HRTF of a subject, using only sparse data from the
subjects. A fast data collection procedure is devised that can be
performed by users at home without specialized equipment. This
proposed approach shows great improvements in adaptation time,
compared to perceptual-based methods. Accuracy of the proposed
approach has been investigated using both a public dataset and
real-world measurements. The advantages of individual HRTFs
have been demonstrated using binaural localization and acoustic
spatialization applications.

One limitation of the data acquisition procedure is that subjects
can not measure any points in the back semi-sphere, which low-
ers the accuracy of individualized HRTFs using only data from
frontal semi-sphere. Another limitation arises from the fact that the
measured HRTFs contain artifacts from room reverberations and
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the used speaker and microphone. As future work, we will further
develop faster and more robust data acquisition procedure that
decouples environmental effects from subject-dependent HRTFs,
and can be conducted in a continuous manner.
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