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Résumé

Cet article présente une nouvelle approche appelée bag-of-

bags of words (BBoW) pour la recherche d’images par le

contenu (CBIR). Il s’agit d’une extension du modèle clas-

sique dit sac-de-mots (bag of words - BoW). Dans notre

approche, une image est représentée par un graphe placé

sur une grille régulière de pixels de l’image. Les poids

sur les arêtes dépendent de caractéristiques locales de

couleur. Le graphe est découpé en un nombre fixe de ré-

gions qui constituent une partition irrégulière de l’image

par la méthode Normalized Cuts. Enfin, chaque partition

est représentée par sa propre signature suivant le même

schéma que le BoW. Une image est donc décrite par un

ensemble de signatures qui sont ensuite combinées pour

la recherche d’images similaires dans une base de don-

nées. Contrairement aux méthodes existantes telle que Spa-

tial Pyramid Matching (SPM), le modèle BBoW proposé

ne repose pas sur l’hypothèse que des parties similaires

d’une scène apparaissent toujours au même endroit dans

des images d’une même catégorie. L’extension de cette mé-

thode à une approche multi-échelle, appelée Irregular Py-

ramid Matching (IPM), est également décrite. Les résultats

démontrent la qualité de notre approche lorsque les parti-

tions obtenues sont stables au sein d’une même catégorie

d’images. Une analyse statistique est menée pour définir

concrètement la notion de partition stable.

Mots Clef

Recherche d’images par le contenu, coupe de graphes, Nor-

malized Cuts, Sac de mots.

Abstract

This paper presents a novel approach, named bag-of-bags

of words (BBoW), to address the problem of Content-Based

Image Retrieval (CBIR) from image databases. The pro-

posed bag-of-bags of words model extends the classical

bag-of-words (BoW) model. An image is represented as a

connected graph of local features on a regular grid. Then

irregular partitions (subgraphs) of images are further built

via Normalized Cuts. Each subgraph in the partition is then

represented by its own signature. Compared to existing me-

thods for image retrieval, such as Spatial Pyramid Mat-

ching (SPM), the BBoW model does not assume that simi-

lar parts of a scene always appear at the same location in

images of the same category. The extension of the proposed

model to pyramid gives rise to a method we name irregular

pyramid matching (IPM). The experiments demonstrate the

strength of our method for image retrieval when the parti-

tions are stable across an image category. The statistical

analysis of subgraphs is discussed in the paper.

Keywords

Content-based image retrieval, graph partitioning, Norma-

lized Cuts, Bag of words.

1 Introduction

Recent methods in Content-Based Image Retrieval (CBIR)

mostly rely on the bag-of-visual-words (BoW) model [1].

The idea, borrowed from document processing, is to build

a visual codebook from all the feature points in a training

image dataset. Each image is then represented by a signa-

ture, which is a histogram of quantized visual features-

words from the codebook. Image features are thus conside-

red as independent and orderless. The traditional BoW mo-

del does not embed spatial layout of local features in image

signature. However, this information has shown to be very

useful in tasks like image retrieval, image classification,

and video indexing. Ren et al. [2] put forward a concept of

grouping pixels into “superpixels”. Leibe et al. proposed to

adopt codebooks to vote for object position [3]. Lazebnik

et al. [4] partitioned an image into increasingly fine grids

and computed histograms for each grid cell. The resulting

spatial pyramid matching method (SPM) clearly improves

the BoW representation. Nevertheless, this method relies

on the assumption that a similar part of a scene generally

appears at the same position across different images, which

does not always hold.

Graphs are versatile tools to conveniently represent pat-

terns in computer vision applications and they have been

vastly investigated. By representing images with graphs,

measuring the similarities between images becomes equi-

valent to finding similar patterns inside series of attributed



(sub)graphs representing them. Duchenne et al. [5] intro-

duced an approximate algorithm based on graph-matching

kernel for category-level image classification. Gibert et

al. [6] proposed to apply graph embedding in vector spaces

by node attribute statistics for classification. Bunke et

al. [7] provided an overview of the structural and statistical

pattern recognition, and elaborated some of these attempts,

such as graph clustering, graph kernels and embedding etc.,

towards the unification of these two approaches.

This paper presents a new approach for Content-Based

Image Retrieval (CBIR) that extends the bag-of-words

(BoW) model. We aim at embedding color homogeneity

and limited spatial information through irregular partitio-

ning of an image into a set of predefined number of graphs.

Each partition results from applying graph partitioning me-

thods to an initial full connected graph, in which nodes are

positioned on a dense regular grid of pixels. We adopt the

graph segmentation method called Normalized Cuts [8].

The BoW approach is then applied to each of resulting sub-

graph independently. An image is finally represented by a

set of graph signatures (BoWs), leading to our new repre-

sentation called bag-of-bags of words (BBoW). As in the

spatial pyramid matching approach [4], we also consider a

pyramidal representation of images with a different number

of (sub)graphs at each level of the pyramid. The compari-

son of images in a CBIR paradigm is achieved via compari-

son of the irregular pyramidal partitions. We call this pyra-

midal approach Irregular Pyramid Matching (IPM). Hence

in this paper, we try to address a challenging question : will

an irregular segmentation-like partition of images outper-

form a regular partition (SPM) ? Intuitively, it is invariant to

the rotation and reasonable shift transformations of image

plane. Nevertheless, what can be its resistance to noise and

occlusions ? How will it compete with SPM when embed-

ded into pyramidal paradigm ?

The remainder of the paper is organized as follows. In

section 2 we briefly introduce the notations and prerequi-

sites. The proposed bag-of-bags of words model is discus-

sed in section 3 and the irregular pyramid matching in sec-

tion 4. Section 5 presents the experimental results and we

conclude in section 6.

2 Terminology

The input database Ω = (I, V ) is composed of N RGB
images I = {I1, . . . , IN} and of a visual codebook V =
{V1, . . . , VB} of size B. The codebook is a collection of
vector quantized features created by k-means clustering
over local SIFT [9] features. The latter are extracted from
all the grid dense sampling points of the images in a ran-
domly selected training sample. Let us denote by Gj =
(Vj , Ej ,Wj) an undirected weighted graph constructed on
the image Ij . The set V of vertices contains a regularly
sampled subset of pixels P of the image and at the limit
can contain all of them. The graph edges E connect these
vertices with a 8-connected neighbourhood system. The af-

finity matrix W of size |V| × |V| is defined as :

Wpq =

{

wpq if p, q ∈ E
0 if p, q 6∈ E ,

where wpq represents the edge-based similarity between

two vertices p and q. For each image Ij in the database,

we aim to partition the graph Gj into fixed K disjoint un-

connected subgraphs {gj,1, . . . , gj,K}, such that ∀k 6=

l, gj,k ∩gj,l = ∅ and Gj = {
⋃K

k=1
gj,k}∪Ej , where Ej ⊂ Ej

are removed edges to divide Gj by graph cuttings. We de-

note this K-way partitioning by Γj,K = {gj,1, . . . , gj,K}.

Graph partitioning is a labeling problem. Given a set of

vertices V and a set of labels L = {1, 2, . . . ,K}, for all

node p ∈ V , we are looking for the optimal label lp ∈
L, such that the joint labeling L = {l1, . . . , l|V|} ∈ L|V|

satisfies a specified objective function.

3 Bag-of-Bags of Words Model

Our BBoW model has been inspired by the bag-of-words

model [1] for image description and the idea that an irre-

gular partition into a fixed number of graphs is a step in-

between an arbitrary regular partition as in [4], and a seg-

mentation of an image plane which can be redundant. The

imperfections of this intermediate partition should be com-

pensated by a statistical nature of the original BoW mo-

del for each graph in the partition. Furthermore, we embed

BBoW into multi-resolution schemes as spatial pyramid

matching [4] for using image partitions in coarse to fine

manner. For each image, the construction of a bag-of-bags

of words (figure 1) can be decomposed into four steps :

1) Select a reduced number of pixels V .

2) Build an initial graph G.

3) Partition the graph G into K subgraphs.

4) Compute a signature for each subgraph.

The signature of a subgraph is a histogram of codeword oc-

currences, i.e. obtained by assigning each feature node of

this subgraph to the closest visual word in the codebook.

Hence, an image being composed of K subgraphs is cha-

racterized by a set of K histograms. In the following, we

detail each step of the method.

FIGURE 1 – Bag-of-bags of words pipeline

3.1 Graph nodes selection

We adopt a dense sampling strategy. All the areas contri-

bute equally to the final image representation. We choose 8-

pixels spacing and 16-pixels patch size for the SIFT [9] fea-

tures, called Bag-of-Features Grid SIFT (BF-GSIFT) [10].



3.2 Construct initial weighted graph

The set of nodes V of our initial graph G contains all the
points resulting from the dense sampling. The edges E are
obtained by linking these points with a 8-connected neigh-
bourhood system. The weights on the edges are :

wpq = exp
(

−λ
(

C̄p − C̄q

)

Σ−1
(

C̄p − C̄q

)T
)

, (1)

where C̄p accounts for the mean color vector over a n× n
patch centred on point p = (x, y). λ is a parameter to dif-
ferentiate color similarity. We use the YUV color space be-
cause it has independent color channels and allows to better
deal with changes in lightning conditions. We denote Yp =
Y (x, y) (respectively Up = U(x, y) and Vp = V (x, y)) as
the color channel value at point p. The mean color vector
becomes C̄p = (Ȳp, Ūp, V̄p) where :

Ȳp =
1

n2

n
∑

u=−n

n
∑

v=−n

Y (x+ u, y + v).

The covariance matrix Σ = diag[σ2
Y , σ2

U , σ
2
V ] is diagonal

because of channels’ independence. As in [11], the chan-

nel covariance σ2

Y , σ
2

U , σ
2

V are computed over all the edges

(p, q) ∈ E of the graph G.

3.3 Graph Partitioning with NCuts

We now present how the initial connected full graph G is
partitioned into K subgraphs. Let us denote links(A,B)
to be the sum of the edge weights between nodes in two
disjoint graph nodes’ sets A and B :

links(A,B) =
∑

i∈A,j∈B

wij .

Shi et al. introduced the Normalized Cuts (NCuts) [8], a
graph-theoretic criterion for measuring the goodness of
partitions. The algorithm optimizes two criteria, measuring
the total dissimilarity between the different subgraphs

WNcuts(Gj) = min
gj,1, ..., gj,K

K
∑

k=1

links(gj,k, Vj \ gj,k)

w(gj,k)
, (2)

as well as the similarity within each subgraph

WNassoc(Gj) = max
gj,1, ..., gj,K

K
∑

k=1

links(gj,k, gj,k)

w(gj,k)
. (3)

where w(gj,k) is the sum of edge weights in the subgraph

gj,k. K is the number of subgraphs.

The principle is to find a minimal cut which is a combina-

tion of edges having minimal sum of edge values (i.e. find

the least alike pairs of nodes). Removing these edges di-

vides the graph G into unconnected subgraphs, such that

the similarity between nodes within a subgraph is greater

than the similarity between nodes in separated subgraphs.

The advantage of the normalized cut method is that it

considers two aspects of graph segmentation : minimal

cut (i.e. better separation) and preferring segments of large

size. In practice, we used the code from [8, 12] to directly

apply NCuts to partition a weighted graph G.

3.4 Signatures of subgraphs and BBoW

As in the standard BoW approach, we first build a code-

book from all dense features in a training image dataset.

The codebook is thus independent from any partitioning

scheme. Let us denote Hj,k, a signature of the subgraph

gj,k, k = 1 . . .K in image Ij . Hj,k is a Bag of Words

(BoW) histogram, obtained by assigning the SIFT features

of all graph nodes within the subgraph to the nearest code-

word (hard assignment). Hence, the signature of an image

Ij will be a histogram vector Hj = {Hj,1, . . . , Hj,K} of

length K, normalized by the number of nodes in the initial

image graph Gj . With such a normalization, the larger sub-

graphs are privileged. We call Hj “Bag-of-Bags of Words”

(BBoW).

4 Irregular Pyramid Matching

Our model directly follows the strategy from Spatial Pyra-

mid Matching [4]. We consider several “resolutions” (r =

0 . . . R) of a partition pyramid. At each resolution r, the

image graph Gj is split into Kr = 22r subgraphs. Hence,

the BBoW representation of image Ij at resolution r is the

vector Hr
j = {Hr

j,1, . . . , H
r
j,Kr

} of length Kr. An example

of subgraphs and BBoWs is given in figure 2.

FIGURE 2 – A schematic illustration of the BBoW re-

presentation at each level of the pyramid. At level 0, the

decomposition has a single graph, and the representation

is equivalent to the classical BoW. At level 1, the image

is subdivided into four subgraphs, leading four features

histograms, and so on. Each subgraph is represented by

its own color.

In order to compare two images Ii and Ij , we need to com-
pare the histogram signatures of their subgraphs, and build
a similarity measure upon them. For this purpose, we can
use the histogram intersection function [13] :

I
(

H
r
i,k, H

r
j,k

)

=
B
∑

b=1

min
(

H
r
i,k(b), H

r
j,k(b)

)

, (4)

where B is the codebook size.



In our method we cannot directly apply this function to

match histograms of the subgraphs in the partition. At the

end of the partitions steps, for two images, the two histo-

grams Hr
i,k and Hr

j,k may not correspond one to the other.

Indeed, after applying a graph partitioning method, the sub-

graph attributed to label k can be at any position in the

image. The spatial arrangement is lost if an image in a da-

tabase undergoes rotation, for instance. To overcome this

issue, we first need to reorganize our histograms in BBoW

to find an optimal matching of one partition to the other.

We thus reorganize the labels between the two sets of his-

tograms {Hr
i,k}k=1,...,Kr and {Hr

j,k}k=1,...,Kr . We call this

step bipartite subgraphs matching.
We are facing an assignment problem which requires the
use of combinatorial algorithm. In our method, we rely on
the Hungarian algorithm to minimize the discrete transport
cost between the two sets of histograms. The cost matrix
Dr

i,j between the pair of images Ii and Ij at level r reads :

D
r
i,j =







d11i,j . . . d
1Kr
i,j

...

d
Kr1

i,j . . . d
KrKr
i,j






. (5)

where d
k,l
i,j =

B
∑

b=1

|Hr
i,k(b)−Hr

j,l(b)| is the L1 distance bet-

ween Hr
i,k and Hr

j,l, which is equivalent to the histogram

intersection kernel. The Hungarian algorithm finds the mi-

nimum cost assignment by associating each label k of sub-

graph gi,k in image Ii to one label k′ = fi(k, r) of subgraph

gj,k′ in image Ij , thus the pairs of histograms to compare

are identified.
Now that bipartite subgraphs matching has been fulfilled,
we can directly apply the level weighted intersection [4] :

κ(Ii, Ij) = I
(

H
R
i,k, H

R
j,k′

)

+

R−1
∑

r=0

1

2R−r

(

Ir − Ir+1
)

=
1

2R
I
(

H
0
i,1, H

0
j,1

)

+
R
∑

r=1

1

2R−r+1
I
(

H
r
i,k, H

r
j,k′

)

.

The weight 1

2R−r allows for penalizing low resolutions of

a partition, reflecting the fact that higher levels localize the

features inside smaller graphs more precisely.

5 Experimental evaluation of IPM
In this section, we present the experimental evaluation on

Caltech101 benchmark [14]. The Caltech101 dataset in-

cludes 101 objects categories such as faces, watches, ants,

pianos, etc... and a background category for a total of 102

categories. Following the same setting as in [4], we use the

dense grid of points generated from their codes to build

initial full connected graphs. The dictionary of size 400 is

learnt over 30 sample images per class using k-means and

query images are chosen from the rest of the dataset for

retrieval.

5.1 Selection and impact of parameters

We first estimate the impact of the different parameters on

image retrieval performance. Two parameters have been

evaluated : the patch size n defined in section 3.2 and

the parameter λ for the edges weight (equation 1). The

mean Average Precisions (mAP) on Caltech101 are pre-

sented in tables 1 and 2. For efficiency, these experiments

were conducted on smaller databases containing only 4 test

images per category. The results highlight that these two

parameters do not remarkably influence the quality of re-

trieval. Therefore, we decide to select n = 5 and λ = 5 for

the following experiments.

mAP for the IMP approach at 3 levels pyramid

λ = 0 λ = 5 λ = 20 λ = 100
IPM 0.386 0.390 0.386 0.381

TABLE 1 – Influence of parameter λ (equation 1) on image retrie-

val. For each value, the mean average precision is given. For this

experiment, mAP(SPM)=0.409, the patch size is set to n = 5.

mAP for the IMP approach at 3 levels pyramid

n = 3 n = 5 n = 7 n = 9

IPM 0.381 0.389 0.389 0.388

TABLE 2 – Influence of parameter n (section 3.2) on image re-

trieval. For each value, the mean average precision is given. For

this experiment, mAP(SPM)=0.409, λ = 5.

5.2 Image retrieval evaluation

The performance of our proposed IPM algorithm is mea-

sured by the mean Average Precision (mAP) and its stan-

dard deviation for each category and on the whole dataset,

as described in TREC-style evaluation 1. Table 3 presents

this global mAP for Caltech101 at each level of the pyra-

mid. We compare ours with SPM [4] and with the bag-of-

words approach which simply corresponds to the results at

level 0. SPM outperforms BBoW in general, but our me-

thod achieves better results than BoW (level 0) overall. By

looking closer to the global mAPs, we can nevertheless ob-

serve that the pyramidal approach is not needed for SPM on

this dataset. Indeed, the results at single level 2 are better

than the ones with the pyramidal approach. These results

have been obtained with the official codes of SPM. On the

contrary, the pyramidal approach is a good strategy in our

case, as it improves the retrieval performance with increa-

sing levels.

Level 0 Level 1 Level 2 Pyramid

IPM 0.117 ±0.18 0.107 ±0.16 0.125 ±0.19 0.129 ±0.20

SPM 0.117 ±0.18 0.144 ±0.21 0.162 ±0.23 0.157 ±0.22

TABLE 3 – Retrieval performance (mAP and its standard devia-

tion) on the whole Caltech-101 dataset.

We then propose to investigate more details for fifteen typi-

cal categories of Caltech-101 dataset (figure 3), for which

the mAP of IMP is contrast to that of SPM. There are seven

categories in which SPM has notable better retrieval per-

formance. These also explain why SPM is globally better

than IPM on whole database. Nevertheless BBoW achieves

1. http ://trec.nist.gov/



comparative results with SPM for most of categories, and

even outperforms it in eight categories.

FIGURE 3 – mAP at 3 levels pyramid for 15 typical categories in

Caltech101. SPM outperforms IPM considerably in 7 categories.

5.3 Statistical (sub)graph analysis

In order to give a deeper understanding on why our method

suits for certain categories and not for the others, let us go

through three case studies : a “good” category (minaret),

and two “bad” ones (cellphone, dollar_bill).

Figures 4 and 5 present our partitioning results at level

1, i.e. 4 subgraphs. Figure 4 illustrates good queries from

minaret class in which BBoW outperforms SPM. As can be

seen, our method is able to represent the minaret (object)

with only one or two subgraph(s). The other subgraphs in

the background are also stable in the sense that almost the

same subgraphs can be found in each high-ranking retrie-

ved image within minaret category. Figure 5 shows four

bad queries from cellphone and dollar_bill categories in

which SPM achieves better performance than our method.

The obtained partitions almost do not exhibit any consis-

tency across the images from the same category. The resul-

ting histograms are therefore each time very different and

we can obviously not expect any good retrieval.

minaret0036.jpg minaret0037.jpg

minaret0069.jpg minaret0071.jpg

FIGURE 4 – The 4 irregular subgraphs (in red, blue, green,

brown colors) from “good” query images at level 1.

cellphone0034.jpg cellphone0045.jpg

dollarbill0035.jpg dollarbill0039.jpg

FIGURE 5 – The 4 irregular subgraphs (in red, blue, green,

brown colors) from “bad” query images at level 1.

We now detail the retrieval performance and the statistics

of the (sub)graphs for these eight query images. One can

see in figure 6 that in “good” categories, our method out-

performs SPM [4]. In this case, the partitions from NCuts

are stable across the images of the same category. The

mean number of nodes in “correctly” matched subgraphs

together with the standard deviation are presented in fi-

gure 7. The standard deviation is high for “bad” categories,

whereas it is more uniform for “good” category.

FIGURE 6 – The precision of 8 typical query images : 1st-4th

query images are from a “good” category - minaret, 5th-8th

query images are from “bad” categories : cellphone and dol-

lar_bill.

In order to qualify performance of our approach, we also
introduce a new measure. We call it Partition Precision
(PP). For particular query image Ij , we denote Nrel as the
number of relevant images rel for this query in the whole
database Ω. If Ij and Ii are from the same category, then
Ii ∈ rel. We say gj,k, gi,k′ are matched, if they are bipar-
tite matching subgraphs after rearrangement of histograms
via Hungarian algorithm, moreover they fall into same re-
gions (background, sky, object etc.) of the image Ij and Ii



FIGURE 7 – The mean and standard deviation of nodes’ numbers

of corresponding subgraphs for intra-category, for 8 typical que-

ries in Caltech-101 dataset - at single level 1, i.e. 4 subgraphs.

respectively. Then we can define an Nrel ×K matrix M :

Md,k =

{

1 gj,k, gi,k′ are matched,

0 Otherwise.

to describe the stability of partitioning Gj into Γj,K =
{gj,1, . . . , gj,K}. The Partition Precision (PP) for query
image Ij is thus given by a row vector of length K :

{P (gj,k)}k=1,...,K =
1

|Nrel|

∑

d=1...|Nrel|

Md,k

where Md,k is an element of matrix M . The above vector

thus characterizes the goodness of match of each subgraph

in a query image to the subgraphs of images of the same

category in the database Ω. Table 4 and 5 show figures for

the partition precision of 4 typical queries of a “good” ca-

tegory and of two “bad” categories. One can see that in the

“good” categories, the worst matching percentage (in bold)

is better than that in “bad” queries. Hence, this correlates

with better stability of nodes’ numbers, as in figure 7.

Query image Ij gj,1 gj,2 gj,3 gj,4

minaret0036 0.773 0.746 0.626 0.6

minaret0037 0.786 0.72 0.626 0.6

minaret0069 0.773 0.44 0.6 0.613

minaret0071 0.8 0.506 0.6 0.413

TABLE 4 – The {P (gj,k)}k=1,...,4 of corresponding subgraphs

for 4 typical “good” queries.

Query image Ij gj,1 gj,2 gj,3 gj,4

cellphone0034 0.724 0.638 0.569 0.241

cellphone0045 0.724 0.362 0.569 0.552

dollar_bill0035 0.431 0.686 0.392 0.176

dollar_bill0039 0.275 0.824 0.06 0.418

TABLE 5 – The {P (gj,k)}k=1,...,4 of corresponding subgraphs

for 4 typical “bad” queries.

6 Conclusion and perspectives

In this paper, the bag-of-bags of words model over irre-

gular image partition via Normalized Cuts and its pyrami-

dal extension, the irregular pyramid matching (IPM) have

been introduced. Normalized Cuts method is used to se-

parate the graph of an image, which is composed of full

connected dense grid-points, into several subgraphs. Each

subgraph is then described by a bag-of-words model. Our

approach incorporates color and limited spatial information

into image representation for image retrieval. The obtai-

ned results are encouraging, especially when the partitions

obtained are stable across the images from the same cate-

gory. A criterion for measuring the stability of subgraphs

has been defined in the experimental section. The stability

is nevertheless not always insured with the aforementioned

graph weights functions. In the future, we consider embed-

ding more image descriptors in graph weights and bipartite

subgraphs matching process in order to reach more stabi-

lity.
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